

Comparisor GO terms fo	n of or two proteins
GolgB1	GPP130
Integral to	Integral to
membrane;	membrane;
Golgi membrane;	Golgi cis-face;
Golgi stack;	Golgi lumen;
C I	endocytotic
STORE AND ADDRESS	transport vesicle
Carnegie Mellon	Source: SwissProt

genomic sequence of a gene, in which case regulatory sequences preserved

Carnegie Mellon

Principles of CD-Tagging (Jarvik & Berget) (CD = Central Dogma)

Carnegie Mellon

tagged proteins into 17 statisticallydistinct patterns in 3T3 cells

Carnegie Mellon

Carnegie Mellon

2D	Featu	res
IVIO	rpnoio	gical Features
	SLF No.	Description
	SLF1.1	The number of fluorescent objects in the image
	SLF1.2	The Euler number of the image
	SLF1.3	The average number of above-threshold pixels per object
	SLF1.4	The variance of the number of above-threshold pixels per object
	SLF1.5	The ratio of the size of the largest object to the smallest
	SLF1.6	The average object distance to the cellular center of fluorescence(COF)
	SLF1.7	The variance of object distances from the COF
from image to boostledge	SLF1.8	The ratio of the largest to the smallest object to COF distance
Carnegie Mellon		

20 SI) Features keleton Features
Skeleton fo	eatures
SLF No.	Description
SLF7.80	The average length of the morphological skeleton of objects
SLF7.81	The ratio of object skeleton length to the area of the convex hull of the skeleton, averaged over all objects
SLF7.82	The fraction of object pixels contained within the skeleton
SLF7.83	The fraction of object fluorescence contained within the skeleton
SLF7.84	The ratio of the number of branch points in the skeleton to the length of skeleton
from integr to broaded Carnegie Mello	# 1

	dge Features
SLF NO.	Description
SLF1.9	The fraction of the non-zero pixels that are along an edge
SLF1.10	Measure of edge gradient intensity homogeneity
SLF1.11	Measure of edge direction homogeneity 1
SLF1.12	Measure of edge direction homogeneity 2
SLF1.13	Measure of edge direction difference
The second	

	I	mag	ge a	t t0			Ima	ige	at t1	
-	4	2	2	2	4	 2	1	4	4	3
	1	2	4	1	1	1	4	2	3	3
	3	4	4	4	2	2	3	3	2	2
	2	2	3	3	2	4	4	2	2	3
	3	3	3	2	4	2	4	2	1	4
	Тe	emj	poi	ral			1	2	3	4
	co	-00	ccu	irre	ence	1	1	0	2	0
	m	atri	ix ((fo	r	2	2	1	1	5
in the second	🛚 in	nag	e t	hat	ļ	3	0	5	0	1
Carnegie Melle	[#] ch	an	ges	5)		4	0	3	3	1

Welcome, analysisuser	PSLID stands for Protein Subcellular Localization Image Database which collects and structures 2-D through 5-D fluorescence microscope images, annotations, and derived features in a relational schema.	
Home Search	It is designed so that interpretations as well as annotations can be queried. The annotations in PSLID, composed of 44 linked tables with publicly available descriptions, provide a thorough description of sample preparation and fluorescence microscope imaging.	
Sets Load	Image interpretation is achieved using <u>Subcellular Location Features</u> that have been shown to be capable of recognizing all major subcellular structures and of resolving patterns that cannot be distinguished by eye.	
Logout	Results of queries can be ranked by image typicality and statistical tests can be performed on sets of images (e.g., to determine whether a drug alters the distribution of a tagged protein).	
Reference	We anticipate that PSLID will serve as a common repository for microscopy images documenting the subcellular location of proteins.	

	Desphy Lab Schill Service
Welcome, cbi	TypIC Relevance FB SImEC SLIC Chastering Feature Set Management
Home Search Sets	Typical Image Chooser (TypIC) Rank: 2d region set: [2010 - Contrue
Logout	Relevance Feedback Select 2d region set: 2010.0
	Statistical Image Experiment Comparator (SIMEC) Compare 2d region set: 20thb T with 2d region set: 20thb T

	C	assifier Train	ing Results Report
			ing recourse receptore
Summary			
A support ve	ector machine o	lassifier has be	en trained successfully
Parameters:			
 Multic 	lass scheme: N	faxwin	
Training time	: 0.51 second		
Confusion	• Matrix of Output of th	Training e Classifier	
Confusion True Class	Matrix of Output of th 2dnuc	Training e Classifier 2der	
Confusion True Class 2dnuc 2der	A Matrix of Output of th 2dnuc 100 0	Training Classifier 2der 0 100	

Carnegie Mellon

Conclusions

- Methods well worked out for classifying and learning protein patterns (3D images better than 2D images)
 - both better than visual examination
- Can be applied at field, cell or object level
- Image database integrated with interpretation tools (PSLID)
- Information extractor for online text and images

(SLIF)

Carnegie Mellon

- Subcellular Location Patterns. International Review of Cytology 249:194-227.
 X. Chen, M. Velliste, and R.F. Murphy (2006). Automated Interpretation of Subcellular Patterns in Fluorescence Microscope Images for Location Proteomics
- Subcellular Patterns in Fluorescence Microscope Images for Location Proteomics. *Cytometry, in press.*

P. Nair, B.E. Schaub, K. Huang, X. Chen, R.F. Murphy, J.M. Griffith, H.J. Geuze, and J. Rohrer (2005). Characterization of the TGN Exit Signal of the human Mannose 6-Phosphate Uncovering Enzyme. J. Cell Sci. 118:2949-2956.

http://murphylab.web.cmu.edu/publications PSLID - Protein Subcellular Location Image Database

K. Huang, J. Lin, J.A. Gajnak, and R.F. Murphy (2002). Image Content-based Retrieval and Automated Interpretation of Fluorescence Microscope Images via the Protein Subcellular Location Image Database. *Proceedings of the 2002 IEEE International Symposium on Biomedical Imaging (ISBI 2002)*, pp. 325-328.

arnegie Mellon

to arnegie Mellon