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This file includes:

• Figure S1: Replication of performance comparison of pairwise protein interactions prediction as origi-
nally reported by Drew et al [1].

• Figure S2: Performance comparison of pairwise protein interactions prediction on BioPlex [3] data.

• Figure S3: Performance comparison of pairwise protein interactions prediction on Hein et al [2] data.

• Figure S4: Performance comparison of pairwise protein interactions prediction on Wan et al [4] data.

• Figure S5: Comparison of hu.MAP complexes against gold standard CORUM.

• Figure S6: Effect of protein complex refinement.

• Figure S7: Comparison between predicted and hu.MAP complexes.

• Figure S8: Distribution of enriched functional annotation as a function of complex score.

• Figure S9: Distribution of average STRING score as a function of complex score.

• Figure S10: Distribution of enriched functional annotation as a function of average STRING score.

• Figure S11: Distribution of minimum Pearson’s correlation coefficient as a function of complex score.

• Supplementary file 1 (Microsoft Excel format): Full list of predicted proteins complexes.

• References
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Supplementary figures
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Figure S1: Replication of performance comparison of pairwise protein interactions prediction
as originally reported by Drew et al [1]. For each method, we show precision-recall curve and area
under the curve (AUC) using our in-house implementation.
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Figure S2: Performance comparison of pairwise protein interactions prediction on BioPlex [3]
data. Figure shows precision-recall curve and area under the curve (AUC) under three different protein
pair models of our proposed method (blue) compared against a baseline approach which only uses Bioplex
specific features (red) and a previously proposed approach which adds weighted matrix model (MM) features
(magenta). (A) Figure shows the comparison results restricted to bait-prey pairs. (B) Figure shows the
comparison results restricted to bait-prey and prey-prey pairs. (C) Figure shows the comparison results on
all possible pairs in BioPlex for which we had data.
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Figure S3: Performance comparison of pairwise protein interactions prediction on Hein et al [2]
data. Figure shows precision-recall curve and area under the curve (AUC) under three different protein
pair models of our proposed method (blue) compared against a baseline approach which only uses Hein
et al specific features (red) and a previously proposed approach which adds weighted matrix model (MM)
features (magenta). (A) Figure shows the comparison results restricted to bait-prey pairs. (B) Figure shows
the comparison results restricted to bait-prey and prey-prey pairs. (C) Figure shows the comparison results
on all possible pairs in Hein et al for which we had data.
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Figure S4: Performance comparison of pairwise protein interactions prediction on Wan et al [4]
data. Figure shows precision-recall curve and area under the curve (AUC) of our proposed method (blue)
compared against a baseline approach which only uses Wan et al specific features (red) over all protein pairs.
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Figure S5: Comparison of hu.MAP complexes against gold standard CORUM. Figure shows
hu.MAP complexes (blue) across three different categories as a function of complex size. The categories are
(1) identical match to complex in CORUM (gray), (2) strict subset to a complex in CORUM (yellow), and
(3) potentially novel complex (orange).
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Figure S6: Effect of protein complex refinement. Figure shows the number of predicted complexes as
a function of parameter t′ using Algorithm 2. For each threshold, we show parameter t in parenthesis.
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Figure S7: Comparison between predicted and hu.MAP complexes. Figure shows F-weighted k-
clique score [1] of our method (solid lines with circles) as a function of average complex size for each t′

threshold. Figure also shows corresponding scores for hu.MAP (square) and an in-house implementation
that uses hu.MAP pairwise scores as input to Algorithms 1 and 2 (dotted lines with triangles).
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Figure S8: Distribution of enriched functional annotation as a function of complex score. For each
complex, we show the distribution of the largest p-value from enriched functional annotations (plotted as
− log(GOP-value)) computed using g:Profiler and further adjusted to the estimated occurrence of significant
enrichment from 10, 000 random complexes of the same size as a function of complex score. Additionally,
each complex is assigned to one of the following three classes based on varying degrees of overlap with
CORUM complexes: (i) full overlap with CORUM complex (orange circles), (ii) at least half the member
proteins overlap with CORUM complex (grey diamonds), and less than half of co-member proteins overlap
with CORUM complex (blue triangles).
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Figure S9: Distribution of average STRING score as a function of complex score. For each complex,
we show the distribution of the average STRING score as a function of complex score. Additionally, each
complex is assigned to one of the following three classes based on varying degrees of overlap with CORUM
complexes: (i) full overlap with CORUM complex (orange circles), (ii) at least half the member proteins
overlap with CORUM complex (grey diamonds), and less than half of co-member proteins overlap with
CORUM complex (blue triangles).
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Figure S10: Distribution of enriched functional annotation as a function of average STRING
score. For each complex, we show the distribution of the largest p-value from enriched functional annotations
(plotted as -log(GOP-value)) computed using g:Profiler and further adjusted to the estimated occurrence of
significant enrichment from 10, 000 random complexes of the same size as a function of average STRING
score. Additionally, each complex is assigned to one of the following three classes of based on varying degrees
of overlap with CORUM complexes: (i) full overlap with CORUM complex (orange circles), (ii) at least half
the member proteins overlap with CORUM complex (gray diamonds), and less than half of co-member
proteins overlap with CORUM complex (blue triangles).
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Figure S11: Distribution of minimum Pearson’s correlation coefficient as a function of complex
score. For each complex, we show the distribution of the minimum Pearson’s correlation coefficient as a
function of complex score. We further restrict the number of complexes to those with at least 50% of protein
members with an entry in the expression profiles. Additionally, each complex is assigned to one of the
following three classes based on varying degrees of overlap with CORUM complexes: (i) full overlap with
CORUM complex (orange circles), (ii) at least half the member proteins overlap with CORUM complex
(grey diamonds), and less than half of co-member proteins overlap with CORUM complex (blue triangles).
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Supplementary files

Supplementary file 1 Full list of predicted proteins complexes available in the following link:
http://murphylab.cbd.cmu.edu/software/2019_PPI/Uncharacterized_protein_complexes.xlsx
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