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Abstract
Background: Fluorescence microscopy is widely used to determine the subcellular location of
proteins. Efforts to determine location on a proteome-wide basis create a need for automated
methods to analyze the resulting images. Over the past ten years, the feasibility of using machine
learning methods to recognize all major subcellular location patterns has been convincingly
demonstrated, using diverse feature sets and classifiers. On a well-studied data set of 2D HeLa
single-cell images, the best performance to date, 91.5%, was obtained by including a set of
multiresolution features. This demonstrates the value of multiresolution approaches to this
important problem.

Results: We report here a novel approach for the classification of subcellular location patterns by
classifying in multiresolution subspaces. Our system is able to work with any feature set and any
classifier. It consists of multiresolution (MR) decomposition, followed by feature computation and
classification in each MR subspace, yielding local decisions that are then combined into a global
decision. With 26 texture features alone and a neural network classifier, we obtained an increase
in accuracy on the 2D HeLa data set to 95.3%.

Conclusion: We demonstrate that the space-frequency localized information in the
multiresolution subspaces adds significantly to the discriminative power of the system. Moreover,
we show that a vastly reduced set of features is sufficient, consisting of our novel modified Haralick
texture features. Our proposed system is general, allowing for any combinations of sets of features
and any combination of classifiers.
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Background
Automated interpretation of protein subcellular location
Among the most important goals in biological sciences
today is to understand the function of all proteins. One of
the critical characteristics of a protein is its subcellular
location, that is, its spatial distribution within the cell.
Knowledge of the location of all proteins will be essential
for building accurate models that capture and simulate
cell behavior, and eventually can be expected to be useful
for early diagnosis of disease and/or monitoring of thera-
peutic effectiveness. The most widely used method for
determining protein subcellular location is fluorescence
microscopy. Given that mammalian cells are believed to
express tens of thousands of proteins, comprehensive
analysis of protein location will require acquisition of
numbers of images that are beyond our ability to analyze
visually.

Fortunately, the feasibility of automated interpretation of
subcellular patterns in fluorescence microscope images
has been clearly demonstrated over the past ten years, ini-
tially by our group [1-3] and then by others [4-6]. The
result is systems that can classify protein location patterns
with well-characterized reliability and better sensitivity
than human observers (for reviews, please see [7,8]). The
heart of such systems is a set of numerical features – Sub-
cellular Location Features (SLFs) – to describe the spatial
distribution of proteins in each cell image. The SLFs
include Haralick texture features, morphological features,
and Zernike moments. Of particular relevance to the work
described here is that the addition of simple multiresolu-
tion features resulted in a significant improvement of clas-
sification accuracy, to the highest reported accuracy of
91.5% for the 2D HeLa data set. This dataset contains
images of all major subcellular patterns and is a well-
established testbed for evaluating subcellular pattern
analysis approaches. Note that with the aid of a parallel
DNA channel, that accuracy climbed to 92.0%. It is
important to have methods that work well when DNA
images are available and also when they are not. We focus
here on analysis of patterns without parallel DNA images
and on improving performance relative to the best previ-
ous results.

Multiresolution techniques
As the introduction of the simplest multiresolution (MR)
features produced a statistically significant jump in classi-
fication accuracy, our aim is to explore more sophisticated
multiresolution techniques. In particular, the following
are the three characteristics of multiresolution [9,10] we
wish to explore: 

(a) Localization: Fluorescence microscope images have
highly localized structures both in space and frequency.
This leads us to MR tools, as they have been found to be

the most appropriate tools for computing and isolating
such localized structures [11].

(b) Adaptivity: Given that we are designing a system to
distinguish between classes of proteins, it is clear that an
ideal solution is to use adaptive transforms, a property
provided by MR techniques. The reasoning is that if there
is a different MR transform for each different class, then
the transform itself would help in distinguishing the class.

(c) Fast and Efficient Computation: It is well known that
MR techniques such as wavelets have a computational
cost of the order O(N), where N is the input size, as
opposed to O(N log N) typical for other linear transforms
including the FFT. This is one of the major reasons for the
phenomenal success of MR techniques in real applica-
tions and one of the reasons to incorporate MR features
into the system. 

MR transforms are many; we now give a brief overview.
The basic idea behind MR is that we can look at a signal at
different scales or resolutions and at different points in
time. This should give us information about hidden struc-
tures in the signal, with a particular behavior across scales.

The main building block of any MR transform is a filter
bank [10]; it is a device that splits the signal into MR sub-
spaces (also called subbands, wavelet coefficients or trans-
form coefficients), where each MR subspace contains one
part of the signal's spectrum. As an example, in the top
part of Figure 1, a two-channel filter bank is given, operat-
ing on a 1D signal. For images, on both rows and columns
(horizontal and vertical directions), the signal is filtered,
followed by downsampling by two (discarding every
other sample, allowed because there is filtering before-
hand). In the simplest case, this produces four subbands;
one extracting lowpass information in both directions,
one extracting highpass information in both direction and
the remaining two extracting lowpass information in one
direction and the highpass information in the other. The
example in the lower part of the figure shows such a filter
bank applied to each subband again (two levels), as we
will use in this paper.

Adaptivity of MR transforms manifests itself in many
guises, including a number of popular transforms: (a)
Growing a full tree to L levels with specific filters of the
same length as the downsampling factor yields the Dis-
crete Fourier Transform (DFT) of size 2L. (b) Growing a
full tree to L levels but allowing the filters to be longer,
leads to the Short-Time Fourier Transform, or, the Gabor
Transform. (c) Growing the tree only on the lowpass
branch to L levels leads to the L-level Discrete Wavelet
Transform (DWT). (d) Growing an arbitrary tree leads to
Wavelet Packets (WP). (e) Splitting the signal into more
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than two channels, allowing filters in the above trans-
forms to be orthogonal and/or linear phase, allowing for
true multidimensional filters and/or samplers, etc., leads
to even more degrees of freedom.

Towards multiresolution classification
We now summarize our initial MR classification effort
[12,13]. We started with a simple classification system
consisting of Haralick texture feature computation fol-
lowed by a maximum-likelihood classifier, and demon-
strated that, by adding an MR block in front, we were able
to raise the classification accuracy by roughly 10% (from
71.8% to 82.2%) as compared to the system with no MR.
This fits within our generic framework shown in Figure 2,

where the feature computation block uses Haralick texture
features and the classification block is maximum likeli-
hood. We concluded that selecting features in MR sub-
spaces allows us to custom-build discriminative feature
sets. However, although the multiresolution block sub-
stantially increased classification accuracy, the accuracy of
the overall system was still not high enough, and thus, in
this work, we reexamined each step of the system: the fea-
tures used, the classifier, and the weighting process.

Results and discussion
Problem statement and philosophy

The problem we are addressing is that of classifying the spa-
tial distribution patterns of selected proteins within the cell.
Assume that the images are of size N × N and let � denote
the set of intensities covered by all the images in the given
dataset, compactly represented as an image belonging to
�N × N. Then, the problem can be formulated as designing a
map from the signal space of protein localization images

⊂ �N × N, to a response space ⊆ {1, 2,..., C} of class

labels. Thus, decision d is the map, d:  #  that asso-
ciates an input image with a class label [14]. To reduce the
dimensionality of the problem, one sets up a feature space

⊂ �f, f ≤ N2, between the input space and the response

space. The feature extractor θ is the map θ:  # , and

the classifier ψ is the map ψ:  # . The goal is to find

a (θ, ψ) pair that maximizes the classification accuracy.

To evaluate MR approaches, we use the well-characterized
2D HeLa set described previously [3]. The proteins in the
data set were labeled using immunofluorescence, and
thus, we know the ground truth, that is, which protein was
labeled in each cell and subsequently imaged. This is use-
ful for algorithm development as we can test the accuracy
of classification schemes.

 
 


 

 

Multiresolution (MR) classification systemFigure 2
Multiresolution (MR) classification system. The generic 
classification system (GCS) consists of feature extraction fol-
lowed by classification (inside the dashed box). We add an 
MR block in front of GCS and compute features in MR sub-
spaces (subbands). Classification is then performed on each 
of the subbands yielding local decisions which are then 
weighed and combined to give a final decision.
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Basic multiresolution blockFigure 1
Basic multiresolution block. Top: Two-channel analysis 
filter bank. The filter h is a highpass filter and g is a lowpass 
filter. Bottom: A 2-level filter bank decomposition of actin. If 
the original image is of size N × N, the ones in the middle are 
of sizes N/2 × N/2 and the ones on the right are of sizes N/4 
× N/4. Each branch has either the lowpass filter g or the high-
pass filter h followed by downsampling by 2 as in the top fig-
ure. Filtering and sampling are performed along the 
horizontal direction (rows) followed by the same operations 
along the vertical direction (columns).
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The challenge in this data set is that images from the same
class may look different while those from different classes
may look very similar (see Figure 2 in [13]). Based on the
above discussion, we would like to extract discriminative
features within space-frequency localized subspaces.
These are obtained by MR decomposition; that is, instead
of adding MR features as in [15], we compute features in
the MR-decomposed subspaces. Thus, our system is a
generic system with an MR decomposition block in front
(see Figure 2), followed by feature computation and clas-
sification in each of the subspaces. These are then com-
bined through a weighting process. The hypothesis we test
here is that adaptive classification in MR subspaces will
improve the classification accuracy.

Base system (nMR)
We denote as no MR (nMR) the system consisting of the
feature computation and the classifier blocks (see inside
the dashed box in Figure 2). In our previous MR work, we
used a maximum likelihood classifier that assumed the
data to be well-separated Gaussian distributions, an
assumption we found not to fit the data well. Instead, due
to their simplicity and generality, we decided to use a two-
layer neural network classifier. The first layer contains a
node for each of the input features, each node using the
Tan-Sigmoid transfer function. The second layer contains
a node for each output and uses a linear transfer function
(no hidden layers are used). We then train the neural net-
work using a one-hot design, that is, since each output
from the second layer corresponds to a class, when train-
ing, each training image will have an output of 1 for the
class of which it is a member and a 0 for all other classes.
To maximize the use of our data, our training process of
the neural network block uses five-fold cross validation.

We ran the classifier with selected combinations of the
three feature types used previously [15] (we did not use
wavelet and Gabor features since they are inherently MR).
These are: morphological features (M), Haralick texture
features (T1) and Zernike moment features (Z). The results
obtained are given in the first row of Table 1. We can see
that the most powerful features on their own are texture
features T1, yielding 85.49% classification accuracy.
Because of that, we looked into other texture feature sets,
such as the second Haralick set from [16] we termed T2,
which produced a slightly better result of 85.76% (second
row of Table 1). By examining these feature sets more
closely, we developed a novel version of Haralick texture
features, termed T3 (details are given in Methods). With
this set, the classification accuracy of the nMR system
jumped to 87.46% (third row of Table 1). We also ran the
experiment for all possible combinations of feature sets,
as shown in the first three rows of Table 1. We found that,
while the addition of other feature sets to T3 did not
increase the accuracy significantly, it did increase the
number of features and thus computational complexity.
This "flat" trend will turn out be general, as we will show
later.

MR Bases (MRB)
We now implement our main idea of adding an MR block
in front of feature computation and classification, as in
Figure 2. We start with the MR decomposition being a
basis expansion (details are given in Methods). We grow
a full tree to two levels with Haar filters (see the bottom
part of Figure 1). We then test the system with all feature
combinations, a neural network classifier as well as two
versions of the weighting algorithm (open-form and
closed-form, details are given in Methods).

Table 1: Classification accuracy per class. Z, M and T stand for Zernike, morphological and texture features. 

System T Weight. Classification accuracy [%]

M T Z T, M M, Z T, Z All

nMR T1 NW 66.12 85.49 51.20 85.76 72.48 85.06 85.04
T2 NW 66.12 85.76 51.20 86.64 72.48 85.78 86.24
T3 NW 66.12 87.46 51.20 87.38 72.48 87.12 86.86

MRB T3 OF 81.62 91.82 65.42 92.04 83.38 91.66 92.36
T3 CF 81.48 92.32 65.84 92.62 83.58 92.34 92.54

MRF T3 OF 84.92 94.72 65.82 94.64 86.80 94.74 94.52
T3 CF 85.16 95.26 65.24 95.40 85.88 95.26 95.38

T1 are the original Haralick texture features, T2 are modified Haralick texture features from [16] and T3 are our improved texture features. nMR 
denotes the base system with no MR, MRB denotes MR basis classification and MRF denotes MR frame classification. OF denotes open-form 
weighting algorithm while CF denotes closed-form weighting algorithm. NW denotes no weighting as there is no MR block in front. Each entry is a 
number denoting the classification accuracy mean over a number of trials (different orderings of the images) for a given combination of feature sets. 
Note that the accuracy of nMR with features M is the same across the rows T1, T2, T3 since texture features are not involved in the classification 
when morphological features alone are used (similarly with Z, and M, Z). A subset of these results is shown pictorially in Figure 3. These results 
should be compared to the best previously obtained result (on the same data set) of 91.5% [15].
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The classifier is evaluated using nested cross validations
(five-fold cross validation in the neural networks block
and ten-fold during the weighting process). One problem
with this technique is that the initial ordering of the
images determines which images are grouped together for
training and testing in each fold of the cross validation. A
different original ordering of the images would result in
different groupings, which would be equivalent to pre-
senting different data sets to the classifier, and would thus
result in a different overall result. We solve this problem
by running multiple trials, each with a random initial
ordering of the images. The mean result of these trials is
taken as our true classification accuracy. In our experi-
ments, we perform ten-fold cross validation on the weight
calculation.

We note the following trends: (a) For all feature combina-
tions, MRB significantly outperforms nMR, thus demon-
strating that classifying in MR subspaces indeed improves
classification accuracy. (b) For the two versions of the
weighting algorithm, open form and closed form, the
closed-form algorithm slightly outperforms the open-
form one for all feature combinations except for M alone
(fourth and fifth rows of Table 1). In particular, for texture
features T3, the accuracy rose slightly, from 91.82% to
92.32%. (c) While a slightly higher classification accuracy
is obtained by using all three feature sets (92.54%) as well
as both T and M (92.62%), the larger number of features
and additional complexity of using M and Z features do
not justify the slight improvement in accuracy (texture
features T3 alone achieve 92.32%). As for nMR, this "flat"
trend is good news as we can use a significantly reduced
feature set and still obtain a fairly high classification accu-
racy.

While we were satisfied that our hypothesis seems to be
true, that is, classifying in MR subspaces increases classifi-
cation accuracy significantly, we decided to look more
closely into how we can improve the system even more. A
known issue with MRB is that they are not shift invariant
(rather, they are periodically shift invariant). This is due to
downsampling used and can create problems as shifted
versions of data can lead to different features in MR sub-
spaces.

Our hypothesis is that shifts in the testing set produce
reduced classification accuracy. We test this hypothesis by
running the algorithm with T3 features alone and with
shifts of t = 0, 1, 2, 3 horizontally and vertically in the test-
ing set (these shifts are chosen because we use 2 levels of
the MR transform, so it is shift invariant to shifts of 22t,
but not to shifts of 22t + 1, 22t + 2, 22t + 3). As expected,
the classification accuracy drops by 0.22%.

This experiment strongly indicates the use of MR tech-
niques which are shift invariant (or almost shift invari-
ant). These are called frames and we examine them next.

MR Frames (MRF)
The simplest MR frame which is completely shift-invari-
ant is called à trous [10] and is obtained by removing
downsamplers (which introduce shift variance) from the
scheme. This leads to redundancy but avoids the problem
of shift variance. The results of the experiments with MR
frames (MRF) are given in the last two rows of Table 1 (for
the two versions of the weighting algorithm again).

As for MRB, the three trends are similar: (a) MRF outper-
forms MRB (the only set showing no improvement is Z
alone). (b) The closed-form algorithm outperforms the
open-form one whenever T3 set is involved. (c) Again, the
"flat" trend continues: the difference between using T3
only as opposed to T3, M or all feature sets is so minor that
the added number of features is not worth the complexity.
We highlight these trends pictorially in Figure 3.

Pictorial representation of classification accuracy resultsFigure 3
Pictorial representation of classification accuracy 
results. The diagram shows results from Table 1 for those 
sets involving T3, namely (T3), (T3, M) and (T3, M, Z). Diamond 
markers represent the nMR system (no MR block), circles 
represent the MRB system (MR bases, no redundancy) and 
squares represent the MRF system (MR frames, redundancy). 
Filled markers denote the closed-form weighting algorithm 
(CF), while empty ones denote the open-form weighting 
algorithm (OF). The following trends are noteworthy: (a) 
Introducing MR (both MRB and MRF) significantly outper-
forms nMR, thus demonstrating that classifying in MR sub-
spaces indeed improves classification accuracy. (b) MRF 
outperform MRB. (b) For the two versions of the weighting 
algorithm, open form and closed form, the closed-form algo-
rithm slightly outperforms the open-form one. (d) The trend 
in each case is almost flat across various feature set combina-
tions, indicating that the texture set T3 alone (26 features) is 
sufficient for high classification accuracy.
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Discussion and future work
Classification of protein subcellular images was indeed
significantly improved by classifying in MR subspaces.
One reason for this improved performance over the sys-
tem using the inherently MR features is that those features
are simply energies in the subbands, while here, the fea-
tures can be any suitable set, leading to a more general
space of solutions. A reason for the improved perform-
ance of the MR systems over the nMR one could be intui-
tively understood if we assumed that this data set is highly
"texture"-like. For example, it is possible for two different
textures to have the same set of Haralick texture features
(they have the same co-occurrence matrices), while when
decomposed, even at the first level, their co-occurrence
matrices would be different, leading to different Haralick
texture features, and thus discriminative power. An exam-
ple of this is given in the compendium to the paper (see
Additional file 1 and [17]).

We plan on exploring a number of issues in our future
work. (a) For example, our system effectively builds an
adapted MR decomposition (via subband weights) for the
whole data set; we want to adapt that decomposition to
each class, arguing that a different MR decomposition for
a different class would be a discriminative feature in itself.
We are currently working on this by adapting the closed-
form algorithm. (b) We would also like to explore
whether improved performance can be obtained by incor-
porating feature selection methods during classifier train-
ing for each subband, as was done in the original work in
[15]. (c) It will also be of interest to explore how and
whether to include information from parallel DNA
images, since this information improved nMR-based clas-
sification accuracy in [15] from 91.5% to 92.0%. This
improvement is because the parallel DNA image provides
a frame of reference for distinguishing proteins that are
inside or near the nucleus from those with similar pat-
terns that are not. (d) Lastly, we would like to find a cost
function that would allow us to explicitly build wavelet
packets. While we implicitly do this now using weights, it
would lead to improved computational efficiency if we
had a method for building a subtree as opposed to using
all the subbands.

Conclusion
This paper addresses automated and robust classification
of major protein subcellular location patterns. With the
introduction of a multiresolution approach, we are able to
obtain a high classification accuracy of 95.26% with only
26 texture features, proving that adaptive MR techniques
improve the classification of the 2D HeLa data set.

Methods
Data set
We used the collection of 2D images of HeLa cells
described previously [3] and publicly available [18]. It
contains approximately 90 single-cell images of size 512 ×
512, in each of C = 10 classes. The 10 classes of subcellular
location patterns were obtained by labeling an endoplas-
mic reticulum protein, two Golgi proteins (giantin and
gpp130), a lysosomal protein, a mitochondrial protein, a
nucleolar protein, two cytoskeletal proteins (actin and
tubulin), an endosomal protein, and DNA. The best pre-
viously described overall classification accuracy on this
data set, without the use of the parallel DNA channel, is
91.5% [15].

Base system (nMR)
Feature Sets
As in [15], we start with Haralick texture features (set T1,
13 features), morphological (set M, 16 features) and
Zernike moments (set Z, 49 features). Unlike in [15], we
do not use wavelet/Gabor features because the MR advan-
tage given by these will be achieved by our MR decompo-
sition. Therefore, our total number of features is 78, as
opposed to 174 in [15].

MR classification
We argued at the beginning of the paper that the nature of
our data sets requires tools which offer localization in
space and frequency as well as adaptivity, and we further
argued that those tools are MR in nature. Thus, the novelty
here is classifying in MR subspaces as opposed on the orig-
inal image itself. The idea is that certain features will react
well at a certain scale but not at another. Thus, we add an
MR block in front of the standard feature extraction and
classification blocks, as in Figure 2.

MR block
The basic MR block is the so-called two-channel filter bank
(see top part of Figure 1). It, and its extensions, can be
used to build decompositions custom-tailored to the
image at hand. This is done by using this filter bank in a
tree, iterating on any of the two-channels and its children.
Moreover, the filter bank can have more than two chan-
nels, and can have more channels than the sampling fac-
tor (leading to redundant representations), etc.

Amongst the possible trees that one can use to analyze an
image, the wavelet packets mentioned previously [19]
adapt themselves to the signal at hand. However, this is
possible only if a suitable cost function is available. That is,
in order to adaptively build the tree, we need to find a suit-
able "measure" that will indicate whether a subband (a
node in the tree) contains useful information or not. If it
does, then we keep the node, otherwise, we prune it.
Page 6 of 10
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Adaptive flavors of MR have been explored for their utility
in classification in various domains [20]. These studies
have used the transform domain coefficients themselves
as features and so had a natural cost function in selecting
the tree most adapted to the signal. In [21], we used wave-
let packets for fingerprint identification and verification
with remarkable results.

To get a fairly general set of possibilities MR toolbox
offers, we define the following matrix

MRl,b,m,n = [ψl,b,o,p], (1)

whose elements ψl,b,o,p go from o = 0, ..., m - 1 and p = 0, ...,
n - 1. In the above, l denotes the level at which the block
is applied, b denotes the particular child branch to which
it is applied, m denotes the number of channels and n the
sampling factor.

If m = n for every block, the above transforms would
implement a basis (nonredundant) expansion. If at least
for one block m > n, the resulting decomposition is a
frame and is redundant. The standard discrete dyadic
wavelet transform is obtained with m = n = 2 and the MR
block being applied only to the first branch of every pre-
ceding block.

As an example, we will show how our MR basis with Haar
filters is represented. We have m = n = 2, and assume that
we have a 1D system (a 2D system is obtained by applying
the 1D one on rows and then on columns) with 1 level.
Thus, l = 1 and the block is applied to the input branch
only (we number that branch 0). The corresponding
matrix is:

where the lowpass filter is given in the first column
(roughly averaging) and the highpass is given in the sec-
ond column (roughly differencing). This matrix describes
the operation of the system on the input of length 2. Since
the input sequence is in general infinite, the matrix
describing the operation of the system on such a sequence
is given by

The effect of downsampling is seen in the movement of
the block MR1 by 2 each time (if the downsampling were
not present, the blocks would be moving by 1).

For l = 2 levels, and using the same transform MR1 at each
branch and at each level, we obtain the matrix MR2:

where � denotes the Kronecker product. The matrix
describing the operation of the whole system is now an
infinite block-diagonal matrix with MR2 on the diagonal
(similarly to (3)).

Feature extraction block
Instead of combining all features into a single probability
vector, we allow each feature set its own probability vector
per subband. For example, for 2 levels as in (4), we have a
total of 21 subbands (original image + 4 subbands at the
first level + 16 subbands at the second level), effectively
bringing the number of subbands to 3·S = 3·21 = 63 if all
three feature sets are used, where S is the number of sub-
bands per level. Note that although we have decreased the
number of features significantly, we have also increased
the number of classifiers, because we now have one clas-
sifier per subband. Evaluating this computational trade-
off is a task for future work.

New texture feature set T3
As the Haralick texture features seem to possess the most
discriminative power, we looked more closely into these.
Haralick texture features are calculated using four co-
occurrence matrices [16]: 1) PH (horizontal nearest neigh-
bors), 2) PV (vertical nearest neighbors), 3) PLD (left diag-
onal nearest neighbors), and 4) PRD (right diagonal
nearest neighbors). We now calculate 13 measures on
each of these four matrices, as defined by Haralick. For
example, the first two features on PH are:

where Ng is the number of gray levels in the image and RH
is a normalizing constant equal to the sum of all the ele-
ments in PH.

The other measures follow in similar fashion, giving us
four sets of 13 measures: f(H, 1–13), f(V, 1–13), f(LD, 1–13) and
f(RD, 1–13). Haralick's original method reduces these to a
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single set of 13 by calculating the mean of each measure
across the four sets (feature set T1):

for i = 1, . . ., 13. An alternative method [16] that we have
used previously [22], is to use both the mean and the
range of the 13 measures, thus resulting in two sets of 13
features (26 features overall, feature set T2). 

We can significantly improve upon these results by mak-
ing a change in the way that we combine our initial four
sets of features. We note that PH and PV are fundamentally
different from PLD and PHD because adjacent neighboring
pixels are spatially closer than diagonal neighboring pix-
els. Therefore, instead of averaging the features from all
four sets, we create our first set of 13 features by averaging
f(H,i) and f(V,i), and a second set of 13 features by averaging
f(LD,i) and f(RD,i). Thus, we end up with two sets of 13 fea-
tures, which are concatenated into one feature set (T3) of
26 features:

for i = 1, ... , 13.

Weighting algorithms
Figure 2 shows a graphical representation of a generic MR
classification system, including the process of combining
all of the subband decisions into one. We use weights for
each subband to adjust the importance that a particular
subband has on the overall decision made by the classifi-
cation system. If the weights are chosen such that the no
decomposition weight is equal to 1, and all other weights
are 0, we will achieve the same output vector as we would
have without using the adaptive MR system. Therefore, we
know that there exists a weight combination that will do
at least as well as the generic classifier (when no MR is
involved) in the training phase. Our goal is to decide how
to find the weight vector that achieves the highest overall
classification accuracy on a given data set. We developed
two versions of the weighting algorithm: open-form and
closed-form.

The difference between the open- and closed-form algo-
rithms is that in the open-form version we optimize clas-
sification accuracy on the training set as opposed to the
closed-form where we look for the least-squares solution.
The open-form algorithm for the training and the testing
phases are given in [13] under Algorithms 1 and 2, respec-
tively.

The neural network block outputs a series of decision vec-
tors for each subband of each training image. Each deci-

sion vector  contains C = 10 numbers (because we

have 10 classes) that correspond to the "local" decisions
made by the subband s for a specific image r.

Open-form algorithm
If using the open-form algorithm, we initialize all the
weights (see Algorithm 1 in [13] for details), and a global
decision vector is computed using a weighted sum of the
local decisions. An initial class label will be given to an
image using this global decision vector. If that class label
is correct, we go to the next image. If it is incorrect, we
look at the local decisions of each subband and adjust the
weights of each subband s as follows:

where iter is the iteration number and ε is a small positive
constant. This can be viewed as a reward/punishment
method where the subbands taking the correct decisions
will have their weights increased, and those taking wrong
decisions will have their weights decreased. We continue
cycling through the images until there is no increase in
classification accuracy on the training set for a given
number of iterations.

Closed-form algorithm
The closed-form solution does not use an iterative algo-
rithm. Instead, it finds the weight vector by solving a min-
imization problem in the least-square sense. We now
explain how this is accomplished.

Assume that we have R training images. For each training

image r = 1, . . ., R, the vector , is

the C × 1 decision vector at the output of each subband

classifier s, where  indicates the confidence of sub-

band s that the training image r belongs to class c. For each
training image r, the weighting block takes as input the

subband (local) decision vectors  and combines them

into a single output decision vector as follows:

We can rewrite the above by, for each training image r,
forming a matrix D(r) of size C × S, where each element
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 is the value at position c of the decision vector 

of subband classifier s. We can now compute:

D(r)w,

where w = (w1, . . ., wS)T is of size S × 1. Thus, we want to
find a weight vector w common to all training images r =
1, . . ., R. A possible solution for w is the one that mini-
mizes the error in the least-square sense:

where d(r) is the desired target decision vector of size C ×
1. It has a 1 in the position of the true class, and 0 else-
where.

We need to rewrite the above in a direct error-minimiza-
tion form. We thus define a target output vector d of size
CR × 1, as a vector which concatenates all the target deci-
sion vectors d(r) as follows:

and a CR × S matrix D consisting of the all the decision
matrices D(r) of all the training data stacked on top of each
other:

We can now rewrite (7) as:

which possesses a closed-form solution and can be com-
puted efficiently.

Then, for a testing image t, we compute its decision vector
δ = (δ1, δ2, . . ., δC) as follows:

where  are the local decision vectors for t. The classifi-

cation decision is then made as

that is, the winning class corresponds to the index of the
highest coefficient in δ.

MR Bases
Among all possible combinations given in (1), we now
confine ourselves to those implementing bases, that is, the
resulting decompositions are nonredundant. Thus, in
each MR subblock, m = n.

We grow a full MR tree with 2 levels. The classification sys-
tem uses all the subspaces from the root (the original
image) to the leaves of the tree. Hence, the total number
of subbands used is 21 (1 + 4 + 42). We used the simplest,
Haar filters in the decomposition, where the lowpass is

given by  whereas the highpass is

. Given a 1D input sequence x, the MR

transform we apply to each block of 4 elements (advanc-
ing each time by 4) is given by the matrix defined in (4).
This is done first in the horizontal direction and then in
the vertical one, producing 16 outputs (subbands). There
are many other MRB blocks possible, the investigation of
which is left for future work.

MR Frames
We now lift the restriction of no redundancy and allow m
and n to be different (m > n). The resulting decomposi-
tions are called frames [23].

We use again the full MR tree with 2 levels, but remove
downsamplers, as in the à trous algorithm [10]. Given a
1D input sequence x, the MR transform we apply to each
block of 4 elements is identical to the one in (4) except
that it is applied to every block of 4 elements (there is no
downsampling). There are many other MRF blocks possi-
ble, the investigation of which is left for future work.

Reproducible research
All the material needed to reproduce results in this paper
is available at the web site address [17] and provided in
the Additional file 1 as well.
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