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Abstract  
A detailed model of the components of the 
protein filament networks that constitute the 
cytoskeleton, and the ways in which these vary 
from cell type to cell type and under different 
conditions, will be necessary for systems biology 
efforts to understand complex cell behaviors.  In 
this work we focus on extracting quantitative 
information related to microtubule networks 
automatically from fluorescence microscope 
images. While previous approaches have focused 
on direct estimation methods (tracing and 
tracking the position of single microtubules in 
time series images), these require specialized 
microscopy and are difficult to apply on a 
proteome scale. We describe an indirect method 
based on comparing features computed from 
images simulated with a generative model with 
those computed from real images. We show that 
the extraction of important parameters, such as 
the approximate number of microtubules, length 
distribution of microtubules, can be estimated 
from fluorescence microscope images without 
having to explicitly trace the position of each 
microtubule.  

1.  Background and motivation 

Systems biology seeks to understand the structure and 
function of living systems through the application of 
engineering principles to model the large network of 
interacting molecules comprising complex biological 
assemblies. Quantitative analysis and modeling efforts 
have been described at various spatial scales and 
biological images can be a rich source of information for 
use in building cell simulations.  An especially powerful 
illustration of this approach is the work of the Danuser 
group on inferring models of actin cytoskeleton dynamics 
directly from fluorescence microscope images (Ponti et al 
2005).  A complementary approach is our recent 
description of algorithms for building generative models 
of cell, nuclear and organelle structure from high-

resolution confocal microscope images (Zhao & Murphy 
2007).  These models capture the variation in subcellular 
patterns across cell (image) populations, and can be used 
to generate new images that can be thought of as being 
derived from the same underlying population as the 
images used to train them.  These models have been 
successfully developed for organelles consisting primarily 
of discrete objects (vesicles) that can learned directly 
from images, but we have not previously considered the 
learning of generative models for extensively connected 
networks (such as the cytoskeleton).  

We present a method for constructing generative models 
of microtubule networks and indirectly estimating model 
parameters by comparison of synthesized images with 
real images obtained by fluorescence microscopy.  
Indirect estimation of tubulin distribution in the yeast 
spindle has previously been described by Pearson et al 
(2006).  

2.  Methods 

2.1  Images 

We used the collection of 8-bit 3D images of HeLa cells 
obtained previously by three-color confocal 
immunofluorescence microscopy (Velliste & Murphy 
2002). Nuclear and cell membrane boundaries were 
segmented using an active contour approach (Chan and 
Vese, 2001). 

2.2  Modeling approach 

Our aim is to capture information related to the spatial 
organization and distribution of microtubules in a cell 
image or population of images. High resolution images 
capable of distinguishing individual microtubules and at 
the same time containing an entire cell in the field of view 
are difficult to obtain, and therefore researchers often 
settle for observing microtubules, and their dynamical 
properties, in a limited region of interest within the cell 
(Dorn et al 2005, Sargin et all 2007). Thus, information 
related to the global structural organization of 
microtubules (e.g., total number of microtubules, length 
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distribution, etc.) is often unavailable from such studies. 
We aim to circumvent this difficulty by developing a 
stochastic model for microtubules emanating from the 
cell’s centrosome, generating images from such models, 
and optimizing for images obtained from our models that  
compare with real full cell images (collected at lower 
resolution than would typically be used for individual 
tubule tracking). The approach consists of the following 
modules: (1) generative growth modeling, (2) deriving an 
image from a model, (3) library generation, and (4) 
parameter search by image retrieval (optimization). 

2.2.1  GENERATIVE GROWTH MODELING 
Our modeling approach creates a three-dimensional 
microtubule distribution given the positions of points 
defining the boundaries of the nuclear and cell membrane 
and a point X0  defining the position of the centrosome. 
These are determined for the specific tubulin image 
whose model parameters are to be estimated.  The 
centrosome location is determined by convolving the 
tubulin image with an averaging filter and choosing the 
maximum value. The modeling approach consists of 
“growing” microtubules in a random fashion, using the 
centrosome as a starting point. Assuming the centrosome 
to be a sphere, we fix the diameter of the centrosomal 
structure to be approximately 0.4 um. We model the 
microtubules from the centrosome by randomly picking 
starting points within the spherical volume and elongating 
them. Next, a uniformly distributed random direction is 
chosen, and the microtubule is grown in that direction 
with some length γ, which we denote as the stepsize. We 
denote the new point X1. Given the two initial points X0, 
and X1, the subsequent point X2 is chosen at random, using 
a uniform distribution, but constrained as follows: 
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and where α is the angle between X2 – X1 and X1 – X0. 

Microtubules inside a cell vary in length. We model the 
length distribution as a normal distribution truncated such 
that there can be no negative lengths. This distribution is 
sampled N times, where N is the number of microtubules. 
The microtubule elongation procedure is iterated for each 
of N microtubules, until the sampled length of the 
microtubule polymer is satisfied. The model therefore has 
four parameters: number of microtubules, n; cosine of 
angle, cos α; mean of the normal distribution, µ; and 
standard deviation of the normal distribution, σ. The 
cosine of angle α determines the flexibility of each 
microtubule in the model. The points in each iteration are 
generated to satisfy the constraint in (1). Naturally, the 
growth process described above must be constrained 
within the confines of the cytoplasm in the cell. For this 
we make use of the segmented cell and nuclear 

boundaries of the given cell image. The growth model is 
constrained so that no point is chosen inside of the 
nucleus or outside of the cell. 

2.2.2  DERIVING AN IMAGE FROM A MODEL 
The parameters for the growth model described above can 
be estimated by choosing them so that they produce 
images that best match given real images of microtubules. 
To that end we now describe a method for estimating 
what a measured digital image would “look like” for a 
given fluorescence pattern emitted by a collection of 
microtubule tracks. In our methodology we model the 
image formation process of blurring due to the 
(incoherent) point spread function (PSF) of the imaging 
system. We accomplish this by convolving the model F 
with a 3D Gaussian G. 
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The parameters of the Gaussian were manually estimated 
for the HeLa dataset. Henceforth, we will refer to the 
images in the 3d HeLa dataset as “real images” and the 
images generated by the model as “synthetic images”. 

2.2.3  LIBRARY GENERATION 
We generated a large library of synthetic images to 
implement an exhaustive search strategy for optimization 
by varying model parameters to retrieve an image that 
matches in content with the query image (3d HeLa 
image). The parameters varied took the following values:  

n = 5, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400 

µ = 5, 25, 50, 75, 100, 125, 150 microns 

σ = 1, 5, 10, 15, 20, 25 microns 

cos α = 0.9, 0.95, 0.98 

For a given cell morphology, a total of 1638 images were 
generated. Each of these images was generated with a 
different random number generator seed. 

2.2.4  CONTENT BASED IMAGE RETRIEVAL 
Given a query image, we would like to find an image 
from our library that is closest in content to it. This 
problem is similar to the traditional computer vision 
problem of content-based image retrieval. Thus we will 
motivate the set of image features used for content 
comparison and the distance metric for matching. To 
compare the real and synthetic microtubule distributions, 
we calculated thirteen 3D Haralick texture features for 
each image using the procedure described previously 
(Chen et al 2003). These features were also computed for 
images downsampled by a factor of two. Radial intensity 
features were computed as the total intensity in a 
discretized radial volume starting from the centrosome. 
Histogram features and the total intensity were also 
computed. A diagonal matrix D was computed that 
contain the variances of the features. This variance matrix 
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is then used to compute the Normalized Euclidean 
distance between a feature vector xs computed from a set 
of simulated microtubules (synthetic image) and a feature 
vector xr corresponding to the image based on which the 
microtubule simulation was computed (real image).  

For any query image, we compute the Normalized 
Euclidean distances from it to each of synthetic images in 
the library. And find the parameters that minimize this 
distance. 

3.  Results 

A sample image from the 3D HeLa cell dataset described 
above is shown in Figure 1. A sum projection in the x-y 
plane is shown. Although the image acquisition procedure 
is capable of providing information about the global 
distribution of microtubules in this particular cell, 
individual microtubules are not easily distinguishable, 
eliminating the possibility of direct estimation of 
microtubule positions, lengths, etc. 

3.1  Generated Images 

The indirect method is based on a generative modeling 
and simulation approach whereby microtubules are grown 
from the centrosome location using the method described 
above. In addition to the position of the centrosome, the 
boundaries of the nucleus as well as the cell membrane 
are needed to constrain the simulated growth of the 
microtubules. A three-dimensional rendering of the 
segmented nucleus and simulated microtubule tracks is 
shown in Figure 2. As described above, models such as 
that shown in Figure 2 can be converted to an image with 
similar voxel resolution as the original image.  An 
example of the 2D projection of the image for the model 
shown in Figure 2 is shown in Figure 3. 

3.2  Sensitivity Analysis 

Validation of the model can be a tricky problem to solve 
when the ground truth is not known. We describe here a 
method to test the robustness of the approach by using a 
synthetic image as the query image instead of a real 
image. An image library was created for various 
combinations of parameters, and 400 parameter 
combinations were chosen at random as query images. 
These images were generated with a different random 
number generator seed as that of the images in the image 
library. The formal goal of this brute force search was: 
For each of 400 query images, output parameters that 
minimizes the Normalized Euclidean distance between it 
and the images in the library, and compute a measure of 
the error between the known parameters of the query and 
the parameters of the best match from the library. The 
error metric used was the absolute percentage error 
(APE).   
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where Rt , St are the parameters for the query and the 
estimate image. 

 

Table 1 reports the APE values for each of the model 
parameters.  

Figure 2. Example synthesized microtubule network.  This 
sample was generated using the model and the nuclear and 
cell boundaries of the cell shown in Figure 1. 

Figure 3. An example of a simulate image derived from 
synthesized microtubule network model shown in Figure 2.  
The image is a summed projection onto the x-y plane 

 

Figure 1. Example image of microtubule distribution from 
the collection used in model building. The image is a 
summed projection onto the x-y plane. The distribution of 
DNA is in red, and tubulin in green. 
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Table 1. Average Percent Error for matching of synthetic images 
to an image library 

N µ σ COS α 

10.8% 22.1% 189.9% 1.33% 

3.3  Real Images 

We finally used the model to test whether sensible 
parameters can be estimated from real images. The 
parameters estimated for the real image shown in Figure 1 

are: Number of microtubules = 125, Mean of length 
distribution = 25 um, Std Dev = 10 um, cos α = 0.9. An 
image generated with these parameters is shown in Figure 
4.  

4.  Discussion 

We have described a method to estimate microtubule 
growth parameters by an indirect approach using 
stochastic generative growth modeling and image 
matching. Our method simulates images of microtubule 
networks based on an individual cell’s geometric 
configuration. The approximately correct model 
parameters can be found by maximizing the similarity 
(minimizing a matching function) between the simulated 
and real images. Due to the imprecise localization of 
microtubules in real fluorescence microscope images, we 
match these indirectly by comparing rotation invariant 
features using the Normalized Euclidean distance. The 
results demonstrated that the generative model proposed 
is capable of producing images of good visual 
correspondence with real images. 

The parameters estimated are quantitative information 
about microtubules such as the number and the length 
distribution. These parameters are “sensible” parameters, 
and are often difficult to estimate with a direct approaches 

such as tracing and tracking due to the nature of the data. 
Traditionally, parameters of a physical model often 
require only some “relative” measurement such as kinetic 
parameters or ratios that can lead to many possible 
solutions for “sensible” parameters, and hence cannot be 
estimated. Our model includes parameters that can 
directly explain the structure and appearance of 
microtubules in three dimensional fluorescence 
microscopy images.  
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