Self-driving instruments: Active Machine Learning for Biological Discovery

Robert F. Murphy @murphy2537
Ray & Stephanie Lane Professor of Computational Biology and Professor of Biological Sciences, Biomedical Engineering and Machine Learning Head, Computational Biology Department, School of Computer Science

AAAS Annual Meeting 2019
My goals

• Describe the future of self-driving instruments: how artificial intelligence/machine learning can do science without human intervention
• Review the background that makes self-driving instruments necessary
• Describe past results demonstrating feasibility

The failure of Reductionism

- For many decades, biomedical research was based on **reductionism**, the assumption that biological components could be understood in isolation.

- By the 80’s it was becoming clear that many, many components interacted.

- Cells, Organs, Organisms are “complex systems” — “the whole is greater than the sum of the parts”
Complexity = combinatorics

- Assuming \(n \) genes, one gene=one function and reductionism, the number of experiments needed equals the number of genes, about 10,000
 - at (optimistically) one experiment per day, 28 years
- Given \(m \) average genes per function and \(n \) genes, the number of experiments is \(n^m \sim 10^{4m} \sim 10^{20} \)
 - at \(10^9 \) experiments per day, 2 million centuries!
The rise of systems biology

• Instead of doing all experiments build predictive models from a smaller number of experiments
• Emphasis on “validating” models by testing specific predictions
• But empirical models cannot be proven!
Solution?

- Use **active** machine learning
- Choose experiments not to **prove** model but to **improve** model

"An active role for machine learning in drug development"

Robert F Murphy

Because of the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development.
Typical drug development: consider each target separately
But it is not just about finding hits...
Where we’d like to be: measure all drugs for all targets

<table>
<thead>
<tr>
<th>Targets</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Targets**: A list of potential targets for drug development.
- **Drugs**: A list of potential drugs to test against each target.
- **Effect**: Represents the outcome of the drug testing.
- **No effect**: Indicates that the drug did not have any effect on the target.

The diagram illustrates the current state of drug testing, where many targets are not yet covered, and the goal is to measure all drugs for all targets.
But again, too many combinations

- Approximately 10,000 targets
- Approximately 1,000,000 potential drugs
- How would active learning help?
Goal: build a predictive model for all drugs and targets

Dempster et al (1977)
Hill et al. (1995);
Lee & Seung (1999);
Buchanan & Fitzgibbon (2005);
Salakhutdinov & Mnih (2008);
Mitra (2010);
Gönen (2012); ...
Playing Battleship with Drugs and Cells

Testing retrospectively (with existing data)

- Large database on effects of drugs on targets
- Very expensive to generate
- Would active learning have been able to save time and money?
Testing retrospectively (with existing data)

• “Hide” the PubChem data (like in Battleship) and only reveal the results when asked
 – as if we were doing that experiment for the first time
• Use different methods to choose what experiments to do
With only 2.5% of the matrix covered, we can identify 57% of the active compounds!

Kangas, Naik, Murphy, BMC Bioinformatics 2014
Now try this *prospectively* for an even harder problem

Use liquid handling robots and automated microscope to execute experiments chosen by an active learner

Source: Beckman Coulter
Try to learn the effects of 96 drugs upon 96 GFP-tagged proteins, without doing experiments for all drugs and proteins, and where the kinds of effects drugs might have are unknown.
• Each small box is one drug and one target
• Green shows accurate prediction, purple is inaccurate, white shows experiments done
After doing 28% of possible experiments, model is 92% accurate and 40% more accurate than would have been obtained by random choice of experiments.

Naik, Kangas, Sullivan, Murphy, eLife 2016
Automated science

• These results provide strong support for the idea of doing “Automated Science” in which not only the execution of experiments is done robotically but the choice of experiments is done robotically.

• “Self-driving instruments!”
Automated science

- Additional precedent in the work of Ross King and colleagues

Functional genomic hypothesis generation and experimentation by a robot scientist

Ross D. King¹, Kenneth E. Whelan¹, Ffion M. Jones¹, Philip G. K. Reiser¹, Christopher H. Bryant², Stephen H. Muggleton³, Douglas B. Kell¹ & Stephen G. Oliver⁵

¹Department of Computer Science, University of Wales, Aberystwyth SY23 3DB, UK
²School of Computing, The Robert Gordon University, Aberdeen AB10 1FR, UK
³Department of Computing, Imperial College, London SW7 2AZ, UK
⁴Department of Chemistry, UMIST, P.O. Box 88, Manchester M60 1QD, UK
⁵School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Manchester M13 9PT, UK
The future

• Embracing complexity in high dimensional models combined with active machine learning to guide experimentation in many areas of biomedical research
• Just like for self-driving cars, human role will be deciding where to go, not how to get there
• Training needed for the Automated Science workforce
Carnegie Mellon University’s New Automated Science Program

Oct 9, 2018 | Recent News

Carnegie Mellon is pleased to announce the launch of a new graduate program: The Masters of Science In Automated Science (MSAS). MSAS graduates will be the leaders in the emerging paradigm of Automated Science: the combination of robotic scientific instruments, Machine Learning, and Artificial Intelligence for iteratively interpreting data and selecting experiments.

Illustration: Sarah Grillo/Axios
M.S. in Automated Science Curricular Goals

- Hands on training with automated equipment
- Experience creating predictive models from experimental data
- Expertise in active machine learning methods for using predictive models to choose future experiments
Acknowledgments

- Armaghan Naik
- Joshua Kangas
- Christopher Langmead
- Aarti Singh
- Nina Balcan
- Jeff Schneider
- Jaime Carbonell
- Andrew Moore

@murphy2537