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� Abstract
Given the importance of subcellular location to protein function, computational simu-
lations of cell behaviors will ultimately require the ability to model the distributions of
proteins within organelles and other structures. Toward this end, statistical learning
methods have previously been used to build models of sets of two-dimensional micro-
scope images, where each set contains multiple images for a single subcellular location
pattern. The model learned from each set of images not only represents the pattern but
also captures the variation in that pattern from cell to cell. The models consist of sub-
models for nuclear shape, cell shape, organelle size and shape, and organelle distribu-
tion relative to nuclear and cell boundaries, and allow synthesis of images with the ex-
pectation that they are drawn from the same underlying statistical distribution as the
images used to train them. Here we extend this generative models approach to three
dimensions using a similar framework, permitting protein subcellular locations to be
described more accurately. Models of different patterns can be combined to yield a syn-
thetic multi-channel image containing as many proteins as desired, something that is
difficult to obtain by direct microscope imaging for more than a few proteins. In addi-
tion, the model parameters represent a more compact and interpretable way of commu-
nicating subcellular patterns than descriptive image features and may be particularly
effective for automated identification of changes in subcellular organization caused by
perturbagens. ' 2011 International Society for Advancement of Cytometry

� Key terms
generative models; machine learning; subcellular location; microscope image analysis;
cell shape; nuclear shape; location proteomics

INTRODUCTION
Proteins function in different cellular or subcellular compartments as part of

complex systems. In systems biology, investigating and modeling these complex sys-

tems from different aspects and at various levels is hoped to lead to a mechanistic

understanding of cell behavior (1,2). Extensive efforts have been made toward pro-

teome-scale determination of protein sequence, structure, abundance and interac-

tions, and tremendous progress has been achieved. Much less information is available

about protein location within cells, with descriptions using words (such as GO

terms) being the main approach used to represent this important concept. More

detailed and comprehensive approaches to learning and describing the spatial distri-

butions of proteins at different levels of accuracy will be critical for systems models.

Development of modern microscopy technology makes observation of protein

localization possible both in vitro and in vivo with high throughput. However, tradi-

tional visual analysis to recognize protein localizations can be a key barrier for con-

verting large sets of images to useful descriptions of protein locations. To overcome

this difficulty, machine learning methods and digital image processing tools have

been combined to develop systems that automatically recognize protein subcellular

location patterns (3). Here ‘‘pattern’’ designates the subcellular distribution of a pro-
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tein or of a set of proteins whose distributions are statistically

indistinguishable. The most critical component of these sys-

tems is sets of numerical features to describe protein subcellu-

lar location patterns in 2D or 3D images. With these features,

the feasibility of classifying major protein subcellular location

patterns with high accuracy and efficiency compared with vis-

ual analysis has been demonstrated (4,5).

However, recognition of location patterns provides only

limited information. For example, describing a protein loca-

tion as ‘‘nucleus’’ in a given cell type under a given condition

provides no detail on how it is distributed within the nucleus

(and of course no information on the size or shape of nuclei

in that cell type). Similarly, recognition based approaches can

describe a protein’s ‘‘relocation from organelle A to B’’ but

communicate no information about how this process happens

spatially and geometrically. Thus, beyond simply recognizing

subcellular location patterns, an important goal is to be able

to build models to capture the essence and variation of a spe-

cific pattern.

Zhao and Murphy (6) describe the first system for con-

structing generative models of subcellular patterns in 2D

images, providing a framework in which cell structure and

subcellular location patterns can be represented and commu-

nicated. In this work, images are viewed as the manifestation

of a set of random variables and image synthesis or generation

is viewed as a stepwise random process. A statistical generative

model is the combination of all distributions of these random

variables. Building a generative model for images in the form

of a joint distribution of all pixels in an image is too computa-

tionally expensive (and potentially underdetermined) to be

practical. Therefore, methods of computational geometry and

data analysis were explored to compromise between complex-

ity and accuracy of the model. 2D fluorescence images of cells

were represented by three major components: nucleus, cell

membrane, and protein objects distributed inside these com-

partments. All three components were represented by small

sets of parameters (much fewer than the number of image pix-

els) from which the key features related to protein locations in

the original image can be reconstructed with reasonable accu-

racy. The three components were modeled conditionally on

each other, e.g., the output of the model of organelle position

takes as inputs the instances drawn from models of cell and

nuclear shape.

While this initial approach is useful for the vast majority

of fluorescence microscope images that are acquired in only

2D, they represent a significant simplification of actual cell or-

ganization in 3D. Therefore, in this article, we describe extend-

ing the generative modeling and simulation framework to 3D.

MATERIALS AND METHODS

For the studies described here, we used the same 3D

HeLa dataset (5) used previously for testing 2D models (the

previous studies used only the central slide of each 3D stack).

The dataset is available at http://murphylab.web.cmu.edu/data

and contains three fluorescent channels for each field: a DNA

channel that reflects nuclear shape and chromosome texture; a

total protein channel that reflects cell shape; and an antibody

channel that reflects the distribution of a particular protein.

Each field has been previously segmented into single cell

regions using a seeded watershed approach. The entire 3D

stacks of 447 images were included to build the 3D nuclear

and cell shape models. Protein location models were created

for four ‘‘vesicle-like’’ protein location patterns—lysosomes,

mitochondria, endosomes, and nucleoli, each with around 50

training 3D image stacks. Each stack contains 14 to 29 slices

containing 1024 3 1024 voxels. The voxel spacing is 0.049 lm
3 0.049 lm 3 0.203 lm.

The 3D generative model algorithm used in this work

was built upon the toolbox for 2D generative models (avail-

able from http://murphylab.web.cmu.edu/software) and

implemented using MATLAB (version 7.8.0). Code and

trained models will be available upon publication from the

same site. Methods and algorithms to create each component

of the model are described in Results. Before the modeling

step, each image slice was thresholded using the Ridler-Cal-

vard method (7). This was done rather than using a global

threshold because lower slices in the 3D stacks are subject to

photobleaching. Nuclear and cell shapes were rotated to have

the major axis aligned using a principal axis alignment

method (8). The Matlab spline toolbox (version 3.3.6) was

used for nuclear shape modeling. The EM code used in pro-

tein object modeling from the NETLAB library (http://

www.ncrg.aston.ac.uk/netlab) was modified to estimate

weighted Gaussian mixtures with interval inputs (instead of

points).

RESULTS

Spline Surface Model of 3D Nuclear Shape

We begin by building a 3D nuclear shape model. In the

previous 2D model, a nuclear shape was represented by curves

describing the medial axis and the width along it. These two

curves were each parametrically approximated by fourth order

B-spline curves. The medial axis representation has also been

applied in modeling 3D shapes, such as pancreas (9). How-

ever, it is not easy to find a concise and proper representation

for 3D nuclear shape with this method, especially for nuclei of

cultured cells, which are usually flat (Fig. 1a).

We therefore consider the 3D shape of a nucleus to be

described by a parametric surface [x(u,z),y(u,z),z(u,z)]. The
definition becomes much clearer in a cylindrical coordinate

system

x u; zð Þ ¼ r u; zð Þ cosu
y u; zð Þ ¼ r u; zð Þ sinu
z u; zð Þ ¼ z

8<
:

0 � u < 2p
zmin � z � zmax

ð1Þ

The cylindrical representation is an ‘‘unwrapping’’ of the side

surface of a nuclear shape to a surface function r(u,z) with

rectangular support (Fig. 1b). The conversion from Cartesian

to cylindrical coordinate systems included resampling of the

digitized image.

As previously done for 2D models, we used splines to

parameterize the 3D nuclear shape as they were observed to
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give very good fits. A tensor product spline surface was used

to fit the surface function r(u,z).

rðu; zÞ � rBðu; zÞ ¼
Xm
i¼0

Xn
j¼0

si;jNi;p uð ÞNj;q zð Þ ð2Þ

where m and n are the number of control points for u and z,

respectively.

In the tensor form, Ni,p(u) and Nj,q(z) are B-spline basis

functions of degree p and q, respectively; si,j are the control points
or coefficients of the basis functions. Parameterization of the sur-

face function r(u,z) is achieved by least-square approximation

s ¼ argmin
s

XN1

i¼0

XN2

j¼0

rB ui; zj
� �� rðui; zjÞ

� �2 ð3Þ

where N1 and N2 are the number of angles and slices in the

digitized image, respectively. rB(ui,zj) is the radius calculated

from the fitted spline surface function at (ui,zj), where real

value r(ui,zj) is observed. To achieve good fit with reasonable

complexity, and to eliminate the effect of high frequency digi-

tization artifacts, we pick the orders of the B-spline basis func-

tions as p 5 4 and q 5 3 for the HeLa nuclei (Fig. 1c), with m

5 8 and n 5 3. We observed the fitted values of the internal

knot points to be around (1/4,3/8,1/2,5/8,3/4) along the azi-

muth coordinate and 1/2 along the height coordinate and to

have little contribution to the variation of the spline surface.

The positions were therefore set to be constants.

Fitting the ‘‘unwrapped’’ surface ignores the continuous

condition at u0 5 0 and uN1
5 2p.

@l

@ul
rB u0; zð Þ¼ @l

@ul
rB uN1

; z
� �

; 8z 2 z0; zN2
½ �; l ¼ 0; . . . ; p �1

ð4Þ

Fujioka and Kano (10) have proved that continuity is main-

tained if and only if the coefficients s satisfies

s0;j ¼ sm;j j ¼ 0; . . . ; n ð5Þ

We append these constraints to the least-square approxi-

mation problem in Eq. (3) to guarantee periodicity. This

reduces the number of free parameters from (m 1 1) 3 (n 1
1) 5 36 to 32. Adding a parameter for the height, each nuclear

shape is therefore represented by a total of 33 free parameters.

All nuclei are rotated and mirrored (if necessary) according to

the central slice so that they all have same ‘‘elongating’’ and

‘‘bending’’ direction. Statistical learning is then performed on

the shape parameters extracted from these nuclei images to

describe the variation of the shapes from nucleus to nucleus.

We chose a multivariate normal distribution to model the var-

iation of the parameters. As shown in Figure 2, comparison of

the data empirical distribution with the fitted normal distribu-

tion validates this choice. The nearness of each plot to the di-

agonal line indicates close agreement to theoretical normal

distributions. The mean and median of p -values under Kol-

mogorov-Smirnov normality tests for all parameters are 0.28

and 0.19, respectively, also confirming the choice. Thus, we

conclude that the nuclear shape of HeLa cells can be captured

by a statistical model with 562 values: a length 32 vector s for
the means of the spline coefficients and the unique elements

of the symmetric 32 3 32 covariance matrix, plus the mean

and standard deviation of the height.

To synthesize a nuclear shape, we draw the parameter

values from the trained distributions and then construct a new

shape from the parameters.

Eigen Shape Model of Cells

The next step is to construct a model of the cell shape (or

plasma membrane). Compared with the nuclear boundary,

the cell boundary has more local morphological flexibility and

much larger variation from cell to cell, making it hard to be

parameterized to a statistically simple representation.

Figure 1. Nuclear shape representation. (a) Surface plot of a 3D HeLa cell nucleus. (b) Unfolded surface of the nuclear shape in a cylindrical

coordinate system. The surface plot shows the radius r as a function of azimuth u and height z. (c) B-spline surface fitted to the unfolded
nuclear surface.
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However, it is obvious that the cell shape is conditioned

on the nuclear shape (at least the nucleus is inside the cell).

Instead of building a parametric cell shape model and a corre-

lation model separately, we adopt the approach previously

used in the 2D model: learning the ratio of the radius of the

cell to that of the nucleus. As for the nucleus, we first define a

polygonal representation of the cell shape in a cylindrical coor-

dinate system, denoted as rc(u,z). The radius ratios are then

expressed as a function of u and z: R(u,z) 5 r(y,z)/rc(y,z). We

sampled u over 3608 in 1 degree increments, and sampled z

over 18 slices. This was the average number of slices per cell;

all cells were resampled to this value along the z dimension.

The ratio representation contains 3603 185 6,120 values.

Direct statistical estimation is impossible for the 6,120-

dimensional vector with only hundreds of samples and is not

necessary to guarantee accuracy. Instead, we applied principal

component analysis (PCA) to the ratio vectors after centering

them by subtraction of the mean vector. Instead of performing

PCA directly on the original covariance matrix, we use a mod-

ified PCA method to find significant modes and coefficients

quickly by applying eigen analysis on 1
N
RTR, where R is an N-

column matrix with each column a centered ratio vector. This

modified PCA method is a more efficient approach for eigen

decomposition with far more original data dimension than

number of samples, based on previous discussions (11,12).

With 20 most significant principal modes, the shape ratio

can be reconstructed substantially (Fig. 3). Moreover, the coef-

ficients kij of each mode appear to be normally distributed

and independent from each other (Fig. 4). The mean and me-

dian of p-values under Kolmogorov-Smirnov normality tests

for all parameters were 0.29 and 0.22, respectively. The cell

shape model then contains 21 6,120-dimensional constant

vectors for the mean and principal modes, and 20 variances of

the coefficients (the coefficient means are zero).

To generate an instance of cell shape, we first synthesize

an instance of nuclear shape as described in the previous sec-

tion. We then sample values for each principal component

from its normal distribution, generate centered ratio vectors

Figure 2. Normality plots of nuclear shape parameters. (a–d) P-P plot of randomly selected spline surface coefficients (empirical cdf versus

fitted normal cdf). (e) P-P plot of the nuclear height.

Figure 3. PCA on cell shape representation. (a) The eigen value spectrum (truncated to the first 30). (b) Reconstruction residual of cell

shapes as a function of number of principal modes used. The residual is the ratio of the sum of eigen values of not included modes to the

sum of all eigen values. With 20 modes, the residual drops under 0.1.
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by multiplying by the saved principal modes, and add back

the mean ratio vector. The result has a fixed height of 18 slices.

We next sample a cell height from its normal distribution,

stretch the synthesized nuclear shape to correspond to this

height, apply the ratios at every (y,z), and form a cell shape by

connecting line segments between neighboring surface points.

The cell shape is stretched back so that the nuclear height cor-

responds to its original height. Note that this assumes that the

nucleus and cell cover the same number of slices; this was

observed to be the case for HeLa cells which have little cyto-

plasmic space above or below the nucleus (relative to the slice

thickness).

Protein Object Model

Object-based protein pattern representation. Protein sub-

cellular location patterns have been successfully represented

using ‘‘objects’’ in a number of previous studies, such as loca-

tion pattern recognition and complex pattern unmixing

(4,13–15). ‘‘Objects’’ are defined as contiguous regions of

nonzero pixels. Many cell organelles have roughly ellipsoidal

Figure 4. Normality plots of nuclear shape parameters. (a–d) P-P plot of randomly selected spline surface coefficients (empirical cdf versus

fitted normal cdf). (e) P-P plot of the nuclear height.

Figure 5. Fitting the distributions of object size parameters. (a) The histogram of the Gaussian object parameter rX is shown, along with
an exponential fit (solid line) to the distribution. (b,d) Conditional mean of rY (b) and rZ (d) as a function of rX (squares), and results of
parametric fitting (solid line). (c,e) Conditional standard deviation of rY (c) and rZ (e) as a function of rX (squares), and results of parametric
fitting (solid line).
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shapes and appear to be ellipsoids with intensity clustered in

the center in the images. Zhao and Murphy (6) therefore used

2D Gaussian distribution functions to fit objects in 2D images

and modeled each ellipsoidal family as the distribution of the

Gaussian distribution parameters. In this article, we also focus

on modeling protein location patterns consisting of mostly el-

lipsoidal objects in 3D images by extending the methods of

Gaussian objects learning into 3D.

As in 2D images, ellipsoidal objects in 3D images may ag-

gregate to form larger objects to which a single Gaussian gives a

poor fit. Using the expectation-maximization (EM) algorithm,

we can estimate parameters of each Gaussian component in an

aggregated object as a Gaussian mixture. The probability den-

sity function (PDF) of a Gaussian mixture distribution can be

written as

gm xð Þ ¼
Xm

k¼1
pkg xjlk;Rkð Þ ð6Þ

where g(x|lk,Sk) is a Gaussian PDF over three variables x 5
(x,y,z) with mean lk and covariance matrix Sk, and pk is a

probabilistic weight of the k th Gaussian component in the

mixture (
Pm

k¼1 pk ¼ 1).

As in the 2D case, we weight each data point with the in-

tensity value of the voxel (wi 5 I(xi,yi,zi)). The E-step of the

algorithm to fit the Gaussian mixture stays the same for 3D

objects. aik is the expected probability that point xi is asso-

ciated with component k. The superior (t) added to the mix-

ture model PDF parameters means the values at step t of the

iterative EM process. The Gaussian parameter for each object

is fitted at convergence.

E-step:

aik ¼
p

tð Þ
k g xi jl tð Þ

k ;R tð Þ
k

� �
Pm

k¼1 p
tð Þ
k g xijl tð Þ

k ;R tð Þ
k

� � ð7Þ

Figure 6. Normality plots of the conditional distributions of object dimensions. (a–j) P-P plot of rY versus corresponding rX for different
ranges of x in increments of 0.1. (k–t) P-P plot of rZ with corresponding rX in different ranges. The plots for the first two ranges (a,b,k,l)
deviate from the diagonal because in these intervals r’s are rather small, approaching the voxel limit.
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In the previous 2D model, pixels were treated as points.

However, taking account of the digitization effect, the pixels

and voxels are better treated as intervals. Therefore, the Gaus-

sian parameters estimation in the M-step should be slightly

changed. The variances should increase by 1/12 to avoid zero

variance at certain dimensions (1/12 is the variance of a stand-

ard continuous uniform distribution).

M-step:

p
tþ1ð Þ
k ¼ 1PN

i¼1 wi

XN
i¼1

wiaik ð8Þ

l tþ1ð Þ
k ¼ 1PN

i¼1 wiaik

XN
i¼1

wiaikxi ð9Þ

R tþ1ð Þ
k ¼ 1PN

i¼1 wia
tð Þ
ik

XN
i¼1

wia
tð Þ
ik xi � l tþ1ð Þ

k

� �
xi � l tþ1ð Þ

k

� �T

þ 1
12
I ð10Þ

We then perform statistical learning, mostly distribution

fitting with maximum likelihood estimation, on the decom-

posed Gaussian function parameters. The centers (mean) of

the Gaussian objects are used to learn the object position

model, which is described in the next section. The covariance

matrix S is directly related to the size of the object and we use

it to train an object size model. The ellipsoid Gaussian objects

are rotated to have their major and minor axis aligned to the

Cartesian coordinates (the rotation transformation can be

achieved by eigen decomposition of S). Each object is then

represented in size by three standard deviations rX, rY, and rZ
in descending order. As the variances along different coordi-

nates are highly dependent, we use a simple Bayesian structure

to fit their distribution: rY / rX ? rZ. Figure 5a shows

standard deviation on the major axis is well fit by an exponen-

tial distribution. Conditional distribution of rY or rZ over rX
are also fit by normal distributions (normality of the condi-

tional distributions of P(rY|rX) or P(rZ|rX) is shown in Fig.

6). The mean and median of P-values under Kolmogorov-

Smirnov normality tests for all parameters are both 0.37. Fig-

ures 5b–5e show the dependency of the normal parameters on

rX, along with their parametric fitting by

�rY Zð Þ ¼ a1 1� e�b1rX
� �

stdev rY zð Þ
� � ¼ a2 1� e�b2rX

� � rY zð Þ � rX

�
ð11Þ

The other important parameter to describe a single Gaus-

sian object is its intensity. It is defined to be the coefficient

between fitted object and the Gaussian function, which is nor-

malized. ci for an object is estimated from the product of total

intensity of the aggregated object it resides in and the fraction

this object in the whole mixture Ii(x) 5 ci � g(xi). Again, we
choose an exponential distribution to fit the intensity coeffi-

cient ci (Fig. 7).
To synthesize an individual Gaussian object, we simply

generate the r, c values and use them to synthesize a 3D Gaus-

sian function c � g(x|0,S). The Gaussian function is digitized

and added to the 3D image at a specific position as deter-

mined below.

Probabilistic protein location model. We modeled the posi-

tions of protein objects relative to the nuclear and plasma

membranes. The model we used here is a direct extension of

the 2D protein object position model used previously.

We parameterize the position of each object by three vari-

ables: s, ratio of the distance of a given object’s center to the

nuclear surface over the sum of that distance and the distance

to the cell surface; and y and u, the inclination angle and azi-

muth angle of the vector from the nuclear center to the object

center. Using this parameterization, a distribution was formed

in which all points where an object occurs were set to 1 and all

other positions set to zero. After normalizing for the total

number of objects, the potential (the probability that a given

Figure 7. Distribution of the total intensity of Gaussian objects.

The points are close to a straight line, supporting the use of an ex-

ponential distribution to represent the distribution.

Table 1. Position parameter b for different location patterns

b0 b1 b2 b3 b4 b5

Lysosome 25.7032 1.2905 23.3514 0.1812 0.3240 21.2133

Mitochondria 24.3154 1.8065 22.6727 0.0666 20.0431 20.0142

Nucleolus 213.8989 226.6740 224.2650 0.1145 20.1033 21.2589

Endosome 24.5109 0.4816 20.7073 0.0336 20.0010 21.1416
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position is the center of an object) can be fitted by a logistic

regression function

Pðs;u; hÞ ¼ eb0þb1sþb2s
2þb3 cosu sin hþb4 sinu sin hþb5 cos h

1þ eb0þb1sþb2s2þb3 cosu sin hþb4 sinu sin hþb5 cos h
ð12Þ

Here, the parameters of b have different interpretations for

object location ‘‘preference.’’ For example, b1 shows whether

the protein is more likely to distribute near the nucleus or

near the cell membrane. b3, b4, and b5 determines the protein

angular preference. Table 1 shows learned b for different loca-

tion patterns. As expected, nucleoli show a preference to be

inside the nuclear membrane (negative b1).
At this point, the only aspects of the model that are not

statistically modeled are the number of Gaussian objects and

the direction of alignment of each of them to the central axis.

These parameters did not show an easily fitted distribution

(data not shown) and therefore for image generation values

for them are randomly sampled from the empirical distribu-

tions. Given synthesized nuclear and cell shapes, Gaussian

objects and positions, we can synthesize full images depicting

protein subcellular location patterns. Figure 8 shows synthe-

sized location images with three channels of the four patterns.

Additional images can be generated using the tools and mod-

els available at http://murphylab.web.cmu.edu/software.

DISCUSSION

The work described here enables significantly more accu-

rate and realistic descriptions and simulations than prior

work. Nonetheless, much further work is required to further

refine and extend these models. In particular, methods are

needed to capture patterns not well represented by discrete

objects. Work on learning generative models for microtubule

distributions represents an initial step in this direction (16).

As in any parametric model, our approach includes a num-

ber of choices for what parameters to use and how to capture

their distributions (mostly using normal and exponential distri-

butions). Their generalizability to new cell types is therefore

unknown. For such applications in the future, it will therefore be

important to revisit these choices, and perhaps ultimately to

make them using large collections of images for many cell types.

In cases where parametric models do not perform well, alterna-

tives such as the instance-based diffeomorphic shape generation

models described previously (17) may be considered.

With our approach, images can be generated that appear

to the eye to capture the essential features of protein location

patterns. These synthesized images are suitable for simulations

(using systems like Virtual Cell (18) and MCell (19)), and

their utility can ultimately be evaluated (and hopefully

increased) through simulations using them to predict cell beha-

viors. It is important to note that in line with their anticipated

use in simulations, our models are abstractions not intended to

generate images that appear similar to actual microscope

images. However, it is a straightforward matter to generate such

images by convolution of the idealized image with the point-

spread function for a particular microscope (20).

While our 2D and 3D systems are the only ones described

to date that construct generative models of organelles within

the context of cell and nuclear organization, other investiga-

tors have described approaches for modeling or simulating

nuclear or organelle size and shape (20,21). Models resulting

from such work can readily be incorporated into the condi-

tional model framework we have described.
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