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The ongoing biotechnology revolution promises a complete understanding of
the mechanisms by which cells and tissues carry out their functions.  Central
to that goal is the determination of the function of each protein that is present
in a given cell type, and determining a protein's location within cells is critical
to understanding its function.  As large amounts of data become available
from genome-wide determination of protein subcellular location, automated
approaches to categorizing and comparing location patterns are urgently
needed.  Since subcellular location is most often determined using
fluorescence microscopy, we have developed automated systems for
interpreting the resulting images. We report here improved numeric features
for describing such images that are fairly robust to image intensity binning
and spatial resolution.  We validate these features by using them to train
neural networks that accurately recognize all major subcellular patterns with
an accuracy higher than previously reported.  Having validated the features
by using them for classification, we also demonstrate using them to create
Subcellular Location Trees that group similar proteins and provide a
systematic framework for describing subcellular location.

INTRODUCTION

Animal and plant cells have a number of subcompartments (each of which has a
different biochemical environment) and subcellular structures (such as the
cytoskeleton) which play an essential role in cell functions.  When characterizing a
protein, determining its location within cells is critical to understanding its
function.  A comprehensive, systematic approach to determining, describing
and/or predicting the subcellular location of proteins has not been taken.

A number of factors have limited progress in this area in the past.  The
first is ambiguity in the words used to describe subcellular locations.  Different
investigators use different terms to describe the same pattern and the same term is
often used to describe the patterns of proteins whose patterns are known not to be
identical.  Second, there have been no reliable, automated methods to map
between images depicting patterns and words describing them.  Third,
comprehensive knowledge of all possible locations (and combinations of
locations) that proteins may exhibit does not exist.   Restated, what is missing is a
grouping of all proteins such that the proteins in each group show an identical



Proceedings of the 2002 IEEE International Workshop on Neural Networks for Signal Processing,
September 4-6, 2002

68

distribution in cells (and thus the unique identifier of that group can be assigned to
each of the members).  This is necessary if location information is to be
satisfactorily included in biological databases, as has been done for protein
sequence and structure families.  Fourth, while methods for comparing protein and
nucleotide sequences (and structures) are well established and can be used directly
from database entries, comparing protein locations from database entries is not yet
possible.  The concepts of hierarchical organization and distance have not yet been
developed for location analysis.

Recently, progress has been made towards overcoming these limitations.
Laudable efforts towards addressing the first problem have been made by the Gene
Ontology Consortium.  However, words do not currently exist to describe the full
complexity of subcellular location.  Our group has addressed the second problem
by developing automated methods for determining subcellular location from
fluorescence microscope images.  Fluorescence microscopy is the most commonly
used method for analyzing subcellular location, and it is well-suited to high
throughput automation.  We began by developing sets of numerical features that
describe protein patterns in fluorescence microscope images.  We validated these
descriptors by using them to develop automated classifiers capable of determining
subcellular location from previously unseen images [1-4].  In this paper, we
describe improved sets of features that are robust to differences between images in
intensity and spatial resolution.  We also use these features to begin to address the
third and fourth problems by presenting the first systematic framework for
capturing complexity and similarity in protein subcellular location.

SOURCES OF DATA ON SUBCELLULAR LOCATION

With the development of automated, digital fluorescence microscopes over the
past 15 years, it is possible to collect the large numbers of fluorescent images for
diverse proteins that are required in order to develop, test and use automated
interpretation methods.  We have created three image datasets to this end
(summarized in Table 1).  The 2D HeLa dataset has been our primary reference
point for developing features and testing methods.  It covers all major subcellular
structures and organelles and was generated using fluorescent probes that bind to
molecules known to be located in those structures: a probe that binds to DNA to
label the nucleus, a probe that binds to microfilaments to label the actin
cytoskeleton, and antibodies against proteins located in the endoplasmic reticulum,
the Golgi apparatus, lysosomes, endosomes, mitochondria, nucleoli and
microtubules.

In addition to these datasets, a major National Cancer Institute-funded
project led by Jonathan W. Jarvik, Peter B. Berget and Robert F. Murphy is
beginning to provide images of the subcellular location of randomly-tagged
proteins in 3T3 cells.  Preliminary wide-field 2D images (40X, pixel size  0.475
microns) have been acquired for approximately 100 clones produced by random
CD-tagging [5-6].  By sequencing DNA adjacent to the tag, the tagged gene has
been identified (if it is present in current sequence databases).  A high resolution
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3D image database for these clones is currently being acquired by spinning disk
confocal microscopy.

Other approaches to random-tagging of genes have also been described
[7-9] and thus we can anticipate increased availability of detailed information on
protein location over the next few years.

SUBCELLULAR LOCATION FEATURES

We have designed a number of sets of numerical features – which we term SLF for
Subcellular Location Features – to describe protein subcellular distributions [4].
The types of feature used include Haralick texture features, Zernike moment
features, features derived from morphological image processing, and, in some
cases, features derived from comparison with a reference image of the DNA
distribution in the same cell.  The feature sets have been used with several
classification methods (linear classifiers, decision trees, k-nearest neighbor
classifiers, and one- and two-hidden-layer backpropagation neural networks or
BPNNs) and two-hidden-layer BPNNs were found to produce the best results for
the 2D HeLa dataset [3] (although the improvement over one-hidden layer
networks was within the estimated error).  A BPNN with 30 nodes in both hidden
layers achieved an average correct classification accuracy of 84% using a set of 37
features (termed SLF5) that was selected by stepwise discriminant analysis [10]
from a larger set of 84 features (SLF4) that includes all four types of features.

Dataset Number
of
classes

Microscopy
method

Objective Size of
pixel
region
in
original
field

Reference

2D
CHO

5 Deconvolution 100X 0.23
mm

Boland et
al [2]

2D
HeLa

10 Deconvolution 100X 0.23
mm

Boland
and
Murphy
[4]

3D
HeLa

11 Confocal 100X 0.0488
mm

Velliste
and
Murphy, in
preparation

Table 1. Image sources for development of methods for analysis of protein subcellular
location.
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This represents the best accuracy so far achieved for single 2D images of
all major organelle patterns.  By analyzing sets of images taken from the same
slide, the accuracy for these classes was improved to 98% [3,4].  It is important to
note that this classification approach can distinguish two Golgi proteins with very
similar patterns that cannot be distinguished by human observers.

Recently, exciting confirmation that protein subcellular location patterns
can be distinguished by automated classifiers with high accuracy has been reported
by Danckaert et al. [11]. They employed a Modular Neural Network classifier
(MNN, a topological variation on the back-propagation network), to classify 2D
images from confocal microscope stacks representing six different subcellular
location classes.  Instead of using features, the input to the MNN was composed of
raw pixel values from a downsampled version of the original image.  Each module
covered a specific area of the organelle image.  They found that the trained
classifier can recognize individual 2D images from previously unseen 3D image
stacks with 84% accuracy.  It is worth noting that the image set of Danckaert et al.
consisted of images from four different cell types.  We have also observed that
classifiers can be trained to recognize images from two cell types and two modes
of microscopy [12].

IMPROVING THE SUBCELLULAR LOCATION FEATURES

The classification accuracy achieved when using the previously described SLF
features is already high considering the amount of within-class variability of
patterns and the similarity between some pairs of classes. However, when creating
a systematics of all proteins in a cell type where thousands of proteins have to be
placed within an overall hierarchy, it is desirable to have the best possible
representation of the location patterns.  We have therefore developed an improved
version of our previously developed SLF3 features [4] in combination with six
new features described below.

SLF3 includes 13 Haralick texture features that we have subsequently
found to be overly sensitive to image pixel resolution and number of gray levels.
We therefore characterized the contribution of Haralick features to overall
classification accuracy after resampling in various ways (Table 2).  To do this, we
started with the 34 (out of 37) features from SLF5 that did not require a parallel
DNA image and determined average classification accuracy using a BPNN with a
single hidden layer of 20 nodes.  We did this for only eight of the ten classes in the
2D HeLa dataset, since we found that the original images of the two Golgi classes
(giantin and gpp130) are sufficiently different in intensity scale that the original
Haralick features can artificially discriminate them on that basis alone.  The result
was 86.4%.  We then determined average accuracy using a set in which the values
of the Haralick features were scrambled between images so that the number of
features used was still the same (34) but any information in the Haralick features
was lost.  The result was 81.4%.  Thus, the 12 Haralick features included in SLF5
provided a net benefit of 5.0%.  Average accuracies for sets containing Haralick
features calculated on downsampled images were also found and converted to net
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benefit.  (Note that in all cases the non-Haralick features were calculated using the
original images.)  We found that Haralick features at a resolution of 1.15 mm/pixel
and 32 gray levels were nearly as informative as those calculated on images of
higher resolution.  Perhaps surprisingly, rebinning to 1.15 mm/pixel but keeping
256 gray levels had a net benefit greater than that of the original features.  The
Haralick features calculated this way have the advantage of being essentially
insensitive to the original spatial resolution of an image, because fluorescence
microscope images generally come at a resolution higher than 1.15 mm/pixel and
therefore can always be down-sampled to this “standard” pixel size. In addition,
these features are essentially insensitive to the original intensity resolution of an
image because images are expected to have more than 256 graylevels, and can
therefore be re-quantized to the “standard” 256 levels.  Even if an original image
at high (e.g., 0.23 mm/pixel) spatial resolution only had gray-level values in the
range of 0 to 17 (the lowest observed in the 2D HeLa dataset), the down-sampled
version will be expected to have more than 256 gray levels since the gray level
counts of around 25 pixels would be summed in the course of spatial down-
sampling.

We therefore chose to define a new feature set, SLF7, incorporating the
78 features of SLF3 but with Haralick features from images downsampled to 1.15
mm/pixel and 256 gray levels.  We also added six new features:

SLF7.79: The fraction of cellular fluorescence not included in objects
SLF7.80: The average length of the morphological skeleton of objects
SLF7.81: The ratio of object skeleton length to the area of the convex hull of the

skeleton, averaged over all objects
SLF7.82: The fraction of object pixels contained within the skeleton
SLF7.83: The fraction of object fluorescence contained within the skeleton

Pixel
size

Number of gray-levels

(mm) 256 32 16
0.23 5.0 4.4 3.8
0.69 5.4 3.1 2.9
0.92 5.8 3.1 2.9
1.15 6.2 3.6 3.5

Table 2. Relative percent benefit of Haralick features calculated on of downsampled
and rebinned 2D HeLa images (excluding the giantin and gpp130 classes). At the
original resolution of 0.23 mm/pixel and 256 gray-levels the classification accuracy was
86.4%. After scrambling the Haralick features the accuracy decreased to 81.4%, giving
a relative benefit of 5.0% (shaded). A similar comparison was made after reducing the
resolution (using bi-linear interpolation) and/or the number of gray levels (by division
and integer rounding).
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SLF7.84: The ratio of the number of branch points in the skeleton to the length of
skeleton

SLF7.79 was added to measure the amount of fluorescence that is not
contained in discrete objects.  An object in SLF3 is defined as a contiguous region
of above threshold pixels.  The relatively dim fluorescence from small vesicles or
other structures dispersed throughout the cytoplasm is excluded from objects.  The
new feature is expected to provide an important distinction between proteins that
localize mainly to the same organelle but have different amounts in the cytoplasm.
Features SLF7.80 through 7.84 were defined based on the morphological skeleton
of objects obtained by thinning using a homotopic interval.

We validated these features (for all ten classes) using the 2D HeLa
dataset by selecting a subset (termed SLF8) via stepwise discriminant analysis and
then training and testing using a one-hidden layer BPNN. The 32 features selected
were SLF1.3, SLF3.74, SLF3.19, SLF7.79, SLF3.71, SLF3.76, SLF3.23, SLF1.9,
SLF1.2, SLF1.6, SLF3.68, SLF3.59, SLF1.8, SLF1.11, SLF3.47, SLF3.70,
SLF7.82, SLF1.1, SLF3.24, SLF3.66, SLF7.80, SLF3.69, SLF3.50, SLF1.5,
SLF7.84, SLF3.77, SLF1.10, SLF3.73, SLF3.26, SLF3.78, SLF3.72, and SLF1.7.
The results (Table 3) indicate a modest gain in performance over our previous
best, but, more importantly, demonstrate (1) that this performance can be obtained
with fewer, more robust features that are suitable for images from different image
sources, and (2) that this performance can be achieved without requiring a
reference DNA image.  If features derived from a DNA image are included,
stepwise discriminate analysis yields a set of 31 features that gives an average
accuracy of 88% (data not shown).  We also determined that if rebinning to only

Output of the ClassifierTrue
Class DNA ER Gia GPP LAM Mit Nuc Act TfR Tub
DNA 98% 2% 0% 0% 0% 0% 0% 0% 0% 0%
ER 0% 87% 0% 0% 3% 5% 0% 0% 1% 3%
Giantin 0% 0% 73% 25% 0% 0% 0% 0% 1% 0%
GPP130 1% 0% 26% 70% 0% 0% 1% 0% 1% 0%
LAMP2 0% 3% 0% 0% 84% 1% 0% 0% 12% 0%
Mitochondria 0% 4% 0% 0% 2% 88% 0% 0% 4% 2%
Nucleolin 2% 0% 2% 0% 3% 1% 93% 0% 0% 0%
Actin 0% 0% 0% 0% 0% 0% 0% 99% 0% 1%
TfR 0% 3% 1% 0% 14% 5% 0% 0% 74% 3%
Tubulin 0% 2% 0% 1% 0% 1% 0% 1% 3% 93%

Table 3. Confusion matrix for classification of images from the 2D HeLa dataset using SLF8
with a BPNN with a single layer of 20 hidden units over 10 cross-validation trials.  The
average correct classification rate was 86%.
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32 gray levels is used (without DNA features), the average accuracy is still 85%
(using 27 selected features).

AN EXAMPLE SUBCELLULAR LOCATION TREE

The demonstration that the SLF features can adequately describe the major
organelle patterns (and also distinguish closely related patterns) allows them to be
used to create a systematic framework for protein location.  Just as comparison of
DNA sequences can be used to create phylogenetic trees that group similar
sequences, the SLF features can be used to create "subcellular location trees" that
group similar location patterns.  To create such trees, we need a measure of the
degree of similarity between each pair of classes.  For this purpose, we have used
the new feature set SLF8.  We calculated a covariance matrix for all of the images
combined and mean feature vector for each class.  We then calculated the
Mahalanobis distance between each pair of classes, which is the multivariate
distance between the mean feature vectors weighted by the overall covariance
matrix.  These distances were used to create a dendrogram or hierarchical tree
(Figure 1), in which the distance between adjacent nodes is proportional to the
Mahalanobis distance between them.

As expected, the two Golgi proteins giantin and gpp130 were grouped
together, as were the similar patterns of LAMP2 (lysosomes) and transferrin

Figure 1.  Example Subcellular Location Tree for the 2D HeLa dataset.
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receptor (endosomes).  Further examination of Figure 1 confirms that it is
consistent with biological knowledge about the major organelle patterns.  For
example, the compartments that have a diffuse distribution throughout the
cytoplasm (lysosomes and endosomes) that is thought to involve traffic along
microtubules are grouped together with tubulin.  While Figure 1 only reflects ten
subcellular patterns and we cannot realistically imagine that the arrangement of
branches will remain unchanged as more classes are added, it illustrates the utility
of generating subcellular location trees (SLT) to organize information about
protein location.

CONCLUSIONS

We have shown previously that protein subcellular locations can be determined
automatically from fluorescence microscope images based on numeric descriptors.
We report some improvements in reliability of classification of 2D images,
primarily by making features less sensitive to image spatial and intensity
resolution and adding new skeleton features.  These improvements represent an
important step towards generalizing the approaches we have described to other cell
types and image sources.

Since the SLF features have been validated by using them to achieve
good classification accuracy for subcellular location patterns, it is possible to use
them as a basis for building trees to systematize protein subcellular location.  We
have presented an example Subcellular Location Tree that is consistent with
current biological knowledge.  We anticipate that our introduction of the concepts
of pattern hierarchy and distance measurements to subcellular location will enable
new directions in proteomics.  Distance measures could, for example, be used to
create "location neighbors" in databases.  Location distance measures could also
be combined with quantitative measures of sequence similarity as part of efforts to
understand the sequence motifs that determine subcellular locations.

It should also be noted that it is possible to use the SLF features for other
automated analyses of fluorescence microscope images, such as for automated
selection of representative images from a set [13], rigorously comparing two sets
of images [14], and finding and interpreting fluorescence microscope images in
journal articles or web pages [12].  The confluence of genomics, protein tagging
methods, automated microscopy and pattern interpretation methods is opening a
new frontier in computational biology.
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