
Journal of Machine Learning Research 9 (2008) 651-682 Submitted 1/06; Revised 10/07; Published 4/08

Graphical Models for Structured Classification, with an Application to
Interpreting Images of Protein Subcellular Location Patterns

Shann-Ching Chen SHANNCC@ANDREW.CMU.EDU

Department of Biomedical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Geoffrey J. Gordon GGORDON@CS.CMU.EDU

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Robert F. Murphy MURPHY@CMU.EDU

Departments of Biological Sciences, Biomedical Engineering, and Machine Learning
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Editor: Nir Friedman

Abstract

In structured classification problems, there is a direct conflict between expressive models and ef-
ficient inference: while graphical models such as Markov random fields or factor graphs can rep-
resent arbitrary dependences among instance labels, the cost of inference via belief propagation
in these models grows rapidly as the graph structure becomes more complicated. One important
source of complexity in belief propagation is the need to marginalize large factors to compute mes-
sages. This operation takes time exponential in the number of variables in the factor, and can limit
the expressiveness of the models we can use. In this paper, we study a new class of potential
functions, which we call decomposable k-way potentials, and provide efficient algorithms for com-
puting messages from these potentials during belief propagation. We believe these new potentials
provide a good balance between expressive power and efficient inference in practical structured
classification problems. We discuss three instances of decomposable potentials: the associative
Markov network potential, the nested junction tree, and a new type of potential which we call the
voting potential. We use these potentials to classify images of protein subcellular location patterns
in groups of cells. Classifying subcellular location patterns can help us answer many important
questions in computational biology, including questions about how various treatments affect the
synthesis and behavior of proteins and networks of proteins within a cell. Our new representation
and algorithm lead to substantial improvements in both inference speed and classification accuracy.

Keywords: factor graphs, approximate inference algorithms, structured classification, protein
subcellular location patterns, location proteomics

1. Introduction

In standard supervised classification problems, the label of each test instance is independent of the
labels of all other instances. In some problems, however, we may receive multiple test instances
at a time, along with side information about dependences among the labels of these instances. For

c©2008 Shann-Ching Chen, Geoffrey J. Gordon and Robert F. Murphy.

CHEN, GORDON AND MURPHY

example, if each instance is a handwritten character, the side information might be that the string of
characters forms a common English word; or, if each instance is a microscope image of a cell with a
certain protein tagged, the side information might be that several cells share the same tagged protein.
To solve such a structured classification problem in practice, we need both an expressive way to
represent our beliefs about the structure, as well as an efficient probabilistic inference algorithm for
classifying new groups of instances.

Unfortunately, the goal of having an expressive language is in direct conflict with the goal of
having an efficient inference algorithm: while Markov random fields or factor graphs can represent
arbitrary dependences among instances, inference rapidly becomes intractable as the graph structure
becomes more complicated (see, e.g., Koller and Friedman, 2007). Simple graphs such as pairwise
links arranged in chains or trees lead to efficient inference, but these structures may not allow us to
express our beliefs accurately or completely. On the other hand, if we try to couple large groups of
labels (either directly, by specifying a factor that links to a large number of labels, or indirectly, by
using a graph with large loops), the cost of inference grows exponentially.

To speed up inference, we can move to approximate algorithms such as loopy belief propagation
(see, e.g., Koller and Friedman, 2007). Loopy belief propagation handles large loops efficiently,
but it does nothing to speed up the task of working with single large factors. In fact, in practical
problems, the operation of marginalizing a large factor can easily become the main bottleneck for
inference, preventing us from using more-expressive models.

Therefore, in this paper, we study a new class of potential functions, which we call decom-
posable k-way potentials. Computing messages for these potentials is much more efficient than
for general potentials, even though the new potentials can express distributions that cannot be rep-
resented by groups of smaller potentials. Accordingly, we believe these new potentials provide a
better balance between expressive power and efficient inference than was previously available.

We discuss three instances of decomposable potentials: the associative Markov network poten-
tial, the nested junction tree, and a new type of potential which we call the voting potential. We
use these potentials to classify images of protein subcellular location patterns in groups of cells.
Classifying protein subcellular location patterns is important as a step in solving many practical
computational biology problems, particularly in the area of systems biology: for example, it can
help in designing high-throughput screening systems for drug discovery, or in conducting experi-
ments to determine the effect of various treatments on the synthesis and behavior of proteins and
networks of proteins within a cell. Our new representation and algorithm lead to substantial im-
provements in both inference speed and classification accuracy.

Preliminary versions of portions of this work have been presented previously (Chen and Mur-
phy, 2006; Chen et al., 2006a,b). These papers describe applications of decomposable potentials
and the corresponding fast inference algorithms for segmenting and classifying images of protein
subcellular location patterns. But, none of these papers describe the idea of decomposable potentials
of Section 4 or the nested inference algorithm of Section 5 in full generality. They also do not cover
some of the instances of decomposable potentials described in Section 6; and, the experiments of
Sections 8–9 have not been reported previously.

2. Factor Graphs

The factor graph representation of a probability distribution (Kschischang et al., 2001) describes the
relationships among a set of variables xi using local factors or potentials ϕ j. Each factor depends

652

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

f1

f3

f2

x1

x2

x3

Figure 1: A probability distribution represented as a factor graph. Small squares denote potential
functions; for example, this factor graph contains a potential which connects the variables
x1, x2, and x3, and another which connects x1 and f1.

on only a subset of the variables, and the overall probability distribution is the product of the local
factors, together with a normalizing constant Z:

P(x) =
1
Z ∏

factors j

ϕ j(xV (j)).

Here V (j) is the set of variables that are arguments to factor j; for example, if ϕ j depends on x1, x3,
and x4, then V (j) = {1,3,4} and xV (j) = (x1,x3,x4).

Each variable xi or factor ϕ j corresponds to a node in the factor graph. Fig. 1 shows an example:
the large nodes represent variables, with shaded circles for observed variables and open circles for
unobserved ones. The small square nodes represent factors, and there is an edge between a variable
xi and a factor ϕ j if and only if ϕ j depends on xi, that is, when i ∈ V (j). (By convention the
graph only shows factors with two or more arguments. Factors with just a single argument are not
explicitly represented, but are implicitly allowed to be present at each variable node.)

The inference task in a factor graph is to combine the evidence from all of the factors to compute
properties of the distribution over x represented by the graph. Naively, we can do inference by
enumerating all possible values of x, multiplying together all of the factors, and summing to compute
the normalizing constant. Unfortunately, the total number of terms in the sum is exponential in the
number of random variables in the graph. So, usually, a better way to perform inference is via a
message-passing algorithm called belief propagation (BP). Here we briefly review the basics of BP
in factor graphs; for more details, see Kschischang et al. (2001).

The basic BP algorithm works on a factor graph which is tree-shaped (i.e., has no cycles). It
sends messages from every variable to each of its neighboring factors, and from every factor to each
of its neighboring variables. Messages to or from a variable xi will be vectors whose length is equal
to the number of values that xi can take on.

For a variable xi with neighboring factors ϕ1,ϕ2, . . . ,ϕk, suppose that x has received messages
m j→i(xi) from its neighbors ϕ j for j ∈ {1 . . .(k − 1)}. (To simplify notation, we have numbered
xi’s neighbors consecutively starting from 1. This is not a loss of generality since we can always
temporarily permute our factor indices to make it so.) Suppose also that xi has local evidence
represented by the one-argument factor ϕloc

i (xi). Then we can compute xi’s message to ϕk as

mi→k(xi) = ϕloc
i (xi)

k−1

∏
j=1

m j→i(xi). (1)

653

CHEN, GORDON AND MURPHY

That is, we take the componentwise product of all of the messages from factors 1 . . .k−1, multiply
in the local evidence, and send the result to ϕk. The normalization of the message is arbitrary, so
for convenience or numerical precision we may multiply each component of the message by an
arbitrary constant.

Similarly, suppose that a factor ϕ j has neighbors x1,x2, . . . ,xk (again numbered consecutively
without loss of generality) and has received messages mi→ j(xi) for i ∈ {1 . . .(k−1)}. Then we can
compute ϕ j’s message to xk as

m j→k(xk) = ∑
x1

∑
x2

. . . ∑
xk−1

ϕ j(x1, . . . ,xk)
k−1

∏
i=1

mi→ j(xi). (2)

Unlike Equation 1, in Equation 2 we must marginalize out variables other than xk by summing over
their possible values.

BP works by picking an arbitrary node of the graph as root and then making two passes over
the tree: first it passes messages inward from the leaves to the root, and then outward from the root
to the leaves. When the message passing finishes, the posterior marginal probability of any random
variable xi is just the componentwise product of its local potential and all of its incoming messages:

P(xi) = ϕloc(xi) ∏
{ j|i∈V (j)}

m j→i(xi). (3)

2.1 Working with General Graphs

The above discussion assumed that our factor graph was tree-shaped. For graphs with loops, we
have two alternatives: first, we can collapse groups of variable nodes together into combined nodes,
which can turn our graph into a tree and allow us to run BP as above. Second, we can run an
approximate inference algorithm that doesn’t require a tree-shaped graph. We can also combine
these alternatives if desired, grouping variable nodes to reduce the number of loops in the graph so
that our approximate inference becomes more accurate.

When we combine a set of variable nodes, the new node represents all possible settings of all
of the original nodes. E.g., if we collapse a variable x1 that has settings T,F with a variable x2 that
has settings A,B,C, then the combined variable x12 has settings TA,T B,TC,FA,FB,FC. When we
collapse a set of variables, we need to alter the neighboring factor nodes: any factor adjacent to any
of the original nodes becomes a neighbor of the new combined node, and its list of arguments is
extended if necessary to include all variables in the collapsed set.

The advantage of collapsing variable nodes is that it can allow us to simplify the structure of
our graph: if in the collapsed graph there are two factor nodes with the same set of arguments, then
we can combine them by multiplying their potentials elementwise. For example, Fig. 2 shows the
result of collapsing x1 and x2 in the factor graph of Fig. 1. The potentials ϕ23 and ϕ123 from the
original graph have the same set of neighbors in the new graph, and so can be combined into one
factor node. Similarly, the local potentials ϕloc

1 and ϕloc
2 can be combined with the factor ϕ12 to form

a new local potential at the collapsed node x12. Notice that the new factor graph is tree-shaped, even
though the original one had loops.

When removing loops from a factor graph, we may wish to include each original variable in
more than one combined node. We are free to do so as long as we adjust our potentials to enforce
the constraint that all copies of the variable must agree on its value. That is, when any two copies

654

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

f1

f3

f2

x12

x3

Figure 2: Another factor graph that can represent the same probability distribution as the graph of
Fig. 1. The new graph was derived by collapsing together the nodes for variables x1 and
x2 from Fig. 1.

x1

x2

x5

x3 x4

x1 x5x23 x24

Figure 3: A factor graph with multiple loops (left) and a tree derived from the factor graph by
collapsing pairs of nodes (right).

disagree, at least one potential must be zero. The cost of storing or working with such a hard-
constraint potential depends only on the number of distinct variables in its argument list.

For example, in the graph of Fig. 3, we could form a tree by collapsing x2, x3, and x4 into a
single node. The resulting graph would have variables x1, x234, and x5, and factors ϕ1234 and ϕ2345.
But, we can form a tree with smaller factors if we group x2 with x3 and also separately with x4: the
resulting graph has variables x1, x23, x24, and x5, and factors ϕ123, ϕ234, and ϕ245. The potential ϕ234

encodes the constraint that the settings of x23 and x24 must agree on the assignment to x2.
A factor graph that has been reduced to a tree is equivalent to a junction tree. A junction tree

is a connected acyclic graph whose nodes are labeled with sets of variables in a way that satisfies
the running intersection property: if a variable is present at two nodes A and B, it is also present
at all nodes along the (unique) path connecting A and B in the tree. The factor nodes in a tree-
shaped factor graph correspond to nodes of the junction tree, with labels equal to their argument
sets. The collapsed variable nodes correspond to edges of the junction tree. The groups of original
variables at each collapsed variable node (such as {x2,x4} in the figure) are called separators, since
conditioning on all of the variables in a separator is sufficient to separate the factor graph into two or
more disconnected pieces. The running intersection property ensures that we can define potentials
that constrain all copies of a variable to agree.

If we collapse our factor graph all the way to a tree, we can do inference with the exact BP
algorithm from above. If we leave some loops, a similar BP algorithm can still work: we can initial-
ize all messages to be uniform, then start at an arbitrary node and use the same formulas as before

655

CHEN, GORDON AND MURPHY

for message calculation (Equations 1–2). However, we may have to update each message several
times before the marginals converge. The version of the algorithm that updates messages repeatedly
until convergence is called loopy BP, or LBP. Inference with LBP is approximate because it can
double-count evidence: messages to a node i from two nodes j and k can both contain information
from a common neighbor l of j and k. Several researchers have empirically demonstrated that when
LBP converges, the posterior marginal probabilities from Equation 3 often approximate the true
marginals well (Murphy et al., 1999; McEliece et al., 1998; Zhang and Chang, 2004). If LBP oscil-
lates between some steady states and does not converge, we can stop the process after some number
of iterations; in this case, the approximate posteriors will usually be inaccurate. Although oscilla-
tions can be avoided by using “momentum” (Murphy et al., 1999), which replaces the messages that
were sent at time t with a weighted average of the messages at times t and t −1, in some cases the
approximate posteriors are still inaccurate (Murphy et al., 1999). The convergence of LBP depends
on the exact graph structure and on the type and strength of the factors involved (Pearl, 1988; Hes-
kes, 2004). Recently, researchers have developed sufficient conditions for the convergence of LBP
(Weiss, 2000; Tatikonda and Jordan, 2002; Ihler et al., 2005), and a measurement of message errors
has been proposed (Ihler et al., 2005).

For either exact or loopy BP, the runtime for each pass over the factor graph is exponential in
the number of distinct original variables included in the largest factor. So, inference can become
prohibitively expensive if our factors are too large, either because they were too large in the original
graph or because we merged too many variables.

3. Factor Graphs and Structured Classification

To use belief propagation to solve structured classification problems, we need two things: a local
classifier for individual instances, and a factor graph which encodes our prior beliefs about likely
arrangements of instance labels. The local classifier tells us the likelihood of individual test exam-
ples under each possible class assignment, while the factor graph tells us how to trade off evidence
at one example against evidence at another. We can learn local classifiers in a number of ways; for
the cell image classification experiments below, we use standard support vector machines, together
with a post-processing step that allows us to interpret the SVM outputs as probabilities.

There are also a number of ways to construct factor graphs that encode our beliefs about likely
label vectors. In our experiments below, we construct a factor graph in two steps: first we use
domain-specific heuristics to identify pairs of examples whose labels are likely to be the same,
and use these pairs to build a similarity graph with an edge between each such pair of examples.
Then, we use this similarity graph to decide what potentials to add to our factor graph. (In the
protein subcellular location pattern classification problem, the similarity graph edges come from
either physical proximity or similarity in appearance.) Given the similarity graph, we compare
factor graphs built from several different types of potentials; the following sections introduce these
potentials and discuss their advantages and disadvantages.

656

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

3.1 The Potts Potential

The simplest potential function is the Potts potential. The Potts potential is a pairwise (i.e., two-
argument) factor which encourages two nodes xi and x j to have the same label:

ϕ(xi,x j) =

{

ω xi = x j

1 otherwise.
(4)

Here ω > 1 is an arbitrary parameter which expresses how strongly we believe that xi and x j have the
same label. If we use one Potts potential for each edge in the similarity graph, the overall probability
of a vector of labels x is

P(x) =
1
Z ∏

nodes i

P(xi) ∏
edges i, j

ϕ(xi,x j) (5)

where we have written Z for a normalizing constant and P(xi) for the probability which the base
classifier assigns to label xi for node i. Equations 4–5 form what is known as a Potts model.

Unfortunately, the Potts model does not perfectly capture our desired intuition about inference
from labels of neighboring cells. To see why, consider a two-class prediction problem where node xi

has kA neighbors of class A and kB neighbors of class B, and suppose that classes A and B have equal
prior probability for xi given the classifier output. In this situation the ratio of posterior probabilities
for classes A and B will be ωkA−kB . So for example, if ω is 2, and if xi has 1 neighbor of class A and
3 of class B, then the ratio of probabilities will be 21−3 = 1/4. So, class A will be 1/4 as likely as
class B, and P(xi has label A) = 0.2.

However, if xi has 7 neighbors of class A and 9 neighbors of class B, the posterior probability of
class A will still be 0.2, even though our intuition tells us that the probability should be much closer
to 0.5 in this case. The same will hold whenever there are 2 more neighbors of class B than class A,
even if the counts are 107 and 109. Worse, as class B’s majority gets larger, the ratio of probabilities
will approach 0 exponentially fast. So, a sufficiently strong vote from xi’s neighbors will quickly
overwhelm any evidence at xi itself—an undesirable situation.

The source of this problem is that, in Equation 5, the evidence from separate potentials has to
combine multiplicatively. So, as long as the evidence from different neighbors acts through separate
potentials, we will see an exponential dependence between the number of neighbors of a given class
and the probability of that class. We can reduce the severity of this problem by choosing ω to be only
a little bit larger than 1. But, to fix the problem we need to move to potential functions that depend
on k > 2 nodes. Our experimental results, below, will show that potentials that combine evidence
additively can perform better than the Potts potential over a wider range of inference problems.

3.2 The Voting Potential

To capture the intuition that we should be less certain about nodes whose neighbors split relatively
evenly, we propose a new potential which we call the voting potential. In the voting potential, a
node’s classification is influenced by the proportion of classes among its neighbors, rather than the
difference in class counts as in the Potts model.

The voting potential has one distinguished argument, called the center; the remaining arguments
are called voters. In the factor graphs for our cell classification experiments below, we use one
voting potential per cell j; the center for the jth potential is cell j itself, and the voters are the cells
that are adjacent to j in the similarity graph. We will write N(j) for the set of similarity-graph
neighbors of cell j, so that the jth potential depends on variables V (j) = { j}∪N(j).

657

CHEN, GORDON AND MURPHY

x1 x2 x3 ϕ
0 0 0 3/4
0 0 1 1/2
0 1 0 1/2
0 1 1 1/4
1 0 0 1/4
1 0 1 1/2
1 1 0 1/2
1 1 1 3/4

Table 1: An example of the voting potential with parameter λ = 2 for n = 2 classes. The center
node x1 has two neighbors, x2 and x3.

We define the voting potential as follows:

ϕ j(xV (j)) =
λ/n+∑i∈N(j) I(xi,x j)

|N(j)|+λ
. (6)

Here n is the number of classes, λ is a smoothing parameter, and I is an indicator function:

I(xi,x j) =

{

1 if xi = x j

0 otherwise.

(The normalization constant in the denominator of Equation 6 is irrelevant to inference, and is
included only for ease of interpretation.) An example of the voting potential is given in Table 1.

The voting potential function combines the evidence from all of node x j’s neighbors into a
summary vote which then influences x’s classification. The parameter λ controls how much weight
we put on a vote from a small number of neighboring cells. We can interpret it as the size of
an additional set of fictitious neighbors whose votes are distributed uniformly; this trick limits the
influence of a vote from a small number of neighbors, and is called Laplace smoothing. For example,
looking at the first and fifth rows of the table, we can see that when both of x1’s neighbors are 0, x1

is 3 times as likely to be 0 as 1, since there are 2+1 votes for x1 = 0 and 0+1 votes for x1 = 1.
The behavior of the voting potential contrasts with that of the Potts potential described in Sec-

tion 3.1, in which each neighbor separately influences the center node without reference to the other
neighbors. In line with our intuition, we will see below that networks which use the voting potential
can yield more accurate results than the Potts model for structured classification problems.

3.3 The AMN Potential

The associative Markov network (AMN) potential (Taskar et al., 2004) is defined to be

ϕ(x1 . . .xk) = 1+
n

∑
y=1

(ωy −1)I(x1 = x2 = . . . = xk = y) (7)

for parameters ωy > 1, where I(predicate) is defined to be 1 if the predicate is true and 0 if it is false.
So, the AMN potential is constant unless all of the variables x1 . . .xk are assigned to the same class
y, in which case it is equal to ωy.

658

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

The AMN potential reduces to the Potts potential when k = 2 and ωy = ω for all y. So, in
this case it inherits the same problems that the Potts potential has. For any k, the AMN potential
has no direct effect on a label vector’s likelihood unless all of the k argument variables agree on
the label y. (It affects all vectors’ likelihoods indirectly through the normalizing constant.) As k
gets larger, there are comparatively fewer label vectors where all k labels agree, and so the AMN
potential may not have much influence on the overall posterior distribution over label vectors unless
the cell-level classifiers already were very close to agreement. And in fact, our experiments below
demonstrate that factor graphs based on the AMN potential perform best when the neighborhood
size k is relatively small (but larger than 2).

4. Decomposable Potentials

While k-way factors can lead to more accurate inference, they can also slow down belief propaga-
tion. For a general k-way factor, it takes time exponential in k even to look at all of the entries.
So, we cannot expect to find inference algorithms for general k-way potentials that take less than
exponential time.

For specific k-way potentials, though, we can hope to take advantage of special structure to de-
sign a fast inference algorithm. In particular, for many interesting potential functions, we can write
down an algorithm which efficiently performs sums of the form required for message computation:

∑
x1

∑
x2

. . . ∑
xk−1

ϕ∗
j(x1, . . . ,xk), (8)

ϕ∗
j(x1, . . . ,xk) = m1(x1)m2(x2) . . .mk(xk−1)ϕ j(x1, . . . ,xk). (9)

Here mi(xi) is the message to factor j from variable xi. (If we removed loops in our factor graph by
collapsing groups of variables, then Equation 9 may look instead like

ϕ∗
j(x1, . . . ,xk) = m12(x1,x2)m245(x2,x4,x5) . . .mk−1(xk−1)ϕ j(x1, . . . ,xk).

That is, the argument sets of the messages may overlap with one another. The derivations below
apply equally well to either expression for ϕ∗

j .)
For example, as we will see below, we can compute Equations 8–9 quickly if ϕ j is a sum of

terms ∑l ψ jl where each term ψ jl depends only on a small subset of its arguments x1 . . .xk. Or,
we can compute Equations 8–9 quickly if ϕ j is constant except at a small number of input vectors
(x1, . . . ,xk). In the first case we will say that ϕ j is a sum of low-arity terms ψ jl , and in the second
case we will say that ϕ j is sparse.

More generally, suppose that ϕ∗
j in Equation 8 can be written as a sum of products of low-arity

functions: writing ψ jl for a generic term in the sum and ξ jlm for a generic factor of ψ jl ,

ϕ∗
j(x1, . . . ,xk) =

L j

∑
l=1

ψ jl(x1, . . . ,xk) =
L j

∑
l=1

M jl

∏
m=1

ξ jlm(xV (j,l,m)) (10)

where the set of indices V (j, l,m)⊆ {1 . . .k} tells us which variables ξ jlm depends on. Also suppose
that, for each term ψ jl in the sum, the sets V (j, l,m) can be arranged into a junction tree. That is,
suppose that we can build a cycle-free graph on M jl nodes, with one node labeled with V (j, l,m)
for each m, which satisfies the running intersection property.

659

CHEN, GORDON AND MURPHY

If ϕ∗
j satisfies the above properties, and if L j, M jl , and |V (j, l,m)| are small for all j, l, and m,

then we will say that ϕ∗
j is decomposable. And, we will say that ϕ j is a decomposable potential

(in the context of this message computation). Decomposable potentials include the special cases
mentioned above, namely sparse potentials and potentials that are sums of low-arity terms, as well
as a wide variety of other examples which we will describe in more detail below. We will see below
that we can evaluate Equations 8–9 quickly for a decomposable potential by using an algorithm very
similar to belief propagation.

5. Belief Propagation with Decomposable Potentials

When we are running BP or loopy BP on a factor graph with decomposable potentials, we can
accelerate the computation of the belief messages that would otherwise be slow to compute. There
are two types of messages that we need for BP or loopy BP, shown in Equations 1 and 2.

Messages from a variable (or a separator, which we treat as a single large variable) to a factor are
fast to compute in any case: we can calculate them from Equation 1 by looping over the incoming
edges at node xi and, for each edge, looping over the n possible classes we can assign to xi. So, we
do not need to accelerate the computation of these messages.

Messages from a factor to a variable (Equation 2) are slow to compute naı̈vely if the factor
connects to many other variables. In this section we will show that we can calculate these messages
efficiently for decomposable potentials of the form shown in Equation 10. So, this section shows
that we can implement BP and loopy BP efficiently for decomposable potentials. The derivation of
this section works with general decomposable potentials; below, in Sections 6.1 and 6.2, we will
work out the formulas for specific cases including the voting potential and the associative Markov
network potential.

The algorithm that we will use to compute the messages is essentially the same as the overall
belief propagation algorithm. So, when we perform inference on a factor graph with decomposable
potentials, we will be running two nested copies of belief propagation: the inner copy will act on a
single decomposable potential, and will compute the messages which the outer copy needs to send
from that potential.

Substituting Equations 8–10 into Equation 2 and rearranging terms tells us that the desired
message is

m j→k(xk) = ∑
x1

∑
x2

. . . ∑
xk−1

ϕ j(x1, . . . ,xk)
k−1

∏
i=1

mi→ j(xi)

= ∑
x1

∑
x2

. . . ∑
xk−1

(

L j

∑
l=1

M jl

∏
m=1

ξ jlm(xV (j,l,m))

)

=
L j

∑
l=1

∑
x1

∑
x2

. . . ∑
xk−1

M jl

∏
m=1

ξ jlm(xV (j,l,m)). (11)

Now let us fix l temporarily, leaving a term of the form

∑
x1

∑
x2

. . . ∑
xk−1

M jl

∏
m=1

ξ jlm(xV (j,l,m)). (12)

660

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

We have assumed that the sets V (j, l,m) for m ∈ {1, . . . ,M jl} can be arranged into a junction tree.
Pick a node of this junction tree whose label contains xk, and call this node the root. Refer to each
node by its index m, and write par(m) for the parent of node m.

Now pick an arbitrary leaf of the junction tree. Without loss of generality, say that this leaf has
index m = 1. We can partition the variables in the set V (j, l,1) into two subsets,

C(1) = V (j, l,1)∩V (j, l,par(1)) and D(1) = V (j, l,1)\V (j, l,par(1)).

C(1) contains the variables that node 1 has in Common with its parent, while D(1) contains the
variables from node 1 that are Distinct from its parent’s variables. The variables in D(1) can only
appear in V (j, l,1): if any of them appeared in V (j, l,m) for m 6= 1 it would violate the running
intersection property, since any path from 1 to m has to pass through par(1).

Without loss of generality, suppose that the variables in D(1) are numbered consecutively from
1, say D(1) = {1,2}. That means that the factor ξ jl1 depends on x1 and x2, but no other factor ξ jlm

for m 6= 1 depends on x1 or x2. So, by the distributive law, we can rearrange Equation 12 as follows:

∑
x3

. . . ∑
xk−1

M jl

∏
m=2

ξ jlm(xV (j,l,m)).

(

∑
x1

∑
x2

ξ jl1(xV (j,l,1))

)

(13)

To get Equation 13 we have moved the x1 and x2 summations inward as far as possible.
We can think of the expression in parentheses in Equation 13 as a message which travels from

node 1 to node par(1) of the junction tree: it depends only on the variables in the set C(1), and it
summarizes everything that node par(1) needs to know about node 1 in order to compute the term
of Equation 12. We will write µ1→par(1) for this message, that is,

µ1→par(1)(xC(1)) = ∑
x1

∑
x2

ξ jl1(xV (j,l,1)). (14)

We can continue computing messages in this fashion from leaf nodes of the junction tree to their
parents. After several steps our expression will look something like this:

∑
x7

. . . ∑
xk−1

M jl

∏
m=4

ξ jlm(xV (j,l,m))
3

∏
m=1

µm→par(m)(xC(m)). (15)

Here we have eliminated the variables x1 through x6 and computed the messages from nodes m =
1,2,3 to their parents. At this point suppose that node m = 4 is an internal node of the junction tree,
and that it has as its only child node m = 1. Because we have already computed the message from
node 1 to node 4, we can now compute the message from 4 to par(4). Suppose that D(4) = {7};
then we can rearrange Equation 15 as follows.

∑
x8

. . . ∑
xk−1

M jl

∏
m=5

ξ jlm(xV (j,l,m))×

3

∏
m=2

µm→par(m)(xC(m))

(

∑
x7

µ1→4(xC(1))ξ jl4(xV (j,l,4))

)

. (16)

Here we have used the distributive law to move the x7 summation inward as far as possible. As
above, none of the functions ξ jlm for m > 4 can depend on x7: if they did, then by the running

661

CHEN, GORDON AND MURPHY

intersection property, 7 would have to be an element of V (par(4)) and couldn’t be in D(4). The
message µ1→4 could depend on x7, since 7 could be in C(1). So, to be safe, we have left µ1→4 inside
the x7 summation. On the other hand, the messages µ2→par(2) and µ3→par(3) cannot depend on x7: if
one of them did, 7 would have to be in V (j, l,par(2)) or V (j, l,par(3)), which would again violate
the running intersection property.

In a natural generalization of Equation 14, we will write µ4→par(4)(xC(4)) for the expression in
parentheses in Equation 16. It should be clear at this point that we can compute a message from
each node in the junction tree to its parent, so long as we work from the leaves upward; the message
from a node m to its parent par(m) will depend on the messages from m’s children to m. Once we
process all of the children of the root r, we will be left with an expression that contains summations
only over variables in V (j, l,r). (In fact, it will contain summations over exactly the variables in
V (j, l,r)\{k}.) We can perform these summations to find the desired term (Equation 12), which is
a function only of xk. We can then repeat the process for each l to get all of the terms in Equation 11.

The above algorithm computes the message from a factor ϕ j to a single neighboring variable xk.
If we want the messages from ϕ j to all of its variables we can run the above algorithm multiple times;
however, the multiple runs will redundantly recompute many of the messages µs→t . Instead, as is
usual for the belief propagation algorithm, we can combine all of the runs into a single computation
which passes one message in each direction over each edge of the junction tree.

If we have merged groups of variables in constructing our outer junction tree, then there are two
modifications needed for the above analysis. First, if the argument sets of the incoming messages
at a given factor node overlap, we may need to build different inner junction trees to compute
different outgoing messages. So, we may not be able to share computation as described in the
previous paragraph. This loss of sharing may increase our runtime by a small factor. Second, and
more importantly, if the desired outer message depends on several original variables, then there
may be no node of our inner junction tree that contains all the needed variables. In this case we
may condition on the possible values of some of the needed variables, and use several runs of inner
message passing, each of which computes a slice of the desired outer message. In general, there
may be several ways to decompose a potential, and several possible choices of which variables to
condition on for a given decomposition. Each of these setups may lead to a different runtime for
message computation. See Section 6.3 below and Kjærulff (1998) for more details.

6. Instances of Decomposable Potentials

Decomposable potentials are common and useful. In this section, we discuss the details and deriva-
tions of message passing with the voting potential, the associative Markov network potential, and
the nested junction tree.

6.1 Decomposing the Voting Potential

The general BP-style algorithm of Section 5 is more complicated than we need when we are com-
puting messages for the voting potential: since Equation 6 is a sum of low-arity functions rather than
a sum of products of low-arity functions, the computation for each term in the sum is particularly
simple. So, in this section we will derive efficient expressions for the necessary messages.

There are two types of messages we need to think about: those from a factor ϕ j to the node
xk that ϕ j is centered on, and those from a factor ϕ j to some non-centered variable node xi with
i 6= k. To simplify notation, assume that V (j) = {1, . . . ,k}; also assume that we have normalized the

662

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

messages mi→ j(xi) so that ∑xi
mi→ j(xi) = 1. With these assumptions, the message from a factor ϕ j

to its center variable node xk can be computed as follows:

(λ+ |N(j)|) m j→k(xk)

= ∑
x1

∑
x2

. . . ∑
xk−1

(

λ/n+
k−1

∑
i=1

I(xi,xk)

)

k−1

∏
i′=1

mi′→ j(xi′)

=
λ
n ∑

x1

∑
x2

. . . ∑
xk−1

k−1

∏
i′=1

mi′→ j(xi′)+

∑
x1

∑
x2

. . . ∑
xk−1

k−1

∑
i=1

I(xi,xk)
k−1

∏
i′=1

mi′→ j(xi′)

=
λ
n

+
k−1

∑
i=1

∑
x1

∑
x2

. . . ∑
xk−1

I(xi,xk)
k−1

∏
i′=1

mi′→ j(xi′)

=
λ
n

+
k−1

∑
i=1

∑
x1

∑
x2

. . . ∑
xk−1

I(xi,xk)mi→ j(xi)
k−1

∏
i′=1,i′ 6=i

mi′→ j(xi′)

=
λ
n

+
k−1

∑
i=1

∑
xi

I(xi,xk)mi→ j(xi)

=
λ
n

+
k−1

∑
i=1

mi→ j(xk).

The first equation above is the definition of the desired message. The second equation distributes
multiplication over addition. The third equation uses the fact that all terms in the product
∏k−1

i′=1 mi′→ j(xi′) are independent, along with our assumption ∑xi′
mi′→ j(xi′) = 1, to compute the first

summation. The fourth equation factors mi→ j out of the product. The fifth equation uses again the
facts that all terms in the product are independent and ∑xi′

mi′→ j(xi′) = 1. The last line uses the fact
that I(xi,xk) is nonzero iff xi = xk.

The message from a factor j to a non-centered variable can be computed similarly. Under the
same assumptions as above, we will calculate the message m j→1:

(λ+ |N(j)|) m j→1(x1)

= ∑
x2

. . .∑
xk

(

λ/n+
k−1

∑
i=1

I(xi,xk)

)

k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+∑
x2

. . .∑
xk

k−1

∑
i=1

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+∑
x2

. . .∑
xk

I(x1,xk)
k

∏
i′=2

mi′→ j(xi′)+∑
x2

. . .∑
xk

k−1

∑
i=2

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+∑
xk

I(x1,xk)mk→ j(xk)+∑
x2

. . .∑
xk

k−1

∑
i=2

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)

=
λ
n

+mk→ j(x1)+∑
x2

. . .∑
xk

k−1

∑
i=2

I(xi,xk)
k

∏
i′=2

mi′→ j(xi′)

663

CHEN, GORDON AND MURPHY

=
λ
n

+mk→ j(x1)+
k−1

∑
i=2

∑
x2

. . .∑
xk

I(xi,xk)mi→ j(xi)mk→ j(xk)
k−1

∏
i′=2,i′ 6=i

mi′→ j(xi′)

=
λ
n

+mk→ j(x1)+
k−1

∑
i=2

∑
xi

∑
xk

I(xi,xk)mi→ j(xi)mk→ j(xk)

=
λ
n

+mk→ j(x1)+
k−1

∑
i=2

∑
xk

mi→ j(xk)mk→ j(xk).

The first equality above is the definition of the desired message. The second pulls the term λ/n
out of the sums, using the facts that the terms in the product ∏k

i′=2 mi′→ j(xi′) are independent and
∑xi′

mi′→ j(xi′) = 1. The third equality splits the sum over i into two pieces, one for i = 1 and the
other for i ≥ 2. The fourth equality uses the independence of the terms in the left-hand product to
simplify away the summations over x2 through xk−1. The fifth uses the fact that I(x1,xk) = 0 when
x1 6= xk. The sixth equality pulls the terms mi→ j and mk→ j out of the remaining product. The seventh
uses the independence of terms in the product to simplify away the summations over variables other
than xi and xk. And the last equality uses the fact that I(xi,xk) = 0 when xi 6= xk.

Despite the fact that the variables x1, . . . ,xk have exponentially many possible assignments, the
above derivations show that we can compute the messages m j→k and m j→1 exactly and almost
instantaneously. The message m j→k is particularly easy to interpret: it is the (Laplace smoothed)
average of the messages from x1, . . . ,xk−1.

6.2 Decomposing the AMN Potential

It is even easier to derive an efficient expression for the messages from an AMN potential than it
was for the messages from a voting potential. As before, let us assume that V (j) = {1, . . . ,k}, that
we desire the message m j→k(xk), and that we have normalized the messages mi→ j(xi) to sum to 1
over xi for each i = 1, . . . ,k− 1. Since the AMN potential is symmetric in its arguments, there is
only one type of message to calculate.

We can write Equation 7 in the form of Equation 10 by noting that

I(x1 = x2 = . . . = xk = y) = I(x1 = y)I(x2 = y) . . . I(xk = y)

and that each function I(xi = y) depends on only one variable xi. Given this representation, the
desired message is:

m j→k(xk) = ∑
x1

∑
x2

. . . ∑
xk−1

(

1+∑
y

(ωy −1)
k

∏
i=1

I(xi,y)

)

k−1

∏
i′=1

mi′→ j(xi′)

= 1+∑
x1

∑
x2

. . . ∑
xk−1

∑
y

(ωy −1)
k

∏
i=1

I(xi,y)
k−1

∏
i′=1

mi′→ j(xi′)

= 1+∑
y

(ωy −1)I(xk,y)∑
x1

∑
x2

. . . ∑
xk−1

k−1

∏
i=1

I(xi,y)mi→ j(xi)

= 1+∑
y

(ωy −1)I(xk,y)
k−1

∏
i=1

mi→ j(y)

= 1+(ωxk −1)
k−1

∏
i=1

mi→ j(xk).

664

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

The first equality above is the definition of the desired message. The second pulls the constant 1
outside of the sums and uses the independence of terms in the product. The third rearranges the
order of the sums and products. The fourth uses the fact that the product is zero unless xi = y for all
i ∈ {1, . . . ,k−1}. The fifth uses the fact that I(xk,y) is 0 unless xk = y.

6.3 The Nested Junction Tree

The nested junction tree method (Kjærulff, 1998) can speed up message propagation in the junction
trees that arise when we remove loops from a factor graph. In particular, it helps compute messages
from the large factors that arise when we merge groups of variables. It works by noticing that each
of these messages is computed from the product of many smaller factors, which can sometimes be
arranged into a nontrivial “inner” junction tree.

Unlike the previous two examples (the voting and AMN potentials), the nested junction tree
method does not attempt to look inside the factors of the original factor graph. Instead, it keeps
track of the variable merges during junction tree construction, and sometimes is able to “undo”
some of these merges temporarily to provide computational savings.

For example, the factor graph of Fig. 4 can be collapsed into a junction tree by merging x2 and
x3 as shown. The time and space costs of belief propagation on this junction tree are dominated by
its largest potential, ϕ2345. Consider the message from ϕ2345 to x23:

m2345→23(x2,x3) = ∑
x4

∑
x5

ϕ2345(x2,x3,x4,x5)m4→2345(x4)m5→2345(x5).

Standard belief propagation will first compute

ϕ∗
2345(x2,x3,x4,x5) = ϕ2345(x2,x3,x4,x5)m4→2345(x4)m5→2345(x5)

= ϕ245(x2,x4,x5)ϕ345(x3,x4,x5)m4→2345(x4)m5→2345(x5)

for all settings of (x2,x3,x4,x5), and then marginalize ϕ∗
2345 to get m2345→23.

If there are (for example) ten possible settings of each original variable, the space required for
computing m2345→23 with standard belief propagation is 10100 locations: 104 for storing ϕ∗

2345,
and 102 for storing m2345→23. And, the time cost is 39900 flops: for each of the 104 settings of
(x2,x3,x4,x5) we must multiply together one element each from the tables ϕ245, ϕ345, m4→2345, and
m5→2345, at a cost of 3 flops per iteration. Then, for each of the 102 elements of m2345→23, we must
sum 102 elements of ϕ∗

2345 (using 102 −1 flops), leading to a total cost of 3×10000+99×100.
However, if we examine the message computations in more detail, it turns out that we can take

advantage of the structure of ϕ∗
2345 to save time and space. Since ϕ∗

2345 was formed by multiplying
together four smaller tables, and since the argument sets of these smaller tables form a junction tree,
ϕ∗

2345 is decomposable. (The inner junction tree is shown at the far right of Fig. 4.) Using this fact,
we can find m2345→23 by passing messages through the inner junction tree several times. In more
detail, suppose we pick the factor ϕ345 as the root of the inner junction tree. This factor contains
one of the message variables (x3) but not the other one (x2). So, we must condition on each value of
x2 in turn. For each value of x2, we first compute the intermediate message

ϕx2(x4,x5) = ϕ245(x2,x4,x5)m4→2345(x4)m5→2345(x5).

665

CHEN, GORDON AND MURPHY

x1

x2 x4

x3 x5

x1 x23

x4

x5

245

45

345

Figure 4: A factor graph for which the nested junction tree method can speed up belief propagation.
Left: original factor graph. Middle: factor graph after merging x2 and x3. Right: inner
junction tree for computing the message m2345→23.

This message is associated with the separator {x4,x5} in the inner junction tree. We can then incor-
porate this inner message into the factor {x3,x4,x5}, and marginalize to get a slice of our desired
(outer) message:

m2345→23(x2,x3) = ∑
x4

∑
x5

ϕ345(x3,x4,x5)ϕx2(x4,x5).

Each pass through the inner junction tree keeps x2 fixed, computing a slice m2345→23(x2, ·) of the
outer message. (By m2345→23(x2, ·), we mean a table of the values of m2345→23 for a fixed value of
the first argument and all possible values of the second argument.)

The nested belief propagation algorithm for computing m2345→23 saves us both space and time.
For time, the cost to compute an element of one of the ϕx2 tables is 2 multiplications; there are
102 elements of each table, and 10 tables, so the total cost of this step is 2× 10× 100 = 2000
flops. To compute ϕ345(x3,x4,x5)ϕx2(x4,x5) for fixed x2 takes 1000 flops (one per table element),
and to marginalize out (x4,x5) takes 99 flops for each of the 10 resulting elements, for a total of
1000 + 10× 99 = 1990 per slice. Since there are 10 slices, we need 19900 flops for all of them.
The grand total is therefore 19900 + 2000 = 21900, a savings of approximately 45% compared to
standard belief propagation.

The space savings are even greater: we can reuse a single array of size 102 for all of the ϕx2

tables, and a single array of size 103 for all of the products ϕ345(x3,x4,x5)ϕx2(x4,x5). Adding in
the cost of storing the final message, we have a space cost of 100+1000+100 = 1200 locations, a
savings of about 88%.

An important limitation of the nested junction tree method is the following lemma, which pro-
vides a lower bound on inference time based on the number of variables in the largest node label (or
clique):

Lemma 1 In a junction tree T with binary variables, let C be the largest clique, and say that we
wish to compute the posterior marginal for some variable xq. So long as C is minimal, the nested
junction tree method cannot reduce the time for this inference task to less than Ω(2|C|). (The time
for non-binary variables is at least as large.)

Proof Each edge (i, j) in clique C arises either because there is a potential that directly links vari-
ables xi and x j (this case includes so-called “moral edges”), or because we triangulated a chordless
cycle that contains xi and x j (in which case some other clique sends C a message that links xi with
x j). The nested junction tree method achieves its speedup by avoiding consideration of some of

666

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

these edges when computing outgoing messages from C: for a message M from C to some other
clique D, we can ignore the corresponding incoming message N from D to C. Without N, we may be
able to ignore as many as

(

|M|
2

)

of the edges of C while calculating M, since each edge that connects
two variables in M may be supported only by N.

Because we can ignore some of the edges of C, we can avoid building a single large table of
size 2|C|, and instead run a nested copy of the message passing algorithm to find M. This inner
message passing algorithm works on an inner junction tree T ′ built from the remaining edges of C.
To compute M, we pick some clique C′ of T ′ as root; then, for each possible setting of the variables
in M \C′, we pass messages from leaves to root in T ′ to find a slice of M. This slice corresponds to
the fixed setting of M \C′, and covers all possible settings of the variables in M∩C′.

To calculate the total cost of these inner runs of message passing, we need to look at the structure
of T ′. In particular, we need to figure out the size of the largest clique of T ′. For this purpose, we
can divide the variables of T ′ into three sets: those in M \C′ (which we hold fixed during each inner
iteration), those in M∩C′ (which form the resulting slice of M), and those in C \M (the rest of C).
The variables in M∩C′ are fully connected to one another, since they are all members of C′. And,
the variables in C \M are fully connected to one another, since none of them are covered by the
incoming message N. But, these two sets of variables are also fully connected to each another: no
edge between C \M and M∩C′ can be covered by N, since each such edge has one vertex in M and
one outside of M. So, C \M and M∩C′ together form a clique of T ′.

Recapping, we have 2|M\C′| inner runs of message passing, each of which works with a junction
tree containing a clique of size |C \M|+ |M ∩C′|. We will now prove by induction that inference
takes time at least k2|C|, where k is an implementation-dependent constant.

For the inductive step, our runtime for calculating M is at least

2|M\C′|× k2|C\M|+|M∩C′|

for 2|M\C′| runs of message passing, each of which costs k2|C\M|+|M∩C′| by the inductive hypothesis.
Since |M \C′|+ |C \M|+ |M∩C′| = |C|, our runtime is therefore at least k2|C|, as claimed.

There are several possible base cases. The most obvious is when |C| = 1; in this case we can
choose k > 0 so that the runtime is at least 2k. The induction can also bottom out if the nested junc-
tion tree method becomes inapplicable at any step. There are two ways it can become inapplicable:
first, if M \C′ = /0, then the argument above means that the nested junction tree has only a single
clique of size |C|, and the nested junction tree method therefore offers no speedup. In this case we
need to build a table of size 2|C| for inference. So, we can again choose k > 0 so that our runtime is
at least k2|C|.

Second, the nested junction tree method is inapplicable if clique C has no outgoing messages. C
has no outgoing messages if and only if we select it as the root for message passing. In this case, C
gets incoming messages from all of its neighbors, and the nested junction tree method again offers
no speedup: to perform any inference task on C’s fully-connected graph, we must again build a table
of size 2|C| and take time at least k2|C| for some k > 0.

So, by choosing k > 0 small enough to satisfy all of the above base cases, we have completed
the induction. The only remaining detail is the question of non-binary variables. But, it should be
obvious from the proof above that any non-binary variables can only increase the cost of inference.

Lemma 1 means that we cannot expect the nested junction tree method on its own to make it practical

667

CHEN, GORDON AND MURPHY

to work with trees with very large cliques. This conclusion is borne out by the experimental results
of Kjærulff (1998), Tables 1 and 2: the time savings shown there are never greater than about
60%. In contrast, the examples of the previous two sections show that decomposable potentials in
general can lead to far greater savings: in these examples, the message calculation time goes from
exponential to polynomial in the size of the clique, and Fig. 10 below shows that this change can
easily result in speedups of multiple orders of magnitude.

7. Prior Updating

By calculating messages as described in Section 6.1, we can run loopy belief propagation on a factor
graph that includes voting potentials. However, we might expect the messages from a factor ϕ j to
a non-centered variable xi (where i 6= c j) to be fairly weak: the overall vote of all of xc j ’s neighbors
will not be influenced very much by xi’s single vote, so there will not be a strong penalty if xi votes
the wrong way.

This observation suggests an even simpler algorithm for inference: we can run loopy BP but
ignore all of the messages from factors to non-centered variables. (Ignoring a message means
considering it to be uniform.) We will call this algorithm Prior Updating, or PU, since it works
by using the current classifications of a node’s neighbors to update the prior for the node’s own
classification. Our group proposed a version of Prior Updating for inference on graphs (Chen and
Murphy, 2006) before the work described in the current paper, which explores its relationship to
potential functions in loopy belief propagation.

We can expect that PU will be noticeably faster than loopy BP, since there will usually be many
more non-centered variables than there are centered ones in each factor. We might also hope that
PU could be more accurate than loopy BP, since it is less prone to double-count evidence: we
have broken any loops which would allow a message that xc j sends to factor ϕ j to return back and
influence the classification of xc j . (As it turns out, we will see below that in our experiments PU
is often slightly worse and sometimes slightly better than loopy BP on factor graphs with voting
potentials.) We will examine the speed and classification performance of loopy BP, PU, and other
inference methods in Section 9. PU can be seen as an approximation of LBP on factor graphs with
voting potentials, and like LBP, is not guaranteed to converge. However, in our experiments, we
never observed problems with convergence for PU or for LBP with the voting potential.

8. Experimental Materials and Methods

2D HeLa Image Set We applied our methods to the problem of classifying subcellular patterns in
an image of many cells, a problem that we have formalized previously (Chen and Murphy, 2006).
The starting point is a set of fluorescence microscope images of HeLa cells created by introduc-
ing antibodies and molecular probes against proteins in major subcellular organelles (Boland and
Murphy, 2001). The data set contains 862 single-cell images from ten classes, with each class hav-
ing between 73 and 98 images. The true class of each image is known with certainty since the
fluorescent probe present in each slide is known.

Classifying protein subcellular patterns is important since it allows us to identify where a protein
is located in cell organelles, which is required for it to carry out its specific function (Boland and
Murphy, 2001). This knowledge is critical to understanding how that protein works in a cell, and to
describing cell behaviors under different conditions.

668

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

In the past, the most common way to determine protein location patterns has been by human in-
terpretation of fluorescence microscope images. In recent years, however, automated systems have
been developed for consistent and objective interpretation of such images; the current paper’s tech-
niques are designed to help the accuracy of these automated systems (Chen et al., 2006c; Glory and
Murphy, 2007). Automated systems, when available, can be preferable to human image annotation,
since they can help avoid human biases and errors. They also make it possible to analyze images
from high-throughput microscopy, which would otherwise be too numerous for humans to handle.

Subcellular Location Features Several sets of informative features have been developed to de-
scribe protein subcellular patterns (Boland and Murphy, 2001; Chen et al., 2006c; Glory and Mur-
phy, 2007). These features, termed Subcellular Location Features (SLFs), are of several types,
including Zernike moment features, Haralick texture features, morphological features and wavelet
features. The details for different versions of SLFs are reviewed elsewhere (Huang and Murphy,
2004). The best single-cell classification results obtained to date with a single feature set for the 2D
HeLa data set were with feature set SLF16 (Huang and Murphy, 2004), which we have therefore
used in the work described here. In this feature set, each cell is represented by a feature vector f of
length d = 47.

Support Vector Machine To determine the evidence for each individual cell we used Support
Vector Machine classifiers (Cortes and Vapnik, 1995), as implemented in the LIBSVM library ver-
sion 2.82 (Chang and Lin, 2001). To handle problems with k > 2 classes, we learned k(k− 1)/2
binary SVM classifiers, one for each pair of classes. We then derived probability estimates by ap-
plying sigmoid functions to the decision values of these SVMs, in an improved implementation (Lin
et al., 2003) of the Platt Scaling method (Platt, 2000).

Simulating Multi-Cell Images We are interested in the simultaneous classification of all of the
cells in a multi-cell microscope image. Unfortunately, it is difficult to collect multi-cell images for
which we know the ground truth classification of each cell: if we prepare a slide from a mixture of
two or more types of cells, we do not have direct control over which type appears where. For this
reason, we simulated the multi-cell problem by creating synthetic multi-cell images using multiple
real single-cell HeLa images.1 To generate a structured classification problem, we selected two of
the ten classes at random; then we selected N1 images from the first class and N2 from the second,
with N1 + N2 = 12. We then treated these images as if they were the output of a segmentation
algorithm that was run on a multi-cell image.

Constructing the Similarity Graph As an intermediate step in the construction of our factor
graph, we built a similarity graph: the nodes of this graph correspond to cells, and an edge between
two cells means that we believe that they are likely to share the same label. The simplest approach
to building the similarity graph is to include all possible edges. With a fully-connected similarity
graph, all cells in the test image are considered equally similar to one another; such a graph expresses
a prior belief that images containing a few groups of same-class cells are more likely than images
containing cells of many different classes. Our experiments below show that even this modest
amount of prior information can improve the accuracy of our classifier compared to the no-edges
(independent classification) case; for example, in Figs. 7–9, the performance of LBVP is higher

1. We are in the process of analyzing true multi-cell images with known ground truth, which we collect by tagging one
of the cell types with a fluorescent marker at a wavelength different from the one used to label the target protein.

669

CHEN, GORDON AND MURPHY

−5 0 5
−3

−2

−1

0

1

2

3

x axis

y
ax

is

(a) Training Stage

−5 0 5
−3

−2

−1

0

1

2

3

x axis

y
ax

is

(b) Testing Stage

Figure 5: Classification of multiple examples using proximity in feature space. (a) At the training
stage, a linear classifier separates two classes in a 2D feature space. (b) At the testing
stage, we have added feature bias, causing 3 examples of one class to be misclassified.
But, these examples can be classified correctly by constructing a similarity graph and
running belief propagation on the corresponding factor graph.

when 100% of edges are present than it is when 0% of edges are present. But of course, if more-
specific information is available, we will get better performance by using it to construct a more
informative similarity graph with an intermediate number of edges.

One possible source of additional information is physical proximity between cells. Physical
proximity is informative if we believe that nearby cells are likely to share an ancestor. However, we
wanted to avoid having to simulate cell positions in our synthetic images, so in the current work we
did not include edges based on physical proximity. In previous work (Chen and Murphy, 2006), we
did evaluate graphs built using physical proximity, and they improved classification accuracy when
applicable. So long as edges tend to connect cells that share the same class, the exact source of
edges does not matter for our inference algorithms; so, the experimental results below should apply
equally well to graphs that contain edges from physical proximity.

Instead, for our experiments below, we built the similarity graph according to feature-space
proximity: we added edges between cells whose feature vectors were close to one another according
to z-scored Euclidean distance. Using feature-space proximity in this way makes sense because
minor experimental variations can perturb the features of a whole group of test cells in similar
ways.

In more detail, minor differences in how cells were prepared (such as variations in plating time,
exposure time, concentration of reagents, ambient temperature, etc.) can cause a noticeable bias in
the computed features of a test group of cells compared to our training set. We do not generally
have enough cells of enough different classes in a test group to estimate this bias accurately before
classifying the cells. However, if there is a margin in feature space between classes, then building a
similarity graph based on feature-space proximity is likely to connect each cell mostly to other cells

670

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

of the same class. So, as long as the feature bias is not so large that it causes most cells of a given
class to be misclassified, we can hope to “rescue” cells that have been moved just across the class
boundary, since they will be connected to other cells of the same class that are correctly classified.
Fig. 5 justifies this intuition with a simple synthetic example.

In addition to the above reasons, feature-space proximity among test images could be infor-
mative if the training set wasn’t large enough or the classifier wasn’t flexible enough to learn the
location classes well. In our experiments, we believe that the influence of this last effect is minimal.

To produce a variety of graphs with different edge densities, we introduced a parameter dcutoff:
we connected two nodes whenever their z-scored Euclidean distance in feature space was less than
dcutoff.2 Large values of dcutoff correspond to graphs with many edges, while small values correspond
to graphs with few edges. We varied dcutoff to produce graphs with edge densities ranging from 0%
to 100% of the possible edges.

Constructing the Factor Graphs From each similarity graph we built several different factor
graphs using different kinds of potentials. Each different factor graph corresponds to a different
way to turn our qualitative similarity judgements into a precise probability distribution over label
vectors.

The simplest factor graph was the Potts model. In the Potts model, we used one Potts potential
for each edge in the similarity graph; each potential had parameter ω = 1.7. The next type of factor
graph was an associative Markov network. In this model we used one AMN potential for each node;
this potential covered the node and all of its similarity-graph neighbors, and had ωy = 2.9 for all y.
The last type of factor graph used the voting potential. In this graph there was one voting potential
centered on each node; this potential covered the node and all of its similarity-graph neighbors, and
had parameter λ = 1.7. For all three types of potential, we determined the above parameter values
ahead of time by a coarse search.3

Synthetic Graphs Since the size of the 2D HeLa data set is limited, we performed additional
experiments on automatically-generated inference problems. These experiments investigated the
sensitivity of our method to the accuracy of the base classifier. We generated a synthetic graph by
picking two of the ten classes at random and two numbers N1 and N2. We generated N1 cells of the
first class and N2 cells of the second. For each cell we selected feature vectors of length d = 2 from
a standard normal distribution; for one of the groups of cells we then displaced the feature vectors
by a distance s. We chose s = 3 as a value which yielded a reasonable degree of overlap between
classes. Finally, as above, we connected pairs of nodes whose feature-space distances were less than
dcutoff.

Synthetic Evidence To generate the evidence for a node in one of our synthetic graphs, we picked
random scores for each class. The score for the true class was generated from a normal distribution

2. A reviewer of a previous version of this paper suggested that all edges should be present in the graph, and that we
should adjust the weight of each edge based on the distance between the nodes. This is a reasonable suggestion;
however, some of the potential functions we are evaluating do not have an obvious way to take edge weights into
account. So, for the sake of an easier comparison, in this paper we work only with 0-1 weights.

3. As we examined the parameter space of the AMN potential, we discovered that results appear to be very sensitive to
the strength parameter ω and the edge density of the graph. So, while we fixed a single compromise parameter for the
AMN potentials in our experiments (so that our AMN results are comparable to our results for other potentials), we
strongly recommend parameter learning for practical use of the AMN potential, for example, by the method described
in (Taskar et al., 2004).

671

CHEN, GORDON AND MURPHY

with mean µ > 0 and unit variance, while the scores for other classes were generated from normal
distributions with mean 0 and unit variance. Each score was then transformed by a sigmoid to
produce the evidence for its corresponding class. Large values of µ result in a highly-accurate
simulated base classifier, while small values yield a classifier that performs only a little better than
chance. We show results for a range of values of µ that result in base accuracies from 50% to 90%.

9. Experimental Results

We conducted experiments to determine the effect of various potential functions and inference al-
gorithms on overall classification accuracy in structured classification problems. In particular, we
designed our experiments to compare the two-way Potts potential with the k-way AMN and voting
potentials, and to compare our approximate inference algorithms to their exact counterparts. Our
results support the following conclusions:

• We can achieve better classification accuracy by moving from the Potts model, with its two-
way potentials, to models that contain k-way potentials for k > 2.

• Of the k-way potentials that we tested, the voting potential is the best for a range of problem
types.

• For small networks where exact inference is feasible, our approximate inference algorithms
yield results similar to exact inference at a fraction of the computational cost.

• For larger networks where exact inference becomes intractable, our approximate inference
algorithms are still feasible, and structured classification with approximate inference lets us
take advantage of the similarity graph to improve classification accuracy compared to the base
(unstructured) classifier.

9.1 Synthetic Graphs

Our first experiment used small, synthetic graphs to compare the Potts, AMN, and voting potentials,
and to compare exact and approximate inference. (Since we wanted a large number of test samples,
and since we wanted to vary the accuracy of the base classifier over a wide range, it would not have
been practical to conduct this experiment with the real HeLa data.) In this experiment, for each
trial, we randomly generated a synthetic similarity graph with 10 nodes split between 2 classes (out
of a list of 4 total classes), as described above. We used 50% graph edge density for the Potts and
voting potentials and 40% graph edge density for the AMN potential, since these densities were
approximately optimal according to our preliminary experiments. We also generated simulated
classifier likelihoods at each node using values of µ that corresponded to base classifier accuracies
ranging from 50% to 90%.

For each generated classification problem, we built three different factor graphs according to
the methods described above: a Potts model, a model that used AMN potentials, and a model that
used voting potentials. Finally, we computed posterior marginal class probabilities using seven
different inference algorithms: exact inference on the Potts model (EIPP), loopy belief propagation
on the Potts model (LBP), exact inference on the model with AMN potentials (EIAMN), loopy
belief propagation on the model with AMN potentials (LBAMN), exact inference on the model with
voting potentials (EIVP), loopy belief propagation on the model with voting potentials (LBVP), and

672

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

50 60 70 80 90
0

5

10

15

20

Base Accuracy (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(a) (N1,N2)=(5,5)

50 60 70 80 90
0

5

10

15

20

Base Accuracy (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(b) (N1,N2)=(2,8)

Figure 6: Accuracy Improvement vs. Base Accuracy with different inference methods on graphs
with synthetic evidence: exact inference on the model with voting potentials (EIVP, 4−),
loopy belief propagation on the model with voting potentials (LBVP, 4−−), prior up-
dating on the model with voting potentials (PU, 4·· ·), exact inference on the model with
AMN potentials (EIAMN, �−), loopy belief propagation on the model with AMN po-
tentials (LBAMN, �−−), exact inference on the Potts model (EIPP, ©−) and loopy
belief propagation on the Potts model (LBP, ©−−). (a) Graphs with equal numbers of
nodes from two classes, (N1,N2) = (5,5). (b) Graphs with unequal numbers of nodes
from two classes, (N1,N2) = (2,8). 95% confidence bars (not shown) are smaller than
the plot symbols.

prior updating on the model with voting potentials (PU). We evaluated each method by averaging
its classification accuracy over all nodes in the graph, and then over 10,000 different graphs; the
results are shown in Fig. 6.

As Fig. 6 illustrates, the methods using the voting potential (EIVP, LBVP, and PU) significantly
outperformed the other potentials when the graph has an equal number of nodes from each class.
For the unequal case, the voting potential had comparable performance to the Potts potential, and
outperformed the AMN potential. In addition, the approximate methods (PU, LBVP, and LBP) did
not differ substantially from their corresponding exact algorithms (EIVP, EIVP, and EIPP respec-
tively), with the exception that LBAMN is substantially worse than EIAMN, and PU appears to be
slightly worse than EIVP at lower base accuracies, and slightly better at higher base accuracies.

9.2 HeLa Data

Encouraged by the above results, we next considered classification accuracy for the real HeLa cell
images. The factor graphs in this case are too large for exact inference, and therefore we cannot
compare approximate and exact inference algorithms. Instead, we sought in our second experi-

673

CHEN, GORDON AND MURPHY

0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

6

Graph Complexity (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(a) (N1,N2)=(6,6)

0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

6

Graph Complexity (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(b) (N1,N2)=(2,10)

Figure 7: Accuracy Improvement vs. Graph Complexity with different approximate inference
methods on graphs with evidence from real data and base accuracy = 91.6%: loopy be-
lief propagation on the model with voting potentials (LBVP, 4−−), prior updating on
the model with voting potentials (PU, 4·· ·), loopy belief propagation on the model with
AMN potentials (LBAMN, �−−) and loopy belief propagation on the Potts model (LBP,
©−−). (a) Graphs with equal numbers of nodes from two classes, (N1,N2) = (6,6). (b)
Graphs with unequal numbers of nodes from two classes, (N1,N2) = (2,10). Confidence
bars are not shown, since paired tests are more powerful for our experimental setup; see
text for statistical comparisons.

ment to determine whether our approximate inference algorithms are able to improve classification
accuracy substantially compared to our baseline SVM classifier.

For each trial in this experiment, we built a graph containing 12 cells in two classes. (We did not
tell the classifier which two classes we used, so there were still 10 possible labels for each cell.) We
assigned evidence to each cell using the SVM classifier described above; the base accuracy of this
classifier was 91.6%. In order to evalute the inference performance on different base accuracies, we
also selected the best 4 and 6 (out of 47) features to achieve the lower base accuracies of 70.6%
and 83.1%, respectively. To test the algorithms’ performance on a variety of problems, we adjusted
dcutoff to achieve levels of connectivity ranging from 0% to 100% of the possible edges; 0% graph
complexity corresponds to a completely disconnected graph, in which each node’s class is assigned
using just the base classifier, while 100% means that the graph is fully connected.

We evaluated each algorithm’s accuracy by 6-fold cross-validation: we trained the SVM using
5/6 of the images, used the other 1/6 of the images to construct testing networks, and recorded the
improvement in classification accuracy compared to the base classifier in each testing network. We
repeated this procedure 6 times so that every image appeared in the test partition once. Finally, we
averaged the overall accuracy over 10 different splits into folds. The results in Fig. 7, Fig. 8, and
Fig. 9 demonstrate that PU and LBVP can robustly achieve a good improvement in classification

674

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

Graph Complexity (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(a) (N1,N2)=(6,6)

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

Graph Complexity (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(b) (N1,N2)=(2,10)

Figure 8: Accuracy Improvement vs. Graph Complexity with different approximate inference
methods on graphs with evidence from real data and base accuracy = 83.1%: loopy belief
propagation with voting potentials (LBVP, 4−−), prior updating with voting potentials
(PU, 4·· ·), loopy belief propagation with AMN potentials (LBAMN, �−−) and loopy
belief propagation on the Potts model (LBP, ©−−). (a) Graphs with equal numbers of
nodes from two classes, (N1,N2) = (6,6). (b) Graphs with unequal numbers of nodes
from two classes, (N1,N2) = (2,10). Confidence bars are not shown, since paired tests
are more powerful for our experimental setup; see text for statistical comparisons.

accuracy on graphs with equal numbers of nodes from two classes, as compared to methods based
on other potentials. (One-tailed paired t-test: p = 0.0033, p = 0.0018, p = 0.0001 for graphs with
91.6%, 83.1%, and 70.6% base accuracies, respectively. Tests were conducted at graph complexity
50%; p values are for comparison to closest competitor.)

On graphs with unequal class sizes, voting and Potts potentials achieved statistically compara-
ble results when the graph complexity was tuned optimally. But, the performance of the voting-
potential-based methods was more robust: their accuracy remained high for a wider range of graph
complexities. (For example, one-tailed paired t-test for LBVP versus LBP: p = 0.0036 for graphs
with 91.6% base accuracies at graph complexity 80%; p = 0.0008 for graphs with 83.1% base
accuracies at graph complexity 90%; p ≤ 0.0001 for graphs with 70.6% base accuracies at graph
complexity 100%.)

9.3 Inference Speed

Our final experiment compares the computational efficiency of the different inference methods.
Each point in Fig. 10 shows the average inference time per trial on different sizes of graphs with
various algorithms (note the logarithmic time scale). Each graph has N1 = N2, uses four of the ten
classes from the HeLa data set, and has 50% graph complexity. In this figure, we also included
the processing time for loopy belief propagation with voting potentials using naive message com-

675

CHEN, GORDON AND MURPHY

0 20 40 60 80 100

0

5

10

15

Graph Complexity (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(a) (N1,N2)=(6,6)

0 20 40 60 80 100

0

5

10

15

Graph Complexity (%)

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
P

er
ce

nt
ag

e
P

oi
nt

s)

(b) (N1,N2)=(2,10)

Figure 9: Accuracy Improvement vs. Graph Complexity with different approximate inference
methods on graphs with evidence from real data and base accuracy = 70.6%: loopy be-
lief propagation on the model with voting potentials (LBVP, 4−−), prior updating on
the model with voting potentials (PU, 4·· ·), loopy belief propagation on the model with
AMN potentials (LBAMN, �−−) and loopy belief propagation on the Potts model (LBP,
©−−). (a) Graphs with equal numbers of nodes from two classes, (N1,N2) = (6,6). (b)
Graphs with unequal numbers of nodes from two classes, (N1,N2) = (2,10). Confidence
bars are not shown, since paired tests are more powerful for our experimental setup; see
text for statistical comparisons.

putation (LBVPNC), which computes messages using ordinary marginalization rather than our new
message computation algorithms. LBVPNC is expected to be faster then EIVP when the number
of neighbors of one node is only a small fraction of the total number of nodes; otherwise LBVPNC
could be much slower than EIVP, as is the case in this experiment.

The exact inference methods take time exponential in the size of the graph and are impractical
to run for graphs of more than 12 nodes, while the processing times of PU, LBVP and LBP are
much faster, and remain well under a second for the largest graphs tested. (With more than four
classes, the exact inference times would rise even more quickly, and the graphs would have to be
even smaller to allow exact inference.) The processing times for approximate inference methods are
a combination of two factors: the number of iterations to converge and the time for each iteration.
Fig. 11 shows the number of iterations needed for each method.

10. Related Work

The problem of how to quickly compute belief messages (or other similar quantities in an inference
algorithm) is an important one, and several special cases of our decomposable structure have been
previously described in the literature. One recent example is an algorithm for fast inference in

676

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Size of the Graph (number of nodes)

lo
g 10

 (
In

fe
re

nc
e

T
im

e)
 (

se
c)

Figure 10: Dependence of inference time on graph size for different inference methods: exact in-
ference on the model with voting potentials (EIVP, 4−), loopy belief propagation on
the model with voting potentials (LBVP, 4−−), loopy belief propagation on the model
with voting potentials using naive message computation (LBVPNC, 4·−), prior up-
dating on the model with voting potentials (PU, 4·· ·), exact inference on the model
with AMN potentials (EIAMN, �−), loopy belief propagation on the model with AMN
potentials (LBAMN, �−−), exact inference on the Potts model (EIPP, ©−) and loopy
belief propagation on the Potts model (LBP, ©−−). Values shown are times for one
run of inference on the given graph, averaged over 12 trials.

hidden Markov models with structured transition matrices (Siddiqi and Moore, 2005). HMMs are a
special case of chain-shaped factor graphs: there is one node representing the state xt at each time
step t, and there is a factor connecting the nodes xt and xt+1 for each t. The potential functions for
all factors are the same, and are equal to the transition matrix: ϕ(xt ,xt+1) = P(xt+1 | xt).

The special structure for transition matrices proposed by Sidiqqi and Moore is called “Dense
Mostly Constant,” or DMC. In a DMC transition matrix for n states, each row contains k arbitrary
entries in specified positions, and the other n− k entries are all equal to a shared constant. The
k arbitrary entries may be in different positions for each row, and the shared constant may also
differ from row to row. Siddiqi and Moore show how to run the forward-backward, Viterbi, and
Baum-Welsh algorithms quickly for HMMs with DMC transition matrices.

The DMC structure is a special case of our decomposable potential structure: any potential
function corresponding to a DMC transition matrix can be written as a rank-one term plus a sparse
term. More precisely,

φ(xt ,xt+1) = q(xt)+ ∑
x,x′∈S

(wxx′ −q(x))I(xt ,x)I(xt+1,x
′).

677

CHEN, GORDON AND MURPHY

Here q(xt) is the shared constant for the row corresponding to xt , S is the set of transition matrix
entries (x,x′) which are allowed to differ from the shared constants, and wxx′ is the value of the
transition matrix entry at position (x,x′). The functions q(xt), I(xt ,x), and I(xt+1,x′) each have
arity 1; and, the set S is sparse, since it has at most kn � n2 elements. Since DMC potentials
are decomposable, our message calculation algorithm allows us to run belief propagation quickly;
doing so is essentially equivalent to Sidiqqi and Moore’s implementation of the forward-backward
algorithm.

As we have pointed out above, the associative Markov network potential is also an example of
our decomposable potential structure. The original paper on AMNs used an inference algorithm
based on linear programming rather than on belief propagation (Taskar et al., 2004). However, the
reason that their LP-based inference algorithm is tractable is exactly that they can take advantage
of the AMN potential’s special structure. There does not appear to be a simple way to extend their
LP-based inference algorithm to the more general decomposable potential structure studied here,
but this would be an interesting direction for future work. Another interesting direction for future
work would be to extend their parameter-learning algorithm to handle more general structures like
the decomposable potentials studied here.

In the context of a computer vision application, Felzenszwalb and Huttenlocher (2004) describe
how to run loopy belief propagation quickly for a number of different pairwise potential functions.
One that they consider is the Potts potential, and their algorithm for handling this potential takes
advantage of the fact that it is a constant plus a sparse matrix, 1 + (ω− 1)I. They also consider
pairwise potentials based on distance functions, which do not in general appear to be examples of
our class of decomposable potential functions. On the other hand, they consider only potentials with
up to two arguments.

In addition to the potentials studied in this paper, multiple examples of specific decomposable
potentials exist in the literature. One of the most common forms is a potential used in directed
graphical models (Bayes nets), in which the child’s distribution depends on the sum of the par-
ents’ values (e.g., Frey and Kannan, 2000). Another good example is a potential used to represent
probability distributions over graphs, in which a structure’s probability depends on the degree of its
nodes (Morris et al., 2003). All of these examples share a certain similarity to several of the special
cases of decomposable potentials mentioned above, in that the speedup comes from accelerating the
calculation of a single large sum within the message computation.

Another way to handle large sums is to build a sum tree: for example, the sum x1 + x2 + x3 + x4

can be rewritten [(x1 + x2)+ (x3 + x4)]. So, a potential with 4 arguments, ϕ(x1,x2,x3,x4) = f (x1 +
x2 + x3 + x4), can be replaced by three smaller potentials and two new variables:

I(y1 = x1 + x2) I(y2 = x3 + x4) f (y1 + y2).

Similarly, a potential that depends on a sum of n terms can be replaced by n− 1 three-argument
potentials and n− 2 additional variables. See Liao et al. (2006) for an example of an algorithm
based on this intuition. While this method works well for potentials that are functions of sums, it
is not straightforward to extend it to more complicated potentials of the form we consider in this
paper.

A final, and related, example of a tractable approximation to belief propagation is given by
Barber (2001). Barber considers the directed version of the belief propagation algorithm, with
conditional probability distribution functions of the form

P(x | s) = f (θ · s).

678

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

Here x is a node in the graph, s is the vector of parents of x, θ is a vector of fixed parameters,
and f is a one-dimensional function with a tractable (approximate) Fourier expansion. This class
of potentials is different from ours; perhaps an even larger class of potentials could be handled by
combining the two techniques, arriving at a class of potentials that looked like

ϕ j(x1, . . . ,xk) = ∑
i

fi

(

L j

∑
l=1

M jl

∏
m=1

ξ jlm(xV (j,l,m))

)

where fi is a basis function (e.g., a multiple of a sine wave if we are using Fourier expansions as
above).

It is possible to find the most likely vector of labels for a Potts model using graph cuts when each
variable xi is binary. A related algorithm can be used for approximate inference with non-binary
variables, and always finds a label vector within a factor of 2 of the most likely. (See Kleinberg and
Tardos, 1999; Taskar et al., 2004, for a discussion.) It does not appear to be easily possible to extend
this group of algorithms to k-way potentials such as the voting potential.

In our own previous work, we applied PU to image segmentation problems to identify cell re-
gions (Chen et al., 2006b). In this case, the voting potential assumed that two sources of information
were available: images of nuclear staining and of cell boundary locations, both of which were ex-
pected to be noisy. The nuclear staining provided an initial assignment of whether a pixel belongs
to the background or to one of the cells, while the cell boundary image provided a probability esti-
mate of whether two neighboring pixels should have the same label. The results indicated that PU
provided efficient and accurate inference.

11. Conclusions and Future Work

We have examined the problem of classifying multiple dependent examples in a protein subcel-
lular location pattern recognition task. We have compared several different graphical models and
inference algorithms designed to solve this sort of structured classification problem, including one
based on the novel voting potential function. The voting potential, like the previously studied Potts
and AMN potentials, encodes the intuition that a variable is likely to have the same class as its
neighbors. Our experiments show that the voting potential often does a better job of encoding this
intuition than the Potts and AMN potentials do.

In addition to the new potential, we have presented new approximate inference algorithms: first,
we have shown how to implement loopy belief propagation efficiently for networks with decompos-
able potentials, including the AMN and voting potentials. And second, we have suggested ignoring
certain belief messages during LBP for the voting potential, resulting in an algorithm called Prior
Updating. These fast algorithms enable us to use potentials like the voting potential on real data,
where they would otherwise be impractical.

We believe that the voting potential function and the class of decomposable potentials will
generalize to other graphs and other applications: for example, in image segmentation, it is common
to use a potential which encourages nearby pixels to be part of the same object. With a potential
similar to the voting potential described here, we could allow many neighboring pixels to vote on
which object a particular pixel belongs to; and in fact, we have conducted initial experiments in this
direction (Chen et al., 2006b). For another example, in regression and classification it is common
to reject outliers to improve the robustness of the learned concept. In a given training set, multiple
outliers may result from similar causes, such as being out of focus or in a different phase of the

679

CHEN, GORDON AND MURPHY

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

Graph Complexity(%)

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

 to
 c

on
ve

rg
e

Figure 11: Dependence of number of iterations to converge on graph size for different inference
methods: loopy belief propagation on the model with voting potentials (LBVP, 4−−),
prior updating on the model with voting potentials (PU, 4·· ·), loopy belief propagation
on the model with AMN potentials (LBAMN, �−−) and loopy belief propagation on
the Potts model (LBP, ©−−). Values shown are numbers of iterations for one run of
inference to converge on the given graph, averaged over 12 trials.

cell cycle. By using feature-space similarity to connect training examples in a graph, we can infer
which types of outliers are present in the data and use this information to determine more accurately
whether each point is an outlier.

In addition to the specific potentials we propose, our algorithms for calculating belief messages
efficiently will also generalize to other domains. Whenever a graph contains a factor with a de-
composable potential function, we can greatly reduce the time required to calculate belief messages
from that factor. Our message calculation algorithm is exact; one might expect that further speed
improvements would be possible if we are willing to accept approximate calculations. One promis-
ing avenue that we intend to explore is a “loopy” version of our message calculation algorithm. In
such an algorithm, an inner loop of message passing would approximate the belief messages needed
by the outer loop.

Acknowledgments

This work was supported in part by NSF grant EF-0331657. Facilities and infrastructure sup-
port were provided by NIH National Technology Center for Networks and Pathways grant U54
RR022241 and by NIH National Center for Biomedical Computing grant National U54 DA021519.

680

STRUCTURED CLASSIFICATION AND SUBCELLULAR LOCATION

References

D. Barber. Tractable approximate belief propagation. In Advanced Mean Field Methods: Theory
and Practice, pages 197–212. MIT Press, 2001.

M. V. Boland and R. F. Murphy. A neural network classifier capable of recognizing the patterns of
all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics,
17:1213–1223, 2001.

C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines, 2001. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

S.-C. Chen and R. F. Murphy. A graphical model approach to automated classification of protein
subcellular location patterns in multi-cell images. BMC Bioinformatics, 7:90, 2006.

S.-C. Chen, G. J. Gordon, and R. F. Murphy. A novel approximate inference approach to automated
classification of protein subcellular location patterns in multi-cell images. In Proceedings of the
2006 IEEE International Symposium on Biomedical Imaging (ISBI), pages 558–561, 2006a.

S.-C. Chen, T. Zhao, G. J., Gordon, and R. F. Murphy. A novel graphical model approach to seg-
menting cell images. In Proceedings of the 2006 IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology (CIBCB), pages 1–8, 2006b.

X. Chen, M. Velliste, and R. F. Murphy. Automated interpretation of subcellular patterns in fluores-
cence microscope images for location proteomics. Cytometry, 69A:631–640, 2006c.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision. In Proceed-
ings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 261–268, 2004.

B. J. Frey and A. Kannan. Accumulator networks: Suitors of local probability propagation. In
Advances in Neural Information Processing Systems (NIPS), pages 486–492, 2000.

E. Glory and R. F. Murphy. Automated subcellular location determination and high throughput
microscopy. Developmental Cell, 12:7–16, 2007.

T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural Computation, 16:
2379–2413, 2004.

K. Huang and R. F. Murphy. Boosting accuracy of automated classification of fluorescence micro-
scope images for location proteomics. BMC Bioinformatics, 5:78, 2004.

A. T. Ihler, J. W. Fisher, III, and A. S. Willsky. Loopy belief propagation: Convergence and effects
of message errors. Journal of Machine Learning Research, 6:905–936, 2005.

U. Kjærulff. Inference in Bayesian networks using nested junction trees. In Learning in Graphical
Models, pages 51–74. Kluwer Academic Press, 1998.

681

CHEN, GORDON AND MURPHY

J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pairwise
relationships: Metric labeling and Markov random fields. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 14–23, 1999.

D. Koller and N. Friedman. Bayesian Networks and Beyond. 2007. Draft manuscript.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2):498–519, 2001.

L. Liao, D. Fox, and H. Kautz. Location-based activity recognition. In Y. Weiss, B. Schölkopf, and
J. Platt, editors, Advances in Neural Information Processing Systems (NIPS), volume 18, pages
787–794, Cambridge, MA, 2006. MIT Press.

H.-T. Lin, C.-J. Lin, and R. C. Weng. A Note on Platt’s Probabilistic Outputs for Support Vector
Machines, 2003. Technical report, Department of Computer Science, National Taiwan University.

R. McEliece, D. MacKay, and J. Cheng. Turbo decoding as an instance of Pearl’s belief propagation
algorithm. IEEE Journal on Selected Areas in Communications, 16:140–152, 1998.

Q. D. Morris, B. J. Frey, and C. J. Paige. Denoising and untangling graphs using degree priors. In
Neural Information Processing Systems Conference (NIPS), pages 385–392, 2003.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference—an
empirical study. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 467–475, 1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufman, San Mateo, 1988.

J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. In Advances in Large Margin Classifiers, pages 61–74. MIT Press, 2000.

S. Siddiqi and A. Moore. Fast inference and learning in large-state-space HMMs. In Proceedings
of the 22nd International Conference on Machine Learning (ICML), pages 800–807, 2005.

B. Taskar, V. Chatalbashev, and D. Koller. Learning associative Markov networks. In Proceedings
of the 21st International Conference on Machine Learning (ICML), pages 102–109, 2004.

S. C. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs measures. In Proceedings of
the 18th Conference on Uncertainty in Artificial Intelligence (UAI), pages 493–500, 2002.

Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural
Computation, 12:1–41, 2000.

D.-Q. Zhang and S.-F. Chang. Learning to detect scene text using a higher-order MRF with be-
lief propagation. IEEE Workshop on Learning in Computer Vision and Pattern Recognition, in
conjunction with CVPR (LCVPR), 6:101–108, 2004.

682

