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� Abstract
Quantitative image analysis procedures are necessary for the automated discovery of
effects of drug treatment in large collections of fluorescent micrographs. When com-
pared to their mammalian counterparts, the effects of drug conditions on protein local-
ization in plant species are poorly understood and underexplored. To investigate this
relationship, we generated a large collection of images of single plant cells after various
drug treatments. For this, protoplasts were isolated from six transgenic lines of A. thali-
ana expressing fluorescently tagged proteins. Eight drugs at three concentrations were
applied to protoplast cultures followed by automated image acquisition. For image
analysis, we developed a cell segmentation protocol for detecting drug effects using a
Hough transform-based region of interest detector and a novel cross-channel texture
feature descriptor. In order to determine treatment effects, we summarized differences
between treated and untreated experiments with an L1 Cram�er-von Mises statistic. The
distribution of these statistics across all pairs of treated and untreated replicates was
compared to the variation within control replicates to determine the statistical signifi-
cance of observed effects. Using this pipeline, we report the dose dependent drug effects
in the first high-content Arabidopsis thaliana drug screen of its kind. These results can
function as a baseline for comparison to other protein organization modeling
approaches in plant cells. VC 2017 International Society for Advancement of Cytometry

� Key terms
high content screening; cellular heterogeneity; subcellular location; fluorescence
microscopy

INTRODUCTION

GIVEN the complexity of biological systems it has become well understood that

automated approaches to biological discovery are needed to reduce the time, effort

and cost of basic research (1,2). Many high-content screens for drug effects have

been performed, although many have suffered from irreproducibility, raising ques-

tions of how to deal with variation among experimental replicates, and how to com-

pare the results of screens carried out with different equipment and in different

laboratories (3). Heterogeneity in individual cellular responses and across experi-

ments is particularly confounding in such studies. Although several approaches to

addressing heterogeneous cellular responses in high-content screens have been

described (4), few have been specifically designed to directly model replicate varia-

tion (which can result from experimental noise, image-field-to-field or even cell-to-

cell heterogeneity), other than to show that a measured trend holds across pairs of

experimental replicates.
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Arabidopsis thaliana has become a popular plant model

(5) and system to study protein gene expression heterogeneity

(6). While plant-based protein and gene studies have been

gaining popularity for agricultural and basic science applica-

tions, comparatively little research toward high-content, cell-

based assays for plants has been described. This is in contrast

to the widespread use of mammalian cell-based assays used

for drug development and the number of mammalian cell-

based projects that have been undertaken, such as the Human

Protein Atlas (7), Mitocheck (8), and CellMorph (9).

High-content screens typically focus on measuring a

particular cellular activity, often using a combination of

image features and supervised machine learning to learn to

distinguish positive and negative controls (10,11). When

positive controls are not available (e.g., for discovering new

phenotypes), unsupervised or semi-supervised machine

learning can be used (9,11,12). However, a classification-

accuracy based approach via comparison of control and

treated experiments (in absence of a positive control) can be

preferable as it is readily interpretable as a difference between

two sample populations (13). One of the major caveats of

this approach is that it may discard heterogeneous popula-

tion information, summarizing the relationship between two

populations as simply an error statistic. Furthermore, it does

not detect the magnitude of differences (measured by accu-

racy). In other words, as phenotypes expressed in experi-

ments become more different, eventually a classifier may

become 100% accurate. At this point, the magnitude of effect

sizes can no longer be distinguished between alternate

conditions.

Here we present an automated protocol for screening for

drug effects on protein subcellular location in Arabidopsis

protoplasts that simultaneously considers both cellular and

experimental variation. It improves upon previous methods

by providing an unbounded indicator of magnitude-of-effect

by considering the distribution of differences between experi-

mental replicates, rather than the proportion of cells correctly

classified. Instead of implementing separate procedures for

evaluating the quality of control or experimental replicates,

we base our method on the assumption that an effect is

observed if the difference between control and treated groups

is greater than the difference between control groups alone

given all sources of error being equal. Our results demonstrate

the ability to detect drug effects in highly heterogeneous pop-

ulations and with differing numbers of experimental replicates

between cohorts. The combination of experimental protocol

and analytical approach we have developed is expected to be

useful for investigating cellular and subcellular phenotypes in

plants.

RESULTS

High-Throughput Imaging of Protoplasts

In order to assess small molecule effects on plant protein

organization we used protoplasts from aseptically grown

shoots of Arabidopsis thaliana. Protoplasts were isolated from

above ground tissues from one of six plant lines, each express-

ing a fluorescently-tagged protein. The tagged proteins were

chosen to provide a diverse set of subcellular patterns. A set of

widefield images for each cell line was generated for treatment

with one of eight drugs, each at three concentrations (0.1, 0.5,

2.0 mM). The drugs are listed in Table 1; they were chosen

since they are frequently used in plant studies and their full

effects have not been extensively characterized. Dimethyl sulf-

oxide (DMSO), in which compounds were dissolved, was

used as a control. This set of compounds and proteins were

expected to yield interesting phenotypes that would illustrate

the power of the method and could challenge existing meth-

ods. At least two replicates were performed for each combina-

tion of drug, concentration, and plant line, with as many as 16

replicates being performed and 4 replicates being the mode.

There were between 52 and 62 replicates performed for con-

trol conditions, with 1200 wells total. A small fraction of the

images generated in this process were removed as a result of

camera error yielding a total of 18,671 fields.

Analysis Pipeline Overview

We constructed a pipeline to rank drug effects on protein

location patterns from cell populations in high-throughput

2D wide-field images. The pipeline (Fig. 1) has four steps; the

first is to detect regions-of-interest (ROI) in each image. Due

to the fact that plant protoplasts take a spherical shape after

removal of the cell wall, we used a circle detection method.

The second step consists of texture feature calculation for each

region of interest (ROI). These features are designed to cap-

ture the spatial relationship between pixel intensities within

and across protein patterns. In the third step, given the ROI

features, all pairs of untreated (control) and treated experi-

ments are compared to determine the magnitude of pheno-

typic variation as a result of drug addition, and the variation

of differences expected between untreated and treated experi-

mental pairs. Lastly, given the results of the pairwise tests, we

determine if the measured differences are greater than what

would be expected between pairs of control replicates to iden-

tify statically significant drug effects. This pipeline was applied

to all protein–drug combinations as described in Methods.

Region of Interest Detection and Associated Features

For each image, we found regions of interest correspond-

ing to individual protoplasts by detecting circular regions of

appropriate sizes (see “Methods”). Examples of the patch-
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based region of interest detection are shown in Figure 2.

Although the segmentation method is not perfect, it has a low

false positive rate, detecting few patches with no or partial

protoplast content. Furthermore, given the use of the texture

features described below, perfect segmentation is not

necessary.

For each region of interest, we compute a co-occurrence

matrix of pixel intensities at a range of specified pixel offsets

and channel pairs, and calculate 12 Haralick texture features

(14) on each co-occurrence matrix (see “Methods”). We cate-

gorize the features in three groups, protein texture features,

protein–chloroplast features, and chloroplast features,

depending on which fluorescence channel or channel pairs the

features were computed on.

Drug–Effect Detection

To accurately evaluate the effect of drugs, it is important

to consider differences not only between control and drug

experiments, but to also consider the variation among control

experiments themselves. This was especially relevant for our

protoplast images due to the extensive variation in cell mor-

phology, the presence of damaged cells, and the relatively low

number of cells per field during imaging at high magnifica-

tion. In other words, to confidently say that there is an effect

of a drug condition, the variation between control and condi-

tion experiments must be significantly greater than the varia-

tion between replicates of identical controls. Additional

challenges arise when comparing different numbers of experi-

ments, images, and regions of interest. With this in mind, we

constructed a procedure to simultaneously consider these dif-

ferences in the evaluation of drug-effect detection.

Given segmented regions of interest and their associated

descriptors, we can determine the variation between experi-

ments via classification-based methods. Here we introduce a

measure that is the difference between the cumulative distri-

bution functions with respect to the distance from a

separating hyperplane that we call deltaF (see “Methods”).

This statistic is an L1 version of the Cram�er-von Mises statistic

(15), and has advantages over similar previously described

methods (13), by not only describing the difference between

two conditions, but also not being constrained with an upper

bound. It provides additional information on how different

two images are even if classification accuracy is 100%, which

is useful for the comparison of large effects. The underlying

intuition is that the ability to predict the experiment from

which a cell or region of interest arose should be difficult

between very similar conditions but will be very easy when

there is a clear change in phenotype. To reduce classification

bias due to different sized populations (i.e., a control replicate

having more regions of interest than an experimental repli-

cate) the data from each experiment were weighted equally.

We compared all pairs of untreated (control) and treated

experiments for a given cell line and specific condition to con-

struct a distribution of observed effect sizes by measuring the

distances to a support vector machine (SVM) decision bound-

ary via five-fold cross-validation, and comparing the differ-

ence between control and treated distances (the deltaF

measure). An additional null distribution was constructed by

measuring the deltaF between all pairs of control experiments

against each other. This process was repeated for each experi-

mental condition (drug, protein, and concentration combina-

tion). The resulting histograms of deltaF responses for the

images are shown in Figure 3 using the complete set of texture

features. The null distribution (control–control experimental

comparisons) is shown in red, and represents the maximum

variation we would expect across these experiments.

By comparing the treated and untreated dose response

distributions we can determine if there exists a statistical dif-

ference between conditions and thus identify whether a drug

has had an effect. Here we compared dose response distribu-

tions via a single-sided, two-sample Kolmogorov–Smirnov

Test (16) versus the distribution of control samples from all

Table 1. Drugs used in this study

DRUG NAME ABBREVIATION KNOWN ACTIVITY (PUBCHEM)

Brefeldin-A BFA TDP1, Arf-GDP-ARNO, delta17 Arf1, and TGF-b inhibitor. Antiproliferative activity against

human UACC62, MCF7, NCI60, UACC-62, HCT116 and other cell lines.

Benzylphosphonic acid BPA No activity results found

Damnacanthal DMN p56lck autophosphorylation, ALDH1A1, Histone Lysine Methyltransferase G9a, VDR, Tau

fibril formation inhibitor. Cytotoxic to MCF8, H460, DU145 cells.

Endothall Endothall Agonist to ROR-gamma, ARE, AR, ROR-gamma, RAR, AhR signaling pathways.

N9-isopropyl

olomoucine

N9 cdc2 p34/Cyclin B, Cyclin-dependent kinase 1/2, and STK33 inhibitor

Oryzalin Oryzalin Toxoplasma gondii and Cryptosporidium parvum antimicrobial. Cytotoxic to DT40 cells. Dis-

ruptive to cell membrane potential. Ebola virus entry blocker. Activator of PXR signaling

pathway.

Tyrphostin TRP Plasmodium falciparum antimicrobial. PYRK, Aldose reductase, Janus kinase 2 mutant, GLS,

CDK2/CycE, Schistosoma Mansoni Peroxiredoxin and JMJD2E inhibitor.

ZM-449829 ZM Human Muscle isoform 2 Pyruvate Kinase Activator. ALDH1A1, ROR gamma transcription-

al activity, Histone Lysine Methyltransferase G9a, VDR, 15-hLO-2, TDP1, Cruzain, ERK

signaling pathway inhibitor.
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experiments across all lines. The results of the test are adjusted

via Bonferroni correction (17).

We ran the pipeline for different sets of texture features

to determine which channels provided the most information

about drug-induced phenotypes. The results are shown in

Figure 4 for protein texture features (green bars), protein

and protein–chloroplast features (orange bars), as well as

chloroplast features alone (light blue bars); an asterisk

indicates that the result is statistically different from control at

an a < 0:001. To ensure we have both sufficient numbers

of regions of interest and experimental replicates to avoid

detecting spurious relationships, we constructed a random-

relationship baseline with the complete feature set by evaluat-

ing a “sham” experiment. Each ROI in a replicate was

randomly assigned a “treated” or “untreated” label, and the

deltaF was determined. This process was repeated for each

experimental condition, each untreated and treated group was

compared, and a significance level determined (dark blue

bars).

Drug Responses

As to be expected, the tagged protein features alone

were quite similar in effects detected (Fig. 4, green bars)

compared to the complete feature set (yellow bars), but of

diminished effect size compared to the results with all fea-

tures in many cases. Despite this fact, the protein features

alone were sufficient to determine drug effect in virtually all

cases in which a drug effect was detected. The addition of

chloroplasts as a fiduciary marker (cross channel protein-

chloroplast features, orange bars), increases the detected

effect virtually across the board. We believe that this may be

an example of the curse of dimensionality, where spurious

correlations are detected between training sets when train-

ing the SVM. Interestingly some effects can be detected with

chloroplast features alone (light blue bars), but those effects

are not consistent across all lines. This suggests that chloro-

plast behavior may have been affected by the creation of the

different tagged lines.

Comparison with Current Methods

The method we have described was designed to handle

the dramatic variation both within samples and between

control replicates. It is naturally of interest to compare our

results with those that might have been obtained with meth-

ods commonly in use. For this, we chose two simple, illustra-

tive approaches. The first uses a single image feature, the

total protein intensity, and asks whether the distributions of

that feature among cells differ between control and experi-

mental conditions. The second defines the unperturbed phe-

notype of each cell line by training a classifier to distinguish

the six cell lines and considers a drug to cause a perturbation

for a particular cell line if the most frequent cell classification

in the presence of the drug is different from the most fre-

quent cell classification in the unperturbed phenotype of

that cell line. Table 2 shows the results of these two

approaches compared to the results shown in Figure 4. The

results indicate that “simple” methods identify many more

conditions as being perturbed than our method. Our

Figure 1. Pipeline overview. Four steps were performed: (1) detection

of spherical regions of interest, (2) computation of intra and inter-

channel texture features, (3) determination of a measure of discrimina-

tion, deltaF, between sets of replicates (e.g., between untreated and

untreated or between untreated and treated with a given drug concen-

tration), and (4) determination of the area of overlap between the

CDFs for different comparisons. The third step consists of two parts:

(a) Fitting a SVM to separate the two replicates, and project every point

on to the hyperplane normal, and (b) Determining the CDF with

respect to signed distance from the hyperplane. A condition was con-

sidered to have an effect if the area of overlap in step 4 was statistically

significant. [Color figure can be viewed at wileyonlinelibrary.com]
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method finds only 36 conditions to be perturbed, while the

other methods find 110 or 80 (out of 134) to be perturbed.

Since we consider it unlikely for well over half of the combi-

nations of drugs and targets to be perturbed, we interpret

these results as support for the more robust nature of our

new approach.

Examples of Effects Observed

Given the results in Figure 4 we see that detected effects

generally scale with dose size, where Tyrphostin and Damna-

canthal have the strongest effect across all dose concentra-

tions. Tyrphostin is an inhibitor of tyrosine kinase and

clathrin-coated endocytosis (18). Damnacanthal has similarly

Figure 2. Example images and patch based segmentation. (A) Example 2D, widefield, DIC image. (B) 2D DIC image with detected circular

regions of interest. (C) Fluorescence channels corresponding 2D image, with chloroplast auto fluorescence in green and NCRK-313-GFP in

red. Bar, 20 lm. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Normalized dose response histograms for experiments using all features. Red indicates the distribution of deltaF measures

across control experiments, yellow, blue and purple distributions indicate 0.1, 0.5, and 2.0 lM drug treatment, respectively. Note for exam-

ple the differences between the histograms for DMN and TRP. [Color figure can be viewed at wileyonlinelibrary.com]
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been reported to be a tyrosine kinase inhibitor. Our results

suggest that both of these drugs result in large reorganizations

of protein localization patterns across many proteins. We

therefore asked whether they produced similar effects on those

proteins by directly comparing the samples treated with each

using the same method used to compare them to their respec-

tive controls. As shown in Figure 5, the effects on each protein

were statistically different, with the exception of talin-GFP.

This is consistent with the weaker effect of both drugs upon

talin-GFP in comparison with controls.

Relative to other proteins, the results indicate a strong

sensitivity of AHA2–GFP localization to N9-isopropyl olo-

moucine at high doses. There may also be some dose-specific

effects with treatment of NCRK-313-GFP with ZM and BPA.

We also present typical images for the highest dose of the

three drug–target combinations for which the confidences of a

drug-induced difference are highest (Fig. 6). Each row of

images shows the untreated and treated condition for a given

drug–target combination. Although these images represent

typical treated and untreated images (and are a subset of the

images for each replicate), some differences may be more clear

than others. With NCRK-313-YFP treated with Damnacan-

thal, we see a clear increase of NCRK-313-YFP fluorescence,

while the difference detected for AHA2-GFP treated with

Damnacanthal does not appear to be detectable by eye [com-

putational analysis has been shown to detect real but subtle

differences in subcellular patterns that are not visually distin-

guishable (19)]. For RabF2a-YFP, the effect of Tyrphostin

Figure 4. Analysis of statistic values for differences between control and experiment dose response histograms for increasing dosage

using all feature sets on 2D images. Bars represent sham comparison (dark blue), chloroplast features (light blue), protein features only

(green), protein and protein–chloroplast features (orange), and chloroplast, protein, and protein–chloroplast features (yellow). Asterisk

indicates statistical difference from control at a50:001 Bonferroni-corrected across all comparisons, 720 in total. [Color figure can be

viewed at wileyonlinelibrary.com]

Table 2. Comparison of results from the method described in

this article and simpler methods

INTENSITY T TEST RANDOM FOREST

FIGURE 4 PF UNPERTURBED PERTURBED UNPERTURBED PERTURBED

Unperturbed 34 74 59 49

Perturbed 0 36 5 31

The values show the number of conditions considered to be

significantly perturbed or unperturbed in the results shown in

Figure 4 (using protein features) that were also considered to be

perturbed or unperturbed by either of the simpler methods

described in the text. Note the large number of conditions consid-

ered to be perturbed by either of those methods that are not con-

sidered to be perturbed by our new method.
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appears to be to shift it from a diffuse to a punctate pattern.

Based on our results, the developed method provides a potent

platform for future pharmacological or pharmacogenetic

studies in single plant cell models.

DISCUSSION

Here we presented the results of the first high-content

drug screen for Arabidopsis thaliana shoot protoplasts. We

developed a novel drug–effect detection method to compare

the variation in protein patterns between untreated and drug

treated replicates to control replicate variation and used it to

determine the statistical significance of drug effects based on

differences in protein pattern. This method improves upon

previous classification-based methods by providing an

unbounded measure of difference between control and treated

experiments. Compared to previous effect–detection screening

methods, we do not use a separate procedure for evaluating

the quality of control experiments, but rather use the same

comparison to measure differences between treated and con-

trol replicates and intercontrol replicates themselves. This

intercontrol comparison becomes the baseline for evaluation,

given the assumption that any observed effect should be great-

er than the greatest difference between pairs of control repli-

cates. Our method allows for flexibility with varying numbers

of replicates, whereas other methods may require the same

number of replicates across all experiments. Similar to other

classification-based approaches, we use a linear boundary as

the discriminating element, but rather than consider the frac-

tion of correctly classified regions of interest, we use the dis-

tance to the hyperplane as a maximum discrimination

descriptor, and determine the differences between distribu-

tions via the L1 Cram�er-von Mises statistic (20). It is worth

noting that our method does not necessarily provide better

detection of subtle or complex phenotypes, but does permit

better detection of different phenotypes in the presence of sig-

nificant within and between sample variation. By using this

method in conjunction with protein-specific and protein–

chloroplast features, we were able to detect dosage specific

drug responses in a range of conditions. The methods and

results presented here provide a baseline for comparing effects

to those of generative models, and other cell modeling

methods.

METHODS

Experiments

Protoplasts were isolated from six Arabidopsis thaliana

lines expressing fluorescently tagged proteins as previously

described (21). The following lines were used: AHA2-GFP

(22), ER-GFP (23), talin-GFP (24), NCRK-313-YFP (25),

RabF2a-YFP (26), or GFP-MAP4 (27). Three concentrations

(2.0, 0.5, 0.1 lM) of eight drugs (benzylphosphonic acid,

Brefeldin-A, Damnacanthal, endothall, N9-isopropyl olomou-

cine, oryzalin, tyrphostin, ZM-449829) were used. Informa-

tion about each drug is provided in Table 1. The drugs were

added to protoplast samples to yield a total of 150 unique

experimental conditions including untreated controls. The

robotic addition of compounds to each experimental well was

synchronized with the timing of imaging on the microscope

such that drug exposure times for all experiments were

approximately equal (4 h) across all wells in the multiwell

plate. 2D image series were acquired using an Axio Observ-

er.Z1 microscope (Carl Zeiss, Germany) with a 403 magnifi-

cation air objective with a numerical aperture of 0.95 (Carl

Zeiss, Germany), and a pixel size of 0.161 3 0.161 lm, with a

total image size of 1388 3 1040 with 16 fields per well. Each

image was taken at a constant distance from the bottom of the

96-well plate (Ibidi, Germany). DIC, fluorescent-tagged pro-

tein (470 nm), and chloroplast autofluorescence (558 nm)

channels were taken.

Figure 5. Comparison of effects of Damnacanthal and Tyrphos-

tin. The dose response histograms for Damnacanthal and Tyr-

phostin were directly compared using the same method as in

Figure 4. Bars represent sham comparison (dark blue), chloro-

plast features (light blue), protein features only (green), protein

and protein–chloroplast features (orange), and chloroplast, pro-

tein, and protein–chloroplast features (yellow). Asterisk indicates

statistical difference from control at a50:001 Bonferroni-corrected

across all comparisons, 90 in total. [Color figure can be viewed at

wileyonlinelibrary.com]
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Region-of-Interest Detection

Due to the spherical shape taken by plant protoplasts

after isolation, we implemented a circular Hough transform

(28) to create local regions expected to contain a single cell.

Each image is first edge-filtered (29) to find circle-edge candi-

date pixels and all contiguous edge-pixel regions <10 pixels in

size are removed. Given the edge image, likelihood that a pix-

el, ~x , is the center of a circle of radius r, is approximated by

the response of the image cross-correlated with a filter con-

taining an image of a circle of radius r,

Lr ~xð Þ5 I ? fr ~xð Þð Þ=r: (1)

where I is the image, fr is the filter, and ? indicates the correla-

tion operation. The edge-image is correlated with circles of

varying size, producing a likelihood image for a circle of speci-

fied radius, where the value of each pixel in the likelihood

image corresponds to the confidence of a circle of radius r at

that location. Larger circles will have a greater measure of con-

fidence due to the correlation measure, so it is normalized by

the radius of the circle detector.

Figure 6. Example treated and untreated images for the three effects detected with the highest confidence. (A) and (B) show untreated

and Damnacanthal treated NCRK-313-YFP tagged cells. (C) and (D) show untreated and Damnacanthal treated AHA2-ATPase tagged cells.

(E) and (F) show untreated and Tyrphostin treated RabF2a-YFP tagged cells. The images were chosen from those for highest concentration

for each drug; the specific image chosen was that with the closest match to the average number of regions per field. Within each row, the

chloroplast (green) and protein (red) channels have been contrast stretched to the same dynamic range. Bars, 20 lm. [Color figure can be

viewed at wileyonlinelibrary.com]
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The likelihood images, Lr1
; . . . ;Lrn

, are combined to a

single 3-dimensional (x; y; r) image with coordinates corre-

sponding to the likelihood of a circle at a pixel (x; y) with a

particular radius (r). A search was performed over the (x; y; r)

image, identifying potential circle locations in order of

decreasing likelihood. We performed the search on a DIC

image over radii of 8.05–32.2 mm in steps of 1.61 mm on a 53

downsized image. Circles containing cells were found in order

of decreasing confidence until a threshold was reached; in

each step, the highest likelihood circle remaining was found,

the circular region was used for feature calculation (below),

and all circles containing it were removed from the image (set

to zero). Figure 2 shows typical segmentation results for 2D

images.

Under varying drug-induced perturbations, some cells

may no longer exhibit a near-perfect spherical profile. Our

ROI detection method still performs well under these condi-

tions. To attain a high likelihood of a circle centered at a given

location in the image, the pixel data need not contain a con-

tiguous circle. It suffices that possibly many disjoint arcs align

well. Further, to increase the probability of detection for a

deformed cell, we use a Gaussian filter to widen identified

edges. After ROI identification, active contouring was used to

attain the true shape of a cell. To control the false-positive

identification rate, any identified ROIs without fluorescent

signal within the cell were removed. All of the above proce-

dures ensure our ROI detection pipeline limits false positives

and false negatives under perturbed cell shape.

Texture Features

For each circular region found as above, we computed fea-

tures to describe the spatial relationship between protein pat-

terns in the image (the features were only calculated on pixels

within the spherical region). We used Haralick texture features

(14,28) computed from different co-occurrence matrices gener-

ated for different pairs of fluorescence channels and different

spatial offsets. A separate co-occurrence matrix was calculated

for each of three combinations of fluorescence channels (protein

and protein, protein and chloroplast, and chloroplast and chlo-

roplast) and five different x and y offsets (1, 2, 4, 8, and 16 pixels

in each direction). (Co-occurrence matrices for different chan-

nels were calculated as the frequency of having a pixel in one

channel have one value while the same pixel in the other chan-

nel had a second value.) For a given covariance matrix, we com-

puted 12 features as previously described (10). Therefore each

region was represented by a set of 12 features for each offset and

channel-pair, a total of 60 features per channel-pair, and a total

of 180 features for all channel pairs. The values of each feature

across all patches and all experiments were z-scored.

Drug Effect-Size Measure

Given a collection of patch features from images corre-

sponding to treated and untreated cell populations, we trained

an SVM using fivefold cross validation, weighting data equally

in the case of unbalanced classes. For each fold, we determined

the signed distance of the members of a test set from the

hyperplane where points were assigned a positive distance if

they were on the “treated” side of the hyperplane, and a

negative distance if they were on the “untreated” side. The dis-

tances of all the points are recorded across the fivefolds, and

an empirical cumulative distribution function (CDF) with

respect to distance from the hyperplane was determined for

each the treated and untreated groups. Given the two cumula-

tive distribution functions, we measured the difference

between two experiments as

DF5

ð1
21
jFuntreated xð Þ2Ftreated xð Þj dx; (3)

where Funtreated and Ftreated are the CDFs for the untreated and

treated groups respectively.

Other Approaches for Detecting Perturbation

We performed two additional comparison analysis using

simple, illustrative examples of existing methods. In the first,

we determined the average pixel intensity for each region of

interest in the GFP channel across all images. Using these

values, we performed a two-sample t test for difference

between each control–drug pair to detect dose-dependent

drug effects. The test statistic for each test was Bonferroni cor-

rected and the number of conditions that were below an alpha

level of 0.001 were tabulated.

For the second method, we trained a six class Random

Forest classifier to recognize the patterns of the untreated lines

using protein features all regions for all controls. With this, a

class for each region for each experimental condition was

assigned. An experimental condition for a given line was con-

sidered perturbed if a plurality of the regions were not

assigned to the most frequent cell classification in the unper-

turbed phenotype of that line.

AVAILABILITY

A Reproducible Research Archive containing all raw data,

software, and processed results is available from http://mur-

phylab.cbd.cmu.edu/software.
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