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Abstract

A key step in understanding the spatial organization of
cells and tissues is the ability to construct generative models
that accurately re”ect that organization. In this paper, we
focus on building generative models of electron microscope
(EM) images in which the positions of cell membranes and
mitochondria have been densely annotated, and propose a
two-stage procedure that produces realistic images using
Generative Adversarial Networks (or GANs) in a super-
vised way. In the “rst stage, wesynthesize a label•imageŽ
given a noise •imageŽ as input, which then provides super-
vision for EM image synthesis in the second stage. The full
model naturally generates label-image pairs. We show that
accurate synthetic EM images are produced using assess-
ment via (1) shape features and global statistics, (2) seg-
mentation accuracies, and (3) user studies. We also demon-
strate further improvements by enforcing a reconstruction
loss on intermediate synthetic labels and thus unifying the
two stages into one single end-to-end framework.

1. Introduction

Much research in the life sciences is now driven by large
amounts of biological data acquired through high-resolution
imaging [6, 18]. Such data represents an important applica-
tion domain for automated machine vision analysis. Most
past work has beendiscriminativein nature, focusing on
trying to determine whether imaged samples differ between
different patients, tissues, cell types or treatments [3, 4].
A more recent focus has been on constructinggenerative
models, especially of cells or tissues [30, 25]. Such gener-
ative approaches are required in order to be able to com-
bine spatial information on different cell types or cell or-
ganelles learned from separate images (and potentially dif-
ferent imaging modalities) into a single model. This is
needed because of the dif“culty of visualizing all compo-
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(a) Generative pipeline

(b) Ground-truth (c) SGAN (ours) (d) UnsupervisedGAN

Figure 1: (a) Generative pipeline: Given noise •imageŽz
sampled from a Gaussian distribution, our label genera-
tor Gy generates a label image, which is then translated
into an EM image byGx . (b) Ground-truth label-image
pair. (c) Label and image pair generated by our supervised
GANs (SGAN), that is capable of generating continuous
membranes (red lines) and correctly positioned mitochon-
dria (green blobs). (d) Image synthesized by unsupervised
GANs, in which the label is generated by a pre-trained se-
mantic segmentation network. Unsupervised GAN is able to
produce pixel-level details locally but fails to capture struc-
tures globally.

nents in a single image. Images can be used to perform
spatially-accurate simulations of cell or tissue biochem-
istry [15], and synthetic images that combine many compo-
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nents can dramatically enhance the accuracy and usefulness
of such simulations.
Microscopy imaging: At the cellular scale, the dominant
modes of imaging used are ”uorescence microscopy (FM)
and electron microscopy (EM). From the machine vision
perspective, these methods differ dramatically in their res-
olution, noise, and the availability of labels for particu-
lar structures. FM works by tagging particular molecules
or structures with ”uorescence probes, adding a powerful
form of sparse biological supervision to the captured im-
ages (which does not require human intervention). How-
ever, the spatial resolution of FM ranges from a limit of ap-
proximately 250 nm for traditional methods to 20-50 nm for
super-resolution methods. By contrast, EM allows for sig-
ni“cantly higher resolution (0.1-1 nm per pixel), but ability
to automatically produce labels is limited and manual an-
notation can be very time-consuming. Analysis of EM im-
ages is also challenging because they contain lower signal-
to-noise ratios than FM.
Our goal: We wish to build holistic generative models of
cellular structures visible in high-resolution microscopy im-
ages. In the following, we point out several unique aspects
of our approach, compared to related work from both biol-
ogy and machine learning.
Data: We focus on EM images that contain enough resolu-
tion to view structures of interest. This in turns means that
supervised labels (e.g., organelle segmentation masks) will
be dif“cult to acquire. Indeed, it is quite common for stan-
dard EM benchmark datasets to contain only tens of images,
illustrating the dif“culty of acquiring human-annotated la-
bels [1]. Most work has focused on segmentation of individ-
ual cells or organelles within such images [12]. In contrast,
we wish to build models ofmultiplecells and their internal
organelles, which is particular challenging for brain tissue
due to the overlapping meshwork of neuronal cells.
Generative models:Past work on EM image analysis has
focused on discriminative membrane detection [7, 14]. Here
we seek a high-resolution generative model of cells and the
spatial organization of their component structures. Genera-
tive models of cell organization have been a long sought-
after goal [30, 26], because at some level, such models are
a required component of any behavioral cell model that de-
pends on constituent proteins within organelles.
GANs: First and foremost, we show that generative ad-
versarial networks (GANs) [10] can be applied to build
remarkably-accurate generative models of multiple cells
and their structures, signi“cantly outperforming prior mod-
els designed for FM images. To do so, we add three inno-
vations to GANs: First, in order to synthesize large high-
resolution images (similar to actual recorded EM images),
we introducefully-convolutionalvariants of GANs that ex-
ploit the spatial stationarity of cellular images. Note that
such stationarity may not present in typical natural imagery

(which might contain, for example, a characteristic horizon
line that breaks translation invariance). Secondly, in order to
synthesize natural geometric structures across a variety of
scales, we addmulti-scale discriminatorsto guide the gen-
erator to produce images with realistic multi-scale statistics.
Thirdly, and most crucially, we make use ofsupervisionto
guide the generative process to produce semantic structures
(such as cell organelles) with realistic spatial layouts. Much
of the recent interest in generative models (at least with re-
spect to GANs) has focused on unsupervised learning. But
in some respect, synthesis and supervision are orthogonal
issues. We “nd that standard GANs do quite a good job of
generating texture, but sometimes fail to capture global ge-
ometric structures. We demonstrate that by adding super-
vised structural labels into the generative process, one can
synthesize considerably more accurate images than an un-
supervised GAN.
Evaluation: A well-known dif“culty of GANs is their eval-
uation. By far, the most common approach is qualitative
evaluation of the generated images. Quantitative evalua-
tion based on perplexity (the log likelihood of a valida-
tion set under the generative distribution) is notoriously dif-
“cult for GANs, since it requires approximate optimiza-
tion techniques that are sensitive to regularization hyper-
parameters [19]. Other work has proposed statistical classi-
“er tests that are sensitive to the choice of classi“er [16]. In
our work, we use our supervised GANs to generate image-
labels pairs that can be used to train discriminative classi-
“ers, yielding quantitative improvements in prediction ac-
curacy. Moreover, we consider the literature on generative
cell models and use previously proposed metrics for evalu-
ating generative models, including the consistency of var-
ious shape feature statistics across real vs generated im-
ages, as well as the stability of discriminative classi“ers
(for semantic labeling) across real vs generated data [30].
We also perform user studies to measure a user•s ability
to distinguish real versus generated images. Crucially, we
compare to strong baselines for generative models, includ-
ing established parametric shape-based models as well as
non-parametric generative models that memorize the data.

2. Related Work

There is a large body of work on GANs. We review the
most relevant work here.
GANs: Our network architecture is based on DCGAN [22],
which introduces convolutional network connections. We
make several modi“cations suited for processing biologi-
cal data, which tends to be high-resolution and encode spa-
tial structures at multiple scales. As originally de“ned, the
“rst layer is not convolutional since it processes an input
noise •vectorŽ. We show that by making all network con-
nections convolutional (by converting the noise vector to
a noise •imageŽ), the entire generative model is convolu-
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tional. This in turns allows for ef“cient training (through
learning on small convolutional crops) and high-quality im-
age synthesis (through generation of larger noise images).
We “nd that multi-scale modeling is crucial to synthesiz-
ing accurate spatial structures across varying scales. While
past work has incorporated multi-scale cues into the gen-
erative process [8], we show that multiscalediscriminators
help further produce images with realistic multi-scale statis-
tics.
Supervision:Most GANs work with unsupervised data, but
there are variants that employ some form of auxiliary la-
bels. Conditional GANs make use of labels to learn a GAN
that synthesizes pixels conditioned on an label image [11]
or image class label [20], but we use supervision to learn an
end-to-end generative model that synthesizes pixels given a
noise sample. Similarly, methods for semi-supervised learn-
ing with GANs [29] tend to factorize generative process into
disentangled factors similar to our labels. However, such
factors tend to be global (such as an image class label),
which are easier to synthesize than spatially-structured la-
bels. From this perspective, our approach is similar to [27],
who factorizes image synthesis into separate geometry and
style stages. In our case, we make use of semantic labels
rather than metric geometry as supervision. Finally, most
related to us is [21], who uses GANs to synthesize ”uores-
cent images using implicit supervision from cellular stain-
ing. Our work focuses on EM images, which are high res-
olution (and so allows for modeling of more detailed sub-
structure), and crucially makes use of semantic supervision
to help guide the generative process.

3. Supervised GANs

A standard GAN, originally proposed for unsupervised
learning, can be formulated with a minimax value function
V (G, D ):

min
G

max
D

V(G, D ) where

V (G, D ) = Ex � px
[log(D(x))] + Ez� pz

[log(1 Š D(G(z)))]
[UnsupervisedGAN] (1)

and x denotes image andz denotes a latent noise vector.
As de“ned, the minimax function can be optimized with
samples from the marginal data distributionpx and thus no
supervision is needed. As shown in Fig. 1, this tends to ac-
curately generate low-level textures but sometimes fails to
capture global image structures. Assume now that we have
access to image labelsy that specify spatial structures of in-
terest. Can we use these labels to train a better generator?
Presumably the simplest approach is to de“ne a •classicŽ
GAN over a joint variablex� = ( x, y):

V (G, D ) = Ex,y � pxy
[log(D(x, y))]+

[JointGAN] Ez� pz
[log(1 Š D(G(z)))] (2)

Factorization: Rather than learning a generative model for
the joint distribution overx, y, we can factorize it into
p(x, y) = p(y)p(x|y) and learn generative models for each
factor. This factorization makes intuitive sense since it im-
plicitly imposes a causal relation [13]: “rst geometric labels
are generated withGy : z �� y, and then image pixels are
generated conditioned on the generated labels,Gx : y �� x.
We refer to this approach asSGAN(supervised GANs), as
illustrated in Fig. 2-b,c:

V (G, D ) = Vy (Gy , Dy ) + Vx (Gx , Dx ) where

Vy (Gy , Dy ) = Ey� py
[log(Dy (y))]+

Ez� pz
[log(1 Š Dy (Gy (z)))] and

Vx (Gx , Dx ) = Ex,y � pxy
[log(Dx (x, y))]+

[SGAN] Ey� py
[log(1 Š Dx (Gx (y), y))] . (3)

In theory, one could also factorize the joint intop(x, y) =
p(x)p(y|x), which is equivalent to training a standard unsu-
pervised GAN forx and a conditional model for generating
labels fromx. The latter can be thought of as a semantic
segmentation network. We compare to such an alternative
factorization in our experiments, and show that conditioning
on labels “rst produces signi“cantly more accurate samples
of p(x, y).
Optimization: Because value functionV (G, D ) decouples,
one can train{ Dy , Gy } and{ Dx , Gx } independently:

min
G

max
D

V(G, D ) = min
Gy

max
D y

Vy (Gy , Dy )+

min
Gx

max
D x

Vx (Gx , Dx ) (4)

Using arguments similar to those from [10], one can
show that SGAN can recover true data distribution where
the discriminatorD and generatorsG are optimally trained:

Theorem 3.1. The global minimum of C(G) =
maxD V(G, D ) is achieved if and only ifq(y) = p(y) and
q(x|y) = p(x|y), wherep•s are true data distributions and
q•s are distributions induced byG.

Proof. Given in Supplementary 1.

End-to-end learning: The above theorem demonstrates
that SGANs will capture the true joint distribution over la-
bels and data if trained optimally. However, when not op-
timally trained (because of optimization challenges or lim-
ited capacity in the networks), one may obtain better results
through end-to-end training. Intuitively, end-to-end training
optimizesGx (y) on samples of labels�y produced by the ini-
tial generatorGy (z), rather than ground-truth labelsy. To
formalize this, one can regardGy andGx as sub-networks
of asinglelarger generator which is provided deep supervi-
sion at early layers:

Vx (Gx , Dx ) = Ex,y � pxy
[log(Dx (x, y))]+ (5)

Ez� pz
[log(1 Š Dx (Gx (Gy (z)) , Gy (z)))] .
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Figure 3: A fully-convolutional generatorGy (FCGAN).
Left: By changing the size of the input noise •imageŽ, our
FCGAN generator can synthesize arbitrarily large labels.
Right: Architecture of the fully-convolutional generator.

/�;

#

���
���

!�������
<�=�>

����	����������8#.	���	�	
����  �
#����	�����

( �
?

( �
@

( �
A

Figure 4: Multi-scale discriminators forDy andDx . Left:
We construct an image pyramid from the generated label
(or image), and feed patches from this pyramid to multiple
patch-based discriminators. Right: Single-scale discrimina-
tors with small receptive “elds (top) tend to produce ac-
curate local structure, but inaccurate repetitive global struc-
ture. Similarly, single-scale discriminators with large recep-
tive “elds produce accurate global structure, but fail to gen-
erate accurate local textures.

if we use a large patch-size, the output label image resem-
bles a roughly plausible global structure, but lacks local de-
tails (see Fig. 4 bottom-right).

To ensure the generators produce both globally and lo-
cally accurate labels and images, we propose a multi-scale
discriminator architecture. As illustrated in Fig. 4, the input
label (or image) is “rst down-sampled to different scales and
then fed into individual discriminators. The “nal discrimi-
nator output is a weighted summation of the discriminators
for each scales:

Vy (Gy , Dy ) = Ey� py
[
�

i � I

� i log(D i
y (� i (y)))]+ (7)

Ez� pz
[
�

i � I

� i log(1 Š D i
y (� i (Gy (z))))]

Here,i is the image pyramid level index,� i •s denote down-
sample transformations and� i •s are prede“ned coef“cients.

Conditional generator: Inspired by cascaded re“nement
networks (CRN) from [5], we design architecturally similar
generators for bothconditional image synthesis(y � x)
and conditional label synthesis(y1 � y2). Compared to
U-Net [23] which is originally adopted in pix2pix, CRN is
less prone to mode collapse. Please see more discussions in
Supplementary 2.

5. Experiments

As illustrated in Fig. 1-a, the proposed generative pro-
cess contains two parts: (1) noise� label, (2) label�
image. Thus our generative models output both labels and
images that are paired. In this paper, we also evaluate our
methods on these two levels: (1) labels, and (2) images.
Particularly, on the label level we locally compare theshape
featuresof single cells with real ones, and globally we com-
putestatisticsof multiple cells. On labels, we also evaluate
themodel capacity. On the image level, we measure image
qualities bysegmentation accuracy. Also, user studiesare
conducted on both levels.

5.1. Metrics and Baselines

Shape features:Following past work [30], we evaluate the
accuracy of synthetic images by (1) training a real/fake clas-
si“er, and (2) counting the portion of synthetic samples that
fool the classi“er. We train SVM classi“ers on a set of 89
features [30] that have been demonstrated to very accurately
distinguish cell patterns in FM images, and which are ex-
tracted fromlabel imagesof single cells with mitochondria.
Example statistics include 49 Zernike moment features, 8
morphological features, 5 edge features, 3 convex hull fea-
turesetc.
Global statistics:Such shape-based features used above are
typically de“ned for a single cell. We therefore also ex-
tracted global statistics across multiple cells, including dis-
tributions of cell size, mitochondria size and mitochondria
roundness [31]etc.
User studies:We design an interface similar to that in [24],
where generated images are presented with a prior of50%.
Intermediate labels are edited for better visual quality (sam-
ples shown in Fig. 6, cropped to512× 512).
Dataset: We used a publicly available VNC dataset [9]
that contains a stack of 20 annotated sections of the
Drosophila melanogaster third instar larva ventral nerve
cord (VNC) captured by serial section Transmission Elec-
tron Microscopy (ssTEM). The spatial resolution is4.6 ×
4.6× 50nm/pixel. It provides segmentation annotations for
cell membranes, glia, mitochondria and synapse. Through
out experiments, the “rst 10 sections are used for training
and the remaining 10 sections are used for validation.
Parametric baseline: To construct baselines for our pro-
posed methods, we compare to a well-establishedparamet-
ric modelfrom [30] for synthesizing ”uorescent images of
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Figure 11: Label synthesis, raw output without label edit-
ing. Non-FC, Non-MS and DCGAN all suffer from mode
collapse: Non-FC, patterns at four sides are the same across
samples, inner patterns are also repetitive; Non-MS, repeti-
tive patterns show at different locations; DCGAN, samples
are blurry and almost identical.

Dataset mean IU NLL

Non-Param 88.3% 0.112± 0.006
DSGAN 89.3% 0.108± 0.006
SGAN 87.2% 0.132± 0.006
Joint 81.8% 0.177± 0.013

Table 2: Segmentation accuracies for SGAN/DSGAN and
baselines. The mean IU and NLL of SGAN/DSGAN both
match those of real cell images. Non-FC and Non-MS have
high segmentation accuracy due to mode collapse. Unsu-
pervisedGAN is not shown because it does not provide
•ground-truthŽ label automatically

Segmentation accuracy:Following past work, we also
evaluate realism of an image by the accuracy of an off-the-
shelf segmentation network. We report mean IU and neg-
ative log likelihood (or NLL). Particularly, for SGAN and
DSGAN, we take their image generators and use them to
render images from a “xed set of pre-generated synthetic
labels, which is used as •ground-truthŽ for evaluating seg-
mentation accuracy. The reason is that eventually at test
time, we follow the same process of rendering synthetic im-
ages from generated labels. As shown in Table 2, DSGAN
has better segmentation accuracy than SGAN and Joint-
GAN, which is con“rmed by user studies in Fig. 9-b.
SGAN v.s. DSGAN:Perhaps it is not surprising that DS-
GAN performs better than SGAN, since it makes use of
an additional reconstruction loss that ensures that generated
images will produce segmentation labels that match (or re-
construct) those used to produce the generated images. In
theory, one could add such a reconstruction loss to SGAN.
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Figure 12: Synthetic image samples and segmentation ac-
curacies of different training approaches. We takeGx •s and
evaluate segmentation accuracies on a same set of gener-
ated labels.Gx of DSGAN yields higher segmentation ac-
curacy but does not show obvious advantage visually. DS-
GAN with a pre-trained reconstructor achieves the highest
score but not in terms of visual inspection.

However, Fig. 12 shows that SGAN+ reconstructor actually
has a lower mean IU (86.8%) than vanilla SGAN (87.2%).
Interestingly, because SGAN explicitly factors synthesis
into two distinct stages, one can evaluate the second stage
modulep(x|y) using synthetic labels�y. Under such an eval-
uation, a reconstruction loss helps (88.3%). In fact, we
found one could •gameŽ the segmentation metric by us-
ing a pre-trained reconstructor, producing a mean IU of
93.8%. We found these generated images to be less visually-
pleasing, suggesting that the generator tends to over“ts to
some common patterns recognized by the reconstructor.

6. Discussion

In this work, we explore methods towards supervised
GAN training, where the generative process is factorized
and guided by structural labels. New modi“cations for both
generators and discriminators are also proposed to alleviate
mode collapse and allow fully-convolutional generation. Fi-
nally, we demonstrate by extensive evaluation that our su-
pervised GANs can synthesize considerably more accurate
images than unsupervised baselines.
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