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Abstract & %

A key step in understanding the spatial organization of s D D
cells and tissues is the ability to construct generative models

that accurately re”ect that organization. In this paper, we -
focus on building generative models of electron microscope (a) Generative pipeline
(EM) images in which the positions of cell membranes and

mitochondria have been densely annotated, and propose a

two-stage procedure that produces realistic images using

Generative Adversarial Networks (or GANS) in a super-

vised way. In the “rst stge, wesynthesize a labelmageZ

given a noise «imageZ as input, which then provides super-

vision for EM image synthesis in the second stage. The full

model naturally generates label-image pairs. We show that

accurate synthetic EM images are produced using assess-

ment via (1) shape features and global statistics, (2) seg-

mentation accuracies, and (3) user studies. We also demon-

strate further improvements by enforcing a reconstruction

loss on intermediate synthetic labels and thus unifying the

two stages into one single end-to-end framework. (b) Ground-truth (©) SGAN (ours)  (d) UnsupervisedGAN

Figure 1: (a) Generative pipeline: Given noise simageZ
1. Introduction sampled from a Gaussian distribution, our label genera-
tor Gy generates a label image, which is then translated
Much research in the life sciences is now driven by largéinto an EM image byGy. (b) Ground-truth label-image
amounts of biological data acquired through high-resolutiorpair. (c) Label and image pair generated by our supervised
imaging [6, 18]. Such data represents an important applicaSANs (SGAN), that is capable of generating continuous
tion domain for automated machine vision analysis. Mosimembranes (red lines) and correctly positioned mitochon-
past work has beediscriminativein nature, focusing on dria (green blobs). (d) Image synthesized by unsupervised
trying to determine whether imaged samples differ betweeiGANSs, in which the label is generated by a pre-trained se-
different patients, tissues, cell types or treatments [3, 4]Jmantic segmentation network. Unsupervised GAN is able to
A more recent focus has been on construcgegerative  produce pixel-level details locally but fails to capture struc-
models, especially of cells or tissues [30, 25]. Such genetures globally.
ative approaches are required in order to be able to com-
bine spatial information on different cell types or cell or-
ganelles learned from separate images (and potentially difients in a single image. Images can be used to perform
ferent imaging modalities) into a single model. This is spatially-accurate simulations of cell or tissue biochem-
needed because of the dif‘culty of visualizing all compo- istry [15], and synthetic images that combine many compo-

978-1-5386-4886-5/18/$31.00 ©2018 IEEE 682
DOI 10.1109/WACV.2018.00080



nents can dramatically enhance the accuracy and usefulne@ghich might contain, for example, a characteristic horizon
of such simulations. line that breaks translation invariance). Secondly, in order to
Microscopy imaging: At the cellular scale, the dominant Synthesize natural geometric structures across a variety of
modes of imaging used are "uorescence microscopy (FMpcales, we addhulti-scale discriminatorso guide the gen-
and electron microscopy (EM). From the machine visionerator to produce images with realistic multi-scale statistics.
perspective, these methods differ dramatically in their resThirdly, and most crucially, we make use siipervisiorto
olution, noise, and the availability of labels for particu- guide the generative process to produce semantic structures
lar structures. FM works by tagging particular molecules(such as cell organelles) with realistic spatial layouts. Much
or structures with "uorescence probes, adding a powerfupf the recent interest in generative models (at least with re-
form of sparse biological supervision to the captured im-spect to GANs) has focused on unsupervised learning. But
ages (which does not require human intervention). Howin some respect, synthesis and supervision are orthogonal
ever, the spatial resolution of FM ranges from a limit of ap-issues. We “nd that standard GANs do quite a good job of
proximately 250 nm for traditional methods to 20-50 nm for generating texture, but sometimes fail to capture global ge-
super-resolution methods. By contrast, EM allows for sig-ometric structures. We demonstrate that by adding super-
ni“cantly higher resolution (0.1-1 nm per pixel), but ability Vvised structural labels into the generative process, one can
to automatically produce labels is limited and manual an-synthesize considerably more accurate images than an un-
notation can be very time-consuming. Analysis of EM im- supervised GAN.

ages is also challenging because they contain lower signaEvaluation: A well-known dif‘culty of GANs is their eval-
to-noise ratios than FM. uation. By far, the most common approach is qualitative
Our goal: We wish to build holistic generative models of €valuation of the generated images. Quantitative evalua-
cellular structures visible in high-resolution microscopy im- tion based on perplexity (the log likelihood of a valida-
ages. In the following, we point out several unique aspect&on set under the generative distribution) is notoriously dif-

of our approach, compared to related work from both biol- Cult for GANSs, since it requires approximate optimiza-

ogy and machine learning. tion techniques that are sensitive to regularization hyper-

Data: We focus on EM images that contain enough resolyParameters [19]. Other work has proposed statistical classi-
‘er tests that are sensitive to the choice of classi“er [16]. In

tion to view structures of interest. This in turns means that . X
supervised labels (e.g., organelle segmentation masks) wiitll WOrk, we use our supervised GANSs to generate image-

be difcult to acquire. Indeed, it is quite common for stan- labels pairs that can be used to train discriminative classi-

dard EM benchmark datasets to contain only tens of imagese'S: Yielding quantitative improvements in prediction ac-

illustrating the dif‘culty of acquiring human-annotated la- CUracy: Moreover, we cor_1$|der the literature on generative
bels [1]. Most work has focused on segmentation of individ-Cell models and use previously proposed metrics for evalu-
ual cells or organelles within such images [12]. In contrast&ling generative models, including the consistency of var-

we wish to build models ofultiple cells and their internal 0US Shape feature statistics across real vs generated im-
ages, as well as the stability of discriminative classi“ers

organelles, which is particular challenging for brain tissue , .
(for semantic labeling) across real vs generated data [30].

due to the overlapping meshwork of neuronal cells. ; -~
. ) . : We also perform user studies to measure a userss ability
Generative models:Past work on EM image analysis has o . .
to distinguish real versus generated images. Crucially, we

focused on discriminative membrane detection [7, 14]. Here . . .
. : . compare to strong baselines for generative models, includ-
we seek a high-resolution generative model of cells and the : :
: . ; Ing established parametric shape-based models as well as
spatial organization of their component structures. Genera- . . )
. o hon-parametric generative models that memorize the data.
tive models of cell organization have been a long sought-
after goal [30, 26], because at some level, such models ar.
a required component of any behavioral cell model that de-f' Related Work
pends on constituent proteins within organelles. There is a large body of work on GANs. We review the
GANSs: First and foremost, we show that generative ad-most relevant work here.
versarial networks (GANs) [10] can be applied to build GANs: Our network architecture is based on DCGAN [22],
remarkably-accurate generative models of multiple cellsvhich introduces convolutional network connections. We
and their structures, signi“cantly outperforming prior mod- make several modi“cations suited for processing biologi-
els designed for FM images. To do so, we add three innoeal data, which tends to be high-resolution and encode spa-
vations to GANSs: First, in order to synthesize large high-tial structures at multiple scales. As originally de“ned, the
resolution images (similar to actual recorded EM images);rst layer is not convolutional since it processes an input
we introducefully-convolutionalvariants of GANs that ex- noise evectorZ. We show that by making all network con-
ploit the spatial stationarity of cellular images. Note thatnections convolutional (by converting the noise vector to

such stationarity may not present in typical natural imagena noise simageZ), the entire generative model is convolu-
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tional. This in turns allows for ef‘cient training (through Factorization: Rather than learning a generative model for
learning on small convolutional crops) and high-quality im-the joint distribution overx,y, we can factorize it into
age synthesis (through generation of larger noise images)(x,y) = p(y)p(x|y) and learn generative models for each
We “nd that multi-scale modeling is crucial to synthesiz- factor. This factorization makes intuitive sense since it im-
ing accurate spatial structures across varying scales. Whifdicitly imposes a causal relation [13]: “rst geometric labels
past work has incorporated multi-scale cues into the gerare generated witlsy, : z  y, and then image pixels are
erative process [8], we show that multiscdiscriminators  generated conditioned on the generated lalig|s,y  x.
help further produce images with realistic multi-scale statisWe refer to this approach &GAN(supervised GANSs), as
tics. illustrated in Fig. 2-b,c:
tShuperwsmn. Most GANSs work with unsupervised d:_;qa, but V(G,D) =V, (Gy,Dy) + Vk(Gx,Dy) where

ere are variants that employ some form of auxiliary la-
bels. Conditional GANs make use of labels to learn a GAN ~ Wy(Gy, Dy) =Ey o, [log(Dy (y)]+
that synthesizes pixels conditioned on an label image [11] E, pz[log(lé Dy(Gy(2)))] and
encho-end gonrative model that synthecizes pvels gven g, (81 0) = xsa-, 109Dx (X Yl
noise sample. Similarly, methods for semi-supervised Iearn—a[SGAN] By p,[109(1S Dx(Cx(y). Y] (3)
ing with GANs [29] tend to factorize generative process intoln theory, one could also factorize the joint iméx, y) =
disentangled factors similar to our labels. However, suclp(x)p(y|x), which is equivalent to training a standard unsu-
factors tend to be global (such as an image class labelpervised GAN forx and a conditional model for generating
which are easier to synthesize than spatially-structured ldabels fromx. The latter can be thought of as a semantic
bels. From this perspective, our approach is similar to [27]segmentation network. We compare to such an alternative
who factorizes image synthesis into separate geometry arfdctorization in our experiments, and show that conditioning
style stages. In our case, we make use of semantic labeds labels “rst produces signi“cantly more accurate samples
rather than metric geometry as supervision. Finally, mosof p(x, y).
related to us is [21], who uses GANSs to synthesize "uoresOptimization: Because value functio(G, D) decouples,
cent images using implicit supervision from cellular stain-one can traif Dy, Gy} and{Dy, Gx} independently:
ing. Our work focuses on EM images, which are high res-
olution (and so allows for modeling of more detailed sub-
structure), and crucially makes use of semantic supervision i
to help guide the generative process. do rTS%XVX(GX' D) @

. - N
min mDaxV(G,D) mér] ng%xvy(Gy,Dy)

) Using arguments similar to those from [10], one can
3. Supervised GANs show that SGAN can recover true data distribution where

A standard GAN, originally proposed for unsupervisedthe discriminatoD and generator& are optimally trained:

learning, can be formulated with a minimax value functionTheorem 3.1. The global minimum ofC(G) =
V(G,D): maxp V (G, D) is achieved if and only ifi(y) = p(y) and
aix|y) = p(x|y), wherepes are true data distributions and
ges are distributions induced b$.

V(G,D) =Ex p,[log(D(x)]+ E; 5.[0g(1S D(G(2)))]  Proof. Given in Supplementary 1.
[UnsupervisedGAN] Q)

rrz;in mDaxV(G, D) where

End-to-end learning: The above theorem demonstrates
andx denotes image and denotes a latent noise vector. that SGANs will capture the true joint distribution over la-
As de“ned, the minimax function can be optimized with bels and data if trained optimally. However, when not op-
samples from the marginal data distributiphand thus no  timally trained (because of optimization challenges or lim-
supervision is needed. As shown in Fig. 1, this tends to adted capacity in the networks), one may obtain better results
curately generate low-level textures but sometimes fails téhrough end-to-end training. Intuitively, end-to-end training
capture global image structures. Assume now that we haugptimizesGy (y) on samples of labelsproduced by the ini-
access to image labgjghat specify spatial structures of in- tja| generatoiGy (z), rather than ground-truth labejs To
terest. Can we use these labels to train a better generatgg#malize this, one can regaf@, andGy as sub-networks
Presumably the simplest approach is to de“ne a eclassicgf asinglelarger generator which is provided deep supervi-

GAN over a joint variablex = (x,y): sion at early layers:
V(G,D) =Exy p,,[log(D(x,y))]+ Vx(Gx,Dx) = Exy p,,[109(Dx(x, y))]+ ()
[JointGAN] E; p.[log(1S D(G(2)))] (2) Ez p.[0g(1S Dx(Gx(Gy(2)), Gy (2))].
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K Conditional generator: Inspired by cascaded re“nement
S networks (CRN) from [5], we design architecturally similar
generators for botltonditional image synthesiy X)
and conditional label synthesigy; y2). Compared to

U-Net [23] which is originally adopted in pix2pix, CRN is

4 24 25

432 4325

12 1236

T less prone to mode collapse. Please see more discussions in
57528 Supplementary 2.
5. Experiments

: As illustrated in Fig. 1-a, the proposed generative pro-
Figure 3: A fully-convolutional generatoB, (FCGAN). cess contains two parts:' (1) noise label, (2) label

i ; . : S 3 image. Thus our generative models output both labels and
Left: By changing the size of the input noise «imageZ, O ages that are paired. In this paper, we also evaluate our
FCGAN generator can synthesize arbitrarily large labels, 9 P ' bapet,

Right: Architecture of the fully-convolutional generator. methods on these two levels: (1) labels, and (2) images.
Particularly, on the label level we locally compare #iape

featuresof single cells with real ones, and globally we com-
putestatisticsof multiple cells. On labels, we also evaluate
themodel capacityOn the image level, we measure image
qualities bysegmentation accuracylso, user studiesre
conducted on both levels.

5.1. Metrics and Baselines

Shape features:Following past work [30], we evaluate the
accuracy of synthetic images by (1) training a real/fake clas-
si“er, and (2) counting the portion of synthetic samples that
Figure 4: Multi-scale discriminators fd, andDy. Left: fool the classi“er. We train SVM classi“ers on a set of 89
We construct an image pyramid from the generated labédeatures [30] that have been demonstrated to very accurately
(or image), and feed patches from this pyramid to multipledistinguish cell patterns in FM images, and which are ex-
patch-based discriminators. Right: Single-scale discriminatracted fromlabel image®f single cells with mitochondria.
tors with small receptive “elds (top) tend to produce ac-Example statistics include 49 Zernike moment features, 8
curate local structure, but inaccurate repetitive global strucmorphological features, 5 edge features, 3 convex hull fea-

ture. Similarly, single-scale discriminators with large recep-turesetc o
tive “elds produce accurate global structure, but fail to gen-Global statistics: Such shape-based features used above are

erate accurate local textures. typically de“ned for a single cell. We therefore also ex-
tracted global statistics across multiple cells, including dis-
tributions of cell size, mitochondria size and mitochondria
if we use a large patch-size, the output label image resemyundness [31¢tc
bles a roughly plausible global structure, but lacks local detyser studies:We design an interface similar to that in [24],
tails (see Fig. 4 bottom-right). where generated images are presented with a pri60%f
To ensure the generators produce both globally and lomtermediate labels are edited for better visual quality (sam-
cally accurate labels and images, we propose a multi-scal§les shown in Fig. 6, cropped &12x 512).
discriminator architecture. As illustrated in Fig. 4, the inputpataset: We used a publicly available VNC dataset [9]
label (orimage) is “rst down-sampled to different scales andhat contains a stack of 20 annotated sections of the
then fed into individual discriminators. The “nal discrimi- prosophila melanogaster third instar larva ventral nerve
nator output is a weighted summation of the discriminatorggrg (VNC) captured by serial section Transmission Elec-
for each scales: tron Microscopy (ssTEM). The spatial resolutiondi$ x
_ _ i 4.6x 50 nm/pixel. It provides segmentation annotations for
W(Gy.Dy) =By py[. o log(Dy (1 (yI* D el membranes, glia, mitochondria and synapse. Through
' L out experiments, the “rst 10 sections are used for training
Bz p.l i10g(1S Dy ( i (Gy(2M] and the remaining 10 sections are used for validation.
il Parametric baseline: To construct baselines for our pro-

Here,i is the image pyramid level index; »s denote down-  Posed methods, we compare to a well-establigi@dmet-
sample transformations anghs are prede“ned coefcients. fic modelfrom [30] for synthesizing "uorescent images of
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Figure 12: Synthetic image samples and segmentation ac-

Figure 11: Label synthesis, raw output without label edit- . " -
g y b curacies of different training approaches. We tékes and

ing. Non-FC, Non-MS and DCGAN all suffer from mode g\éaluate segmentation accuracies on a same set of gener
collapse: Non-FC, patterns at four sides are the same acro : ) . i
P P ted labelsGy of DSGAN yields higher segmentation ac-

samples, inner patterns are also repetitive; Non-MS, repetf"’-l : X
tive patterns show at different locations; DCGAN, samplesgf;"",\lCy tt)ﬁt doestnqt SEOW obw:)ustadvar;]t-age V't‘;uarl:Y' hDSt-
are blurry and almost identical, with a pre-trained reconstructor achieves the highes

score but not in terms of visual inspection.

Dataset mean U NLL

gg’gii‘ram 8%8-330/% ooit]&ﬁ 8-882 However, Fig. 12 shows that SGANreconstructor actually
SGAN 872%  0.13% 0.006 has a lower mean 1UB.8%) than vanilla SGAN §7.2%).
Joint 81.8% O0.17Z% 0.013 Interestingly, because SGAN explicitly factors synthesis

into two distinct stages, one can evaluate the second stage

modulep(x]y) using synthetic labelg. Under such an eval-
Table 2: Segmentation accuracies for SGAN/DSGAN andjation, a reconstruction loss help88@3%). In fact, we

baselines. The mean IU and NLL of SGAN/DSGAN both found one could ogamez the Segmentation metric by us-
match those of real cell images. Non-FC and Non-MS haV(ihg a pre-trained reconstructor, producing a mean IU of
high segmentation accuracy due to mode collapse. Unsg3.8%. We found these generated images to be less visually-
pervisedGAN is not shown because it does not providgleasing, suggesting that the generator tends to over‘ts to
sground-truthZ label automatically some common patterns recognized by the reconstructor.

6. Discussion
Segmentation accuracy:Following past work, we also ) )
evaluate realism of an image by the accuracy of an off-the- N this work, we explore methods towards supervised
shelf segmentation network. We report mean IU and neg@AN training, where the generative process is factorized
ative log likelihood (or NLL). Particularly, for SGAN and and guided by structural labels. New modi“cations for both
DSGAN, we take their image generators and use them tgenerators and discriminators are also proposed to alleviate
render images from a “xed set of pre-generated synthetiénOde collapse and allow fuIIy—coqvqutionaI generation. Fi-
labels, which is used as sground-truthZ for evaluating Segnally, we demonstrate by extensive evaluation that our su-
mentation accuracy. The reason is that eventually at tegtervised GANs can synthesize considerably more accurate
time, we follow the same process of rendering synthetic imimages than unsuperv_lsed baselines. .
ages from generated labels. As shown in Table 2, DSGAM\cknowledgments: This work was supported in part by
has better segmentation accuracy than SGAN and JoinNational Institutes of Health grant GM103712. We thank
GAN, which is con“rmed by user studies in Fig. 9-b. Peiyun Hu and Yang Zou for their helpful comments. We
SGAN v.s. DSGAN: Perhaps it is not surprising that DS- would like to specially thank Chaoyang Wang for insightful

GAN performs better than SGAN, since it makes use ofdiScussions. _

an additional reconstruction loss that ensures that generat&fProducible Research Archive:All source code and data
images will produce segmentation labels that match (or re¥Sed in these studies is availablenttps://github.
construct) those used to produce the generated images. fRM/Phymhan/supervised-gan

theory, one could add such a reconstruction loss to SGAN.

689



References

(1]

(2]

(3]

[4] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke,[21]

(5]

I. Arganda-Carreras, S. C. Turaga, D. R. Berger, D. @ines
A. Giusti, L. M. Gambardella, J. Schmidhuber, D. Lapteyv,
S. Dwivedi, J. M. Buhmann, et al. Crowdsourcing the cre-

ation of image segmentation algorithms for connectomics[lg]

Frontiers in neuroanatomyd, 2015.

S. Arora and Y. Zhang. Do gans actually learn the distribu-
tion? an empirical studyarXiv preprint arXiv:1706.08224
2017.

M. V. Boland and R. F. Murphy. A neural network classi“er

capable of recognizing the patterns of all major subcellularzo]

structures in "uorescence microscope images of hela cells.
Bioinformatics 17(12):1213...1223, 2001.

I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A.
Lindquist, J. Moffat, et al.
software for identifying and quantifying cell phenotypes.
Genome biology7(10):R100, 2006.

Q. Chen and V. Koltun.
sis with cascaded re“nement networksarXiv preprint
arXiv:1707.094052017.

[6] A. Chessel. An overview of data science uses in bioimage

[7]

(8]

[9] S. Gerhard, J. Funke, J. Martel, A. Cardona, and R. Fette26)

(10]

(11]

(12]

(13]

[14]

(15]

informatics.Methods 2017.

D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhu-[24]

ber. Deep neural networks segment neuronal membranes in
electron microscopy images. Advances in neural informa-
tion processing systemgages 2843...2851, 2012.

E. L. Denton, S. Chintala, R. Fergus, et al. Deep generaj25]

tive image models using a laplacian pyramid of adversarial
networks. InAdvances in neural information processing sys-
tems pages 1486...1494, 2015.

Segmented anisotropic sSTEM dataset of neural tjs20#&3
(accessed January 26, 2018).
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-[27]

erative adversarial nets. Mdvances in neural information
processing systempages 2672...2680, 2014.

[16] D. Lopez-Paz and M. Oquab.

(17]

(19]

Cellpro®ler: image analysis o

Photographic image synthe-[23]

Reuvisiting classi“er two-
sample testsarXiv preprint arXiv:1610.065452016.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Resear®(Nov):2579...2605,
2008.

E. Meijering, A. E. Carpenter, H. Peng, F. A. Hamprecht, and
J.-C. Olivo-Marin. Imagining the future of bioimage analy-
sis. Nature biotechnology34(12):1250...1255, 2016.

L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Un-
rolled generative adversarial networks.arXiv preprint
arXiv:1611.021632016.

A. Odena, C. Olah, and J. Shlens. Conditional image
synthesis with auxiliary classi“er gans.arXiv preprint
arXiv:1610.095852016.

A. Osokin, A. Chessel, R. E. C. Salas, and F. Vaggi. Gans
for biological image synthesis. ICCV, 2017.

] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-
sarial networksarXiv preprint arXiv:1511.064342015.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation.lfn
ternational Conference on Medical Image Computing and
Computer-Assisted Interventiopages 234...241. Springer,
2015.

T. Salimans, |. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systgmages
2234...2242,2016.

D. Svoboda, O. Homola, and S. Stejskal. Generation of 3d
digital phantoms of colon tissue. International Conference
Image Analysis and Recognitiopages 31...39. Springer,
2011.

D. Svoboda, M. Kozubek, and S. Stejskal. Generation of
digital phantoms of cell nuclei and simulation of image for-
mation in 3d image cytometrZytometry part A75(6):494...
509, 2009.

X. Wang and A. Gupta. Generative image modeling using
style and structure adversarial networks.European Con-
ference on Computer Visippages 318...335. Springer, 2016.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image[28] R. J. Williams and D. Zipser. A learning algorithm for con-

translation with conditional adversarial networksarXiv
preprint arXiv:1611.070042016.

C. Jones, M. Sayedhosseini, M. Ellisman, and T. Tasdizen29]

Neuron segmentation in electron microscopy images using
partial differential equations. IBiomedical Imaging (ISBI),

2013 IEEE 10th International Symposium, grages 1457... [30]

1460. IEEE, 2013.
M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath.

Causalgan: Learning causal implicit generative models with31]

adversarial trainingarXiv preprint arXiv:1709.020232017.
K. Lee, A. Zlateski, V. Ashwin, and H. S. Seung. Recur-

sive training of 2d-3d convolutional networks for neuronal [32]

boundary prediction. IrAdvances in Neural Information
Processing Systemgages 3573...3581, 2015.

L. M. Loew and J. C. Schaff. The virtual cell: a software
environment for computational cell biologyTRENDS in
Biotechnology19(10):401...406, 2001.

690

tinually running fully recurrent neural networksNeural
computation1(2):270...280, 1989.

H. Zhang, Z. Deng, X. Liang, J. Zhu, and E. P. Xing. Struc-
tured generative adversarial networksAlivances in Neural
Information Processing Systepmages 3900...3910, 2017.

T. Zhao and R. F. Murphy. Automated learning of generative
models for subcellular location: building blocks for systems
biology. Cytometry Part A71(12):978...990, 2007.

J. Zheng and R. Hryciw. Traditional soil particle sphericity,
roundness and surface roughness by computational geome-
try. Géotechnique65(6):494...506, 2015.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. arXiv preprint arXiv:1703.105932017.



