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 Location Proteomics: Systematic Determination of Protein 
Subcellular Location       

     Justin   Newberg      , Juchang   Hua,       and Robert F.   Murphy  

        Summary 

 Proteomics seeks the systematic and comprehensive understanding of all aspects of proteins, and location 
proteomics is the relatively new subfield of proteomics concerned with the location of proteins within cells. 
This review provides a guide to the widening selection of methods for studying location proteomics and 
integrating the results into systems biology. Automated and objective methods for determining protein 
subcellular location have been described based on extracting numerical features from fluorescence micro-
scope images and applying machine learning approaches to them. Systems to recognize all major protein 
subcellular location patterns in both two-dimensional and three-dimensional HeLa cell images with high 
accuracy (over 95% and 98%, respectively) have been built. The feasibility of objectively grouping proteins 
into subcellular location families, and in the process of discovering new subcellular patterns, has been 
demonstrated using cluster analysis of images from a library of randomly tagged protein clones. Generative 
models can be built to effectively capture and communicate the patterns in these families. While automated 
methods for high-resolution determination of subcellular location are now available, the task of applying 
these methods to all expressed proteins in many different cell types under many conditions represents a 
very significant challenge.  

  Key words:   Location proteomics ,  Subcellular location trees ,  Subcellular location features ,  Fluores-
cence microscopy ,  Pattern recognition ,  Cluster analysis ,  Generative models ,  CD-tagging ,  Systems 
biology .    

 A critical aspect of the analysis of a proteome is the collection of 
detailed information about the subcellular location of all of its 
proteins. Since subcellular location can change during the cell 
cycle and in response to internal (mutation) or external (drugs, 
hormones, metabolites) effectors, the acquisition of sufficient 
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information for even a single protein can be challenging. Two 
strategies are possible: experimental  determination  and compu-
tational  prediction . 

 The former approach involves assigning class labels to data 
using automated learning methods. Depending on the applica-
tion, classes can take on different meaning. Typically in location 
proteomic studies, various proteins or organelles define classes. If 
the classes of the data samples are known (in other words, if the 
data are class-labeled), then supervised learning approaches can 
be used, wherein classifiers are trained to distinguish between the 
classes, and new data can be automatically labeled as belonging 
to these classes. If data is not class labeled, then unsupervised 
learning approaches can be used, typically to group data by simi-
larity and to identify important clusters in a dataset. In location 
proteomics, these clusters can correspond to important protein 
or organelle patterns. 

 A range of approaches to predicting location from sequence 
have been described, including detection of targeting motifs, 
analysis of amino acid composition, and modeling based on 
sequence homology  (1–  6) . What is clear is that all subcellular 
location prediction systems suffer from deficiencies in the train-
ing data: a limited number of proteins with known locations  and  
insufficiently detailed descriptions for those that have been deter-
mined. This is because raw experimental data are converted into 
words that describe location, and both the process of assigning 
words and the limitations of the words themselves create loss of 
information. This is true even when standardized terms such as 
the Cellular Component terms from the Genome Ontology  (7)  
are used. (Of course, many determinations of location are done 
by microscopy at low magnification and therefore the resolution 
of the imaging becomes the limiting factor.) There is thus an 
urgent need to collect new protein subcellular location data with 
high resolution. We first consider approaches using visual assign-
ment of location. 

 Such efforts can be characterized along three dimensions: 
whether or not the approach used involves a selective  screen  for 
a particular location, whether or not the proteins to be analyzed 
are chosen  randomly , and whether or not the resolution of the 
determinations is at or near the limit of optical microscopy. Tate 
et al.  (8)  used a gene trap approach to screen for proteins local-
ized in the nucleus of mouse embryonic stem cells. Rolls et al. 
 (9)  used a cDNA library fused with GFP to screen for proteins 
with nuclear envelope distributions. Similarly, Misawa et al.  (10)  
used a GFP-fusion cDNA library to identify 25 proteins showing 
specific intracellular localization. In contrast, Simpson et al.  (11)  
used N- and C-terminal GFP fusion of cDNAs to assign locations 
to more than 100 novel proteins in monkey Vero cells, while Jarvik 
et al.  (12)  used random genomic tagging (CD-tagging) to create 
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more than 300 GFP-expressing cell clones and assign locations. 
Huh et al.  (13)  created a even larger library of 6,029 yeast strains 
with GFP-tagged ORFs (open reading frames) to characterize 
the localization of yeast proteins. 

 While the vast majority of studies of protein location using 
fluorescence microscopy have employed visual interpretation of 
the resulting images, there have been efforts to bring automation 
to this process  (14–  23) . These have been based on work over the 
past decade demonstrating not only that computational analysis can 
be used to recognize  known  subcellular location patterns  (24–  30)  
but also that the accuracies achieved are equal to, and in some 
cases better than, those of visual analysis  (17) . 

 Images from many of these studies are publicly available. 
 Table    1   summarizes some of these and other studies and illus-
trates how they are different by design. In addition, Schubert 
et al.  (21)  have developed multiepitope ligand cartography, a 
robotically controlled immunofluorescence microscopy system 
that can capture as many as 100 distinct antibodies in the same 

 Table 1  
  Data collections relevant to location proteomics  

 Project 
 Species (cell 
type) 

 Number of 
proteins 

 Public 
access 

 Tagging 
method  2D/3D  Mag 

 Yeast GFP 
fusion 
localization 
database 

 Yeast  >4,000  yeastgfp.
ucsf.edu 

 cDNA c-ter-
minal GFP 
fusion 

 2D  100× 

 Human 
Protein 
Atlas 

 Human (>40 
tissue 
types) 

 >6,000  proteinatlas.
org 

 Immuno-
histochemical 
staining 

 2D  20× 

 CD-tagging 
database 

 Mouse 3T3  >100  cdtag.bio.
cmu.edu 

 Internal GFP 
fusion 

 3D  60× 

 GFP-cDNA 
localization 
project 

 Human 
(HeLa) 
and mon-
key (Vero) 

 >1,000  gfp-cdna.
embl.de 

 cDNA terminal 
GFP fusion 

 2D  63× 

 Protein 
subcellular 
location 
image 
database 

 Human 
(Hela) 
and mouse 
(3T3) 

 >100  pslid.cbi.
cmu.edu 

 Immunofluo-
rescence and 
genomic 
internal GFP 
fusion 

 2D/3D  100× + 60× 

 Cell centered 
database 

 Various  Various  ccdb.ucsd.
edu 

 Various  2D/3D  60×–40,000× 
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image sample, but collections of images from this approach are 
not yet publicly available.     

 This review briefly covers the process of data collection for 
determination of subcellular location, followed by a more detailed 
discussion of a range of automated methods for analysis of the 
resulting images. The large scale application of these methods 
over the next few years will help to address the need for large sets 
of proteins with well-characterized locations, and this in turn will 
further aid development of future systems capable of modeling 
and predicting subcellular location. 

 Perhaps the most common method for determining the subcellular 
location of a protein is to label the protein with a fluorescent probe 
and then to visualize the distribution of the protein within cells under 
a fluorescence microscope. We will limit our discussion to variations 
on this approach, and we will not consider alternatives such as cell 
fractionation followed by protein identification and quantitation. 
Such approaches have been described  (18,   20)  but are fundamen-
tally limited by the resolution of the fractionation step. 

 A typical fluorescence microscope consists of a light source 
such as an arc lamp or laser. Light passes through an excitation 
filter that allows only a specific wavelength through. Next, a 
condenser focuses the light onto the sample. This excites fluoro-
phores in the sample to emit higher wavelength light that passes 
through the objective and then an emission filter that removes 
any undesired wavelengths. Next, the emitted, filtered light hits 
the detector (a photomultiplier tube or CCD-camera) and is 
stored digitally as a grayscale image. Multiple filter sets and cor-
responding probes can be thus used to obtain multiple grayscale 
images, producing a multichannel image. 

 The various approaches to tagging a protein for fluorescence 
microscopy can basically be divided into those that tag native 
proteins with a fluorescent dye and those that modify the coding 
sequence of the protein to introduce a fluorescent group into the 
molecule (for review  see   refs.   9,   14) . 

 Native proteins are most commonly tagged in situ using anti-
bodies conjugated with a fluorescent dye, but fluorescent probes 
that can specifically bind to a protein, such as phalloidin bind-
ing to F-actin, are also used. However, these approaches cannot 
usually be applied to a living cell, since the cell membrane has to 
be made permeable for the probes to enter the cell; moreover, 
they also require antibodies or probes with appropriate specifi-
city, which make them hard to apply on a proteome wide scale. 

2. Acquisition of 
Protein Subcel-
lular Location 
Images
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Significant efforts to apply immunolabeling at the proteomic level 
have been undertaken, notably by the Human Protein Atlas (47). 

 Tagging of proteins by modifying their DNA sequence does 
not have the above disadvantages. This approach involves either 
modifying a coding sequence (cDNA) and then introducing this 
sequence into cells or modifying the genome sequence directly (in 
either a targeted or a random manner). One of the powerful ran-
dom tagging techniques is CD tagging  (14) . In this approach, the 
coding sequence of a green fluorescent protein (GFP) is inserted 
randomly into genomic DNA by a retroviral vector. Because the 
tagging happens to the genomic DNA, the modified protein keeps 
its original regulatory sequences and expression level. This is in 
contrast to cDNA modification, in which a constitutive, highly 
expressed promoter is usually used and thus the expression level 
of the protein is typically higher than normal. By repeatedly per-
forming random tagging on cells of identical lineage, most of, or 
eventually all of the proteins within a given cell line can be tagged 
and have their subcellular locations determined. 

 As mentioned earlier, systems for recognizing subcellular patterns 
in a number of cell types have been developed. The heart of each 
of these systems is a set of numerical features that quantitatively 
describe the subcellular location pattern in a fluorescence micro-
scope image. These features, termed subcellular location features 
(SLFs), are designed to be insensitive to the position, rotation, 
and total intensity of a cell image  (29) . The only requirement for 
the calculation of these SLFs is that each input image contain a 
single cell. This requirement can be met in multiple cell images 
by segmenting the images into single cell regions either manu-
ally or automatically, using approaches such as modified Voronoi 
tessellation  (28) , watershed  (26,   27) , levelset methods  (30) , and 
graphical model methods  (29) . 

 A specific nomenclature has been used to enable unambigu-
ous references to the features used in a particular study. Sets of 
features are referred to using the prefix “SLF” followed by a set 
number. Individual features are referred to by the set name fol-
lowed by a period and its index within the set. For example, SLF1 
refers to the first set of features, and SLF1.2 refers to the second 
feature in this set. We briefly summarize the various types of SLFs 
below. 

  Morphological features (SLF1.1–1.8) . The high intensity blobs of 
pixels in fluorescence microscope images might be the first thing 

3. Interpretation 
of Protein Sub-
cellular Location 
Images

3.1. Subcellular 
Location Features

3.2. SLFs for 2D 
Images
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a cell biologist looks at when trying to resolve subcellular loca-
tion patterns. Morphological features mainly describe the charac-
teristics of these blobs, or  objects . An object is defined as a group 
of touching (connected) pixels that are above a threshold (the 
threshold is determined automatically). Eight morphological fea-
tures have been defined  (15)  to describe the number, size, and 
relative position of the objects. 

  Edge features (SLF1.9–1.13) . The edge features are calculated 
by first finding edges in the fluorescence image. These edges can 
be thought of as consisting of positions that have low intensity 
in one direction and high intensity in the opposite direction. The 
number of above-threshold pixels that are along an edge, the total 
fluorescence of the edge pixels, and measures of the homogeneity 
with which edges are aligned in the image are especially useful 
for characterizing proteins whose patterns are not easily divided 
into objects (such as cytoskeletal proteins). Proteins showing a 
radiating (star-like) distribution (such as tubulin) have low edge 
homogeneity, while those showing aligned fibers (such as actin) 
have higher edge homogeneity  (15) . 

  Geometric features (SLF1.14–1.16) . The starting point for 
these features is determination of the convex hull of the cell, 
which is defined as the smallest convex set which surrounds all 
above threshold pixels. Three features have been defined using 
the convex hull: the fraction of the area of the convex hull that is 
occupied by above threshold pixels, the roundness of the convex 
hull, and the eccentricity of the convex hull  (15) . 

  DNA features (SLF2.17–2.22) . The central landmark in 
eukaryotic cells is the nucleus, and thus having a parallel image 
of the DNA distribution of a cell is quite valuable. When this is 
present, a set of features can be calculated to measure quantities 
such as how far on average protein objects are from the nucleus, 
and how much overlap exists between the protein and DNA dis-
tributions  (15) . 

  Haralick texture features (SLF3.66–3.78) . For patterns that 
are not easily decomposed into objects using thresholding, meas-
ures of image  texture  are often very useful. Texture features are 
calculated as various statistics defined by Haralick  (24)  that sum-
marize the relative frequency with which one gray level appears 
adjacent to another one. Adjacency can be defined in the hori-
zontal, vertical, and two diagonal directions in two-dimensional 
(2D) images. The texture features are averaged over these four 
directions to achieve rotational invariance. These features were 
first introduced for classification of cell patterns in the initial 
demonstration of the feasibility of automated subcellular pattern 
analysis  (25) . 

  Zernike moment features (SLF3.17–3.65) . Like the con-
vex hull and texture features, the rationale behind using these 
moment features is to capture general information about the dis-
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tribution of a protein in a rotationally invariant way. Because the 
Zernike moments are defined on the unit circle, a cell image is 
first mapped to the unit circle using polar coordinates, where the 
center of a cell is the origin of the unit circle. Then, the similar-
ity between the transformed image and the Zernike polynomials 
are calculated by conjugation. By using the absolute value of the 
resulting moments, the features become rotation invariant  (25) . 

  Skeleton features (SLF7.80–7.84) . The goal behind these fea-
tures is to characterize the shape of the objects found by thresh-
olding. This is done by first obtaining the skeleton of each object 
by a recursive erosion operation on the edge. Each skeleton 
is then described by features such as its length and degree of 
branching, and these are averaged over all objects to give features 
of the cell as a whole  (17) . 

  Daubechies 4 wavelet features (SLF15.145–15.174) . The prin-
ciple behind wavelet decomposition is to measure the response 
of an image to a filter (a wavelet) applied in the horizontal, verti-
cal, and diagonal directions. Wavelet decomposition can be per-
formed recursively, with each pass measuring the response of the 
filter at a lower frequency  (31) . Thus the average energy (sum of 
squared intensities) at each level of decomposition of an image 
using a wavelet function provides (among other things) informa-
tion on the frequency (size) distribution of fluorescent objects 
but without the need for thresholding. 

  Gabor texture features (SLF15.85–15.144) . These features are 
calculated by convolving an image with a 2D Gabor filter and cal-
culating the mean and standard deviation of the resulting image 
 (32) . By using different parameters to generate the Gabor filter, a 
total of sixty Gabor texture features can be calculated  (33) . 

 In a series of studies, the SLFs described above have been applied 
to a set of 2D HeLa cells images showing the distribution of nine 
proteins and a parallel DNA-binding probe  (15) . The nine pro-
teins that were labeled by immunofluorescence are located in the 
endoplasmic reticulum (the protein p63), the Golgi complex (the 
proteins giantin and gpp130), lysosomes (LAMP2), endosomes 
(transferrin receptor), mitochondria, nucleoli (nucleolin), and 
cytoskeleton (beta-tubulin and F-actin). These protein classes 
which represent the major organelles in a cell were combined 
with a DNA-stained nucleus class selected from the parallel DNA 
images to form a 10-class subcellular location dataset. Example 
images are shown in  Fig.    1  . To evaluate the performance of an 
automated classifier, 90% of the images in each class were used to 
train that classifier and then its accuracy was obtained by testing 
it with the remaining 10% of the images. The process was then 
repeated nine additional times using different training and test-
ing sets under the constraint that each image appears in a test set 
only once (this approach is termed tenfold cross-validation), and 

3.3. Classification of 
2D Images



320 Newberg, Hua, and Murphy

  Fig. 1 .   Representative images of 2D HeLa dataset. These images have been preprocessed to remove background fluores-
cence and pixels below threshold. Images show the subcellular localization of ( A ) an ER protein, ( B ) Golgi protein giantin, 
( C ) Golgi protein Gpp130, ( D ) lysosomal protein LAMP2, ( E ) a mitochondrial protein, ( F ) nucleolar protein nucleolin, ( G ) 
filamentous actin, ( H ) transferin receptor, ( I ) cytoskeleton protein tubulin, and ( J ) DNA . Scale bar = 10  µ m. Reprinted from 
 ref.  15  as allowed by Oxford University Press       .
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results from each repeat were averaged to get an overall classifica-
tion accuracy. When the image set was first collected, an accuracy 
of 83% was obtained using a neural network classifier and a set of 
37 SLFs  (15) . Through the use of additional features and clas-
sifiers over the past few years, the accuracy on this dataset has 
risen to 92% for a majority-voting ensemble classifier using a set 
of 47 SLFs  (33) . These results are shown in  Table    2  . Even better 
results have been obtained on this dataset using a multiresolution 
classification scheme that achieved an accuracy of 95%  (34) . The 
automated systems are able to distinguish two Golgi proteins, 
GPP130 and giantin, which have been shown to be very hard to 
discriminate by visual inspection, as shown in  Table    3    (17) . A 
comparison of computer ( Table    2  ) and human ( Table    3  ) clas-
sifications is shown in  Fig.    2    (35) .             

 Although most adherent cultured cells are very thin compared 
to their diameter in the plane of the substrate, a high resolution 
2D image (which typically samples from only 0.5 to 1  µ m in the 
axial direction) represents only a fraction of the compartments 
that are present in the three-dimensional (3D) cell. By taking 2D 
confocal microscope images at a series of depths within a cell, 
we can obtain a 3D image of a cell. Sampling in the axial direc-
tion is done typically every 0.5–2  µ m, but depends on the micro-
scope and the experimental design. Three types of 2D SLFs have 

3.4. SLFs for 3D 
Images

 Table 2  
  Confusion matrix of 2D HeLa cell images using optimal majority-voting ensemble 
classifier with feature set SLF16  

 DNA  ER  Gia  Gpp  Lam  Mit  Nuc  Act  TfR  Tub 

 DNA   98.9   1.2  0  0  0  0  0  0  0  0 

 ER  0   96.5   0  0  0  2.3  0  0  0  1.2 

 Gia  0  0   90.8   6.9  0  0  0  0  2.3  0 

 Gpp  0  0  14.1   82.4   0  0  2.4  0  1.2  0 

 Lam  0  0  1.2  0   88.1   1.2  0  0  9.5  0 

 Mit  0  2.7  0  0  0   91.8   0  0  2.7  2.7 

 Nuc  0  0  0  0  0  0   98.8   0  1.3  0 

 Act  0  0  0  0  0  0  0   100   0  0 

 TfR  0  1.1  0  0  12.1  2.2  0  1.1   81.3   2.2 

 Tub  1.1  2.2  0  0  0  1.1  0  0  1.1   94.5  

 The overall accuracy was 92.3%. Data from  ref.   33  
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 Table 3  
  Confusion matrix of human classification of images from 
2D HeLa dataset  

 DNA  ER  Gia  Gpp  Lam  Mit  Nuc  Act  TfR  Tub 

 DNA   100   0  0  0  0  0  0  0  0  0 

 ER  0   90   0  0  3  6  0  0  0  0 

 Gia  0  0   56   36  3  3  0  0  0  0 

 Gpp  0  0  53   43   0  0  0  0  3  0 

 Lam  0  0  6  0   73   0  0  0  20  0 

 Mit  0  3  0  0  0   96   0  0  0  0 

 Nuc  0  0  0  0  0  0   100   0  0  0 

 Act  0  0  0  0  0  0  0   100   0  0 

 TfR  0  13  0  0  3  0  0  0   83   0 

 Tub  0  3  0  0  0  0  0  3  0   93  

 The overall accuracy was 83%. The major confusion came from the two 
Golgi protein, giantin and Gpp130, which were hard to distinguish by 
human inspection. Data from  ref.   17  

  Fig. 2 .   Comparison of automated and visual classification of subcellular location pat-
terns in 2D images of HeLa cells. Each  dark square  shows the classification accuracy 
of a specific pattern, while the  solid line  indicates equal performance between the two 
approaches. While six of the patterns are classified equally well by both, the computer 
performs significantly better on three of the patterns (two Golgi and one lysosomal). 
Reprinted from  ref.   35  with permission (© 2004 IEEE)       .
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been extended to three dimensions so that they can capture some 
information which is not available in 2D images. Results from 
automated classification using these 3D SLFs show improvement 
over the 2D SLF. Brief descriptions of these 3D features are pre-
sented below. 

  Morphological features (SLF9.1–9.28) . The 3D morpho-
logical features are direct extensions of their 2D counterparts. 
Objects are found in 3D and size is replaced by volume. More-
over, distance features are decomposed into two components, 
one situated in the plane of the image and the other axially 
through the stack. Similar to the case for 2D images, a few 3D 
features (SLF9.9–9.14) can be defined relative to a parallel 
DNA image  (27) . 

  Edge features (SLF11.15–11.16) . The number of pixels along 
the edges and the total fluorescence of these pixels are calculated 
on every slice of the 3D images and then summed up. The frac-
tions of these two values over the entire 3D image are used as 3D 
edge features  (16) . 

  Haralick texture features (SLF11.17–11.42) . The Haralick 
texture features can be extended to 3D images by considering 
all 13 directions in which a pixel can be considered adjacent to 
its neighbor pixels in 3D space (rather than the four directions 
in 2D space). The average value and the range of the 13 texture 
statistics over all 13 directions are used, yielding 26 features. Har-
alick texture features require a choice of image resolution and 
gray level bit depth to optimize the performance of recogniz-
ing patterns. Experiments revealed that 0.4  µ m per pixel resolu-
tion and 256 (8 bit) gray levels were the best combination for 
recognizing subcellular patterns in the 3D HeLa image dataset 
described below  (36) . 

 The 3D SLFs have been applied to a set of 3D HeLa images of 
the same nine proteins as in the 2D HeLa image collection  (27) . 
A three-laser confocal microscope was used to record images 
of cells labeled simultaneously with three different probes (the 
images were collected in the Center for Biologic Imaging at the 
University of Pittsburgh with the kind assistance and support of 
Dr. Simon Watkins). In addition to probes for one of the nine 
targeted patterns, propidium iodide was used to stain DNA (after 
RNAse treatment), and a third probe was used to label total cell 
protein. The image of this third tag was used in combination with 
the DNA image to automatically segment images into single cell 
regions  (27) . 

 The first evaluation of automated classification of this data-
set used 28 morphological features, including 14 features which 
depend on the parallel DNA image. By using a neural network 
classifier, an overall accuracy of 91% was achieved  (27) . To deter-
mine how well classification could be performed without using a 

3.5. Classification of 
3D Images
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parallel DNA image, a new feature set SLF14 was created with 
14 DNA-independent morphological images, two edge features, 
and 26 Haralick texture features. An overall accuracy of 98% was 
achieved using features selected from this set  (36)  as shown in 
 Table    4  . The results are nearly perfect, and the extension from 
2D to 3D significantly increases the ability to distinguish the two 
Golgi proteins, Gpp130 and Giantin.  

 The classification results described above have shown the ability 
of the SLFs to distinguish major subcellular location patterns 
with a classifier trained on class-labeled images. This is super-
vised learning, in which the protein or location classes are known 
at the outset. In contrast, unsupervised learning tries to find an 
optimal way of dividing  unlabeled  images into distinct groups 
or clusters. In location proteomics, clustering methods are used 
to find the major subcellular location pattern groups for all pro-
teins across a proteome or large dataset. An optimal clustering 
on the location patterns of proteomes (finding subcellular loca-
tion families) can offer a fundamental framework for assigning 
locations to proteins. Such a framework is useful for many rea-
sons, one of which is because it can be used to automatically 
generate an ontology that effectively describes protein locations, 
and another of which is that each pattern (family) is tied to the 
images that defined it. 

3.6. Clustering of 
Subcellular Location 
Images

  Table 4  
  Confusion matrix of 3D HeLa images using neural network classifier with seven 
features selected from SLF17    

 DNA  ER  Gia  Gpp  Lam  Mit  Nuc  Act  TfR  Tub 

 DNA   98   2  0  0  0  0  0  0  0  0 

 ER  0   100   0  0  0  0  0  0  0  0 

 Gia  0  0   100   0  0  0  0  0  0  0 

 Gpp  0  0  0   96   4  0  0  0  0  0 

 Lam  0  0  0  4   95   0  0  0  0  2 

 Mit  0  0  2  0  0   96   0  2  0  0 

 Nuc  0  0  0  0  0  0   100   0  0  0 

 Act  0  0  0  0  0  0  0   100   0  0 

 TfR  0  0  0  0  2  0  0  0   96   2 

 Tub  0  2  0  0  0  0  0  0  0   98  

   The overall accuracy was 98%. Data from  ref.   36   
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 There are many different clustering algorithms and most of 
them require a similarity (or distance) function, which defines the 
way to calculate the similarity (or dissimilarity) of images in the 
feature space. Two well-known distance functions are Euclidean 
distance and Mahalanobis distance. Instead of unscaled Euclidean 
distances, which calculate the straight line distance in feature 
space between two images, standardized (or  z -scored) Euclidean 
distances, which are Euclidean distances calculated after normaliz-
ing each feature to zero mean and unit variance, can be used. The 
Mahalanobis distance takes into account the correlation between 
features by scaling the distance with the covariance. Standard-
ized Euclidean distance was shown to empirically produce the 
best agreement among different clustering algorithms applied to 
subcellular location images  (19) . 

 k-Means clustering is a well-known centroid-based algo-
rithm. Each data point is grouped into one of  k  clusters whose 
centroid is closest to it in the feature space. A centroid of a cluster 
is defined as the average feature vector of all the data points in 
that cluster. The starting centroids of the  k  clusters are randomly 
chosen from the data points or randomly generated. When a new 
data point is clustered into a certain cluster, the cluster centroid is 
updated accordingly. The process is repeated over all data points 
a few times until all the clusters converge. 

 To determine into how many groups the data should be clus-
tered, an Akaike Information Content (AIC) score can be calcu-
lated for many values of  k , the number of clusters. AIC measures 
the log-likelihood of the model penalized by the number of 
parameters of the model. A clustering result with small  k  and 
small variance of each cluster will have a relatively low AIC score, 
which means the clustering result is good. By varying  k  and com-
paring the AIC scores, an optimal  k  can be found  (37) . Bayesian 
Information Criterion can be used in place of AIC. 

 Unlike the k-means clustering algorithm, hierarchical clus-
tering does not depend on the choice of the number of clus-
ters. Initially, each of the data points is a cluster. The distances 
of all of the clusters are calculated pairwise and the closest two 
clusters are joined together. This is repeated until all are joined. 
The result of hierarchical clustering shows how the clusters 
converge to fewer but larger clusters. A dendrogram is usu-
ally used to show the result of hierarchical clustering. A den-
drogram generated from the SLFs of fluorescence microscope 
images has been termed a “subcellular location tree (SLT)” 
 (16) . A SLT tells us how close the subcellular location pattern 
of one protein is to that of another protein. In order to increase 
the robustness of hierarchical clustering, consensus methods 
can be used  (19) . In consensus clustering, a random half of 
images from each protein is used to build a hierarchical tree. 



326 Newberg, Hua, and Murphy

This is repeated and a consensus tree is built to show branches 
that are conserved  (38) . 

 A third clustering approach is based on the confusion matrix 
generated by a classifier. This approach starts with training a clas-
sifier to discriminate all different proteins regardless of the pos-
sibility that some proteins may share the same location pattern. If 
two proteins actually do share a same location pattern, the classi-
fier will not be able to tell them apart, which will then be shown 
in the confusion matrix as a large number in off-diagonal cells. By 
merging such confused proteins into a group, we can finally com-
bine proteins which share a location pattern and obtain clusters 
which can be well separated by the classifier  (19) . 

 As described before, the CD-tagging technique has been 
used to introduce an internal GFP domain in randomly targeted 
proteins in mouse 3T3 cells and to prepare a large library of 
subcellular location images  (12) . 3D images have been collected 
for these clones using spinning disk confocal microscopy. The 
consensus clustering based on k-means algorithm divided 90 
proteins into 17 groups, which represent the major location pat-
terns distinguishable by the current 3D SLFs. A SLT was also 
generated on the same dataset. The proteins assigned to the 
same branch of the SLT often visually appear to display similar 
patterns. On the other hand, the proteins with distinct location 
patterns are well separated. This SLT (shown in  Fig.    3  ) and the 
representative images of each leaf are available online at   http://
murphylab.web.cmu.edu/services/PSLID/      (19) . The whole 
process of building such a consensus SLT is automated and 
objective. The tree shows the major subcellular location patterns 
which are distinguishable in a collection of 90 different proteins 
in 3T3 cells as well as the hierarchical relations among these 
patterns. This clustering method is very promising to reveal the 
framework of protein subcellular location families when a com-
plete image collection is available for all the proteins in a given 
cell type. Recently, images of 188 randomly tagged clones have 
been clustered into 35 distinct location clusters  (23) .    In addition 
to being used to group proteins by their location patterns, clus-
tering of images has been used to group drugs by their effects 
upon subcellular patterns  (39) . 

 Thus far we have discussed analysis of independent single cell 
regions. However, most fluorescence micrographs contain mul-
tiple cells per image field, and there is useful information in the 
spatial distribution of cells. Moreover, these cells may be express-
ing extracellular proteins of interest, and may be influencing each 
other (through things like cell division, hormonal signaling, or 
mechanical coupling). 

 There are various approaches to dealing with multicell 
images. The simplest are applied to images containing only one 

3.7. Multiple Cell 
Image Analysis
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  Fig. 3 .   A consensus subcellular location tree generated from the 3D 3T3. image dataset. The SLF11 feature set and 
standard ( z -scored) Euclidean distance were used. The columns on the  right  of the tree show the protein name (if 
known), human observation of subcellular location, and subcellular location inferred from Gene Ontology (GO) annota-
tions. Proteins marked with a  double asterisk  have significantly different locations between the description of human 
observation and the inference from GO annotation. Reprinted from  ref.  19  under the terms of the Creative Commons 
License       .
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pattern in all of the cells. In one approach, field level features, 
which are independent of the number and rotation of cells in 
the image, are used to train classifiers. Huang and Murphy  (40)  
showed that such features could be used to give a 95% accuracy. 
Their work was done using a modified version of the 2D HeLa 
images described above, where they used multiple single cell 
regions to synthesize multicell images containing anywhere from 
2 to 6 cells. Following this work, Newberg and Murphy  (41)  
showed that field level features combined with voting classifica-
tion schemes can be used to effectively analyze protein patterns 
across human tissues. They trained a system that could distin-
guish between eight major organelle patterns with an 83% accu-
racy; this became 97% when only the most confident classification 
assignments were considered. 

 In another approach, information from surrounding cells is 
used to influence the classifier assignments for a local cell region 
in the image. This approach thus involves segmentation as a 
first step. If the image contains a homogeneous pattern (that is, 
all of the cells express the same protein pattern), simple voting 
methods can be used. These involve segmenting images, using 
SLFs in the classification of single cell regions, and then simply 
assigned the most common class label in the multicell image to 
all regions in that image. When multicell images contain more 
than one pattern (i.e., one group of cells expressing a tubulin 
pattern and another expressing a nuclear pattern), more complex 
voting schemes are needed. Chen and Murphy  (42)  showed that 
a graphical models approach can effectively deal with inhomo-
geneous data. This works by allowing close cell regions to have 
more influence than further away regions when deciding upon a 
class label for that region. Distances can be measured in both the 
physical space (where regions lie in an image) and feature space. 
Using synthetic multicell data (generated from the 2D HeLa 
image set), they were able to achieve greater than 90% accuracy 
in images containing up to four different types of patterns. This 
initial approach has been significantly improved and extended in 
subsequent work  (43,   44) . 

 The aforementioned methods consider protein subcellular loca-
tion patterns at the level of each cell (or group of cells) and do 
not capture any information about the individual components 
of the cellular pattern. When they are applied to a new mixture 
pattern which combines the components from several different 
basic patterns (i.e., the location pattern of a protein which exists 
in different organelles or compartments), the cell level recog-
nition methods tend to either generate a new location group 
(clustering) or simply be confused (classification). A more desir-
able result, however, might be a quantitative breakdown of how 
basic patterns compose the new mixed pattern  (45) . To this 

3.8. Object Type Rec-
ognition and Genera-
tive Models
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end, an object-based method was developed wherein object 
types are learned from several class-labeled images, and then 
they are used to recognize a new image pattern based on this 
pattern’s object type composition. In this two-stage learning 
problem, first objects are extracted from known image classes 
and the object types are learned by clustering on object features, 
termed subcellular object features (SOFs). Note that objects in 
an image are defined as a group of connected pixels that are 
above some threshold. In the second stage, features, which 
describe the object type composition as well as the relative posi-
tions of these objects, are extracted from new mixture patterns. 
These in turn can be used to train classifiers to recognize the 
new patterns  (45) . 

 This two-stage method has been applied to the previously 
described 2D HeLa dataset, which consists of ten different sub-
cellular location classes. AIC-based k-means clustering on the 
extracted SOFs indicated that there were 19 unique object types 
in the images. Next, from each image sample, 11 SOFs and two 
SLFs were extracted for each of the 19 object types. A classifier 
was trained using a subset of these features to distinguish between 
the ten classes. Classification accuracy using cross-validation was 
75%, and when the two Golgi apparatus proteins were merged, 
the accuracy increased to 82%. These results indicate that the 
SOFs and object types are informative for describing the protein 
patterns  (45) . 

 The utility of these features and object types is that they can 
be used to characterize mixture patterns. Zhao et al.  (45)  dem-
onstrated this using an unmixing approach to decompose mix-
ture patterns into components of fundamental patterns. A linear 
regression method was first applied. It assumes that the features 
of a mixture pattern are linear combinations of the features of 
fundamental patterns. The coefficients (weights) of each funda-
mental pattern can be solved from linear equations. However, 
even in fundamental patterns, the fractions of each object type 
are not fixed. They vary from cell to cell. In a second unmix-
ing approach, multinomial distributions were used to model the 
object type components of fundamental patterns and the fun-
damental pattern components of mixture patterns. The param-
eters of the model were then solved by the maximum likelihood 
method. 

 The object-type-based pattern recognition enables systems 
to recognize patterns composed of a mixture of components 
(object types) of the basic patterns. The learned object types can 
potentially be used to describe new subcellular location patterns 
or subtle protein location changes that might occur when cells 
are treated with drugs. More importantly, the recognition of the 
object types makes it possible to build generative models for pro-
tein location patterns. Zhao and Murphy  (46)  defined a method 
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that uses a three part model, with a nuclear, cell boundary, and 
protein component. Each component is learned separately, and 
the protein model uses object types at its core. In addition to cap-
turing a subcellular pattern, the models also capture the variance 
of the pattern between images. Thus, these generative models 
can be used to create sets of images. The power of these genera-
tive models is that they, unlike conventional microscopy which 
only allows for a few proteins to be specifically imaged at a time, 
potentially allow for the creation of images that contain as many 
data channels as there are proteins in a proteome, and thus, these 
models are expected to become an essential tool for location pro-
teomics and systems biology.     
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