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Basics of Machine Learning
for Image or Flow

Robert F. Murphy
Departments of Biological Sciences, Biomedical

Engineering, and Machine Learning, and

Contents
 The multivariate data matrix and its

descriptive statistics
 Comparison: Are two samples the

same?
 Parametric methods･Non-parametric

methods (including tree-based methods)
 Influence of sample size

Contents
 Classification: Which of a set of known

classes should a new sample be assigned to?
 Linear Discriminant Analysis
 Classification Trees
 Neural Networks
 Support Vector Machines
 Ensemble Classifiers
 Bayesian Classifiers

Contents
 Clustering: What classes are present in a

sample?
 Basic clustering methods
 Methods for determining number of clusters
 Consensus clustering methods
 Methods for comparing clusterings
 Co-clustering

 Graphical models
 Drawing inference on classes from more than one

instance

Multivariate Distance

Distance at the heart of Machine
Learning

 High dimensionality
 Based on vector

geometry – how
close are two data
points?

Array2

Array 1

Feat 1 Feat 2

Cell 1 1 4

Cell 2 1 3

…

Gene 1

Gene 2
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General Multivariate Dataset
 We are given values of p variables for n

independent observations
 Construct an n x p matrix M consisting

of vectors X1 through Xn each of length
p

Multivariate Sample Mean
 Define mean vector I of length p

I( j) =

M(i, j)
i=1

n

!

n
I =

X i

i=1

n

!

n

or

matrix notation vector notation

Multivariate Variance
 Define variance vector σ2 of length p

!
2
( j) =

M(i, j) " I( j)( )
i=1

n

#
2

n "1
matrix notation

Multivariate Variance
 or

!
2
=

X i " I( )
i=1

n

#
2

n "1
vector notation

Covariance Matrix
 Define a p x p matrix cov (called the covariance matrix)

analogous to σ2

cov( j,k) =

M(i, j) ! I( j )( )M(i,k) ! I(k)( )
i=1

n

"

n !1

Covariance Matrix
 Note that the covariance of a variable with

itself is simply the variance of that variable

cov( j, j) =!
2
( j)
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Univariate Distance
 The simple distance between the values of a

single variable j for two observations i and l is

M(i, j) !M(l, j)

Univariate z-score Distance
 To measure distance in units of

standard deviation between the values
of a single variable j for two observations
i and l we define the z-score distance

M(i, j) !M(l, j)

" ( j)

Bivariate Euclidean Distance
 The most commonly used measure of distance between two

observations i and l on two variables j and k is the Euclidean
distance

M(i, j) !M(l, j)( )
2
+ M(i,k) !M(l,k )( )2

Multivariate Euclidean
Distance
 This can be extended to more than two

variables

M(i, j) !M(l, j)( )
2

j=1

p

"

Effects of covariance on
Euclidean distance

Points A and B have similar Euclidean distances from the mean,
but point B is clearly “more different” from the population than
point A.

B
A

The ellipse
shows the
50% contour
of a
hypothetical
population.

Mahalanobis Distance
 To account for differences in variance

between the variables, and to account for
correlations between variables, we use
the Mahalanobis distance

D
2
= X i !X l( )cov-1 X i ! Xl( )

T
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Feature Selection and
Classification

 Human Trained Classifiers
 Traditional approach to development of

screening assays is to pick one or more
features to discriminate between “positive”
and “negative”

 Often use hand-developed rules as part of the
feature definition and/or the classification
process

 Machine Classifiers
 An alternative is to calculate a large set of

features and then use machine learning
methods to
 choose important features and
 rules to use them to discriminate positives and

negatives

Feature selection
 Having too many features can confuse a

classifier
 Can use comparison of feature distributions

between classes to choose a subset of
features that gets rid of uninformative or
redundant features

Feature Reduction
 Remove non-discriminative features
 Remove redundant features
 Benefits :

 Speed
 Accuracy
 Multimedia indexing

mn
X ! is the original data matrix, n points, m dimensions

Principal Component Analysis

x

y

! 

" X 
n# " m 

= X
n#m

A
m# " m 

(m’<m)
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Nonlinear PCA

x

y

Nonlinear PCA

x

y

Nonlinear PCA

! 

X
n"m

is the original data matrix, n points, m dimensions

x

y

)(
mnmn

XFX !"! ="

Kernel PCA

! 

K(xi,x j ) = "#(xi),#(x j )$

Kernel Function

! 

K(xi,x j ) = exp "
xi " x j

2

2# 2

$ 

% 

& 
& 

' 

( 

) 
) 

y’

x’

x

y

Independent Component Analysis

The joint distribution of the observed 
mixtures x1 and x2. 

The joint distribution of the independent
components s1 and s2 with uniform distributions.

s1

s2

x1

x2

! 

Sn"d = f (W # Xn"m +Wt )
All d components in S
are independent

Feature Selection
 Exhaustive search (2n!!!)
 Guided search

 Wrapper method
 Use the classification program as evaluation function

 Filter method
 Compute some global statistic from the training data

 A selection method
 Forward selection
 Backward elimination
 Forward-Backward selection
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Information Gain

!

!

=

"

#

#
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S

S
SEntropy
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2
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log

)()(

Gain Ratio =

2. Forward select features according to
    their gain ratio.

1. Calculate the entropy of the training data
    and the gain ratio of each feature.

Fractal Dimensionality
Reduction

1. Calculate the fractal dimensionality of the
    training data.

2. Forward-Backward select features
    according to their impact on the fractal
    dimensionality of the whole data.

Genetic Algorithm

1 1 0 0 1 0 0 1 1 0 0 0 … 0 1 1 0 0 0 0 1 1 0 1 0 …
Generation 1.1 Generation 1.2

1 0 0 0 1 0 0 1 1 1 0 0 …
Generation 2.1

0 1 1 0 0 1 0 1 1 0 1 0 …
Generation 2.2

Mutation

1 0 0 0 1 0 0 1 1 0 1 0 …
Generation 3.1 Generation 3.2

0 1 1 0 0 1 0 1 1 1 0 0 …

Crossover

Evaluation Function (Classifier)

Stepwise Discriminant Analysis
1. Calculate Wilk’s lambda and its corresponding F-

statistic of the training data.

2. Forward-Backward selecting features according
    to the F-statistics.

  

! 

"(m) =
W (X )

T (X )
,X = [X

1
,X

2
,K ,X

m
]

! 

Fto"enter = (
n " q "m

q "1
)(
1" #(m +1)

#(m +1)
)

Experiments
• 862 2D Hela cell fluorescence microscope images

representing 10 major subcellular location patterns.
• A multiclass support vector machine with gaussian

kernel (σ2=50, C=20) and 10-fold cross validation.
• Mother feature set: SLF7 (84 features).
• The accuracy for the whole SLF7 set is 85.2%.

Feature Reduction Results

88% (43)
86% (26)
87% (39)

87% (72)
83% (41)

86% (117)
75% (64)
83% (41)

85% (all 84)

Highest
Accuracy

(No.
Features)

0.01
0.16
0.02

0.08
N/N
0.38
N/N
N/N
N/N

P-value of paired t
test against the
result from the

original 84 features

18FDR
N/NGenetic

Algorithm

8SDA

11Informatio
n Gain

22ICA
17KPCA

N/NNLPCA
17PCA

N/NNone

Minimum No.
of

Features for
 80%

Accuracy

Method
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Classifier: Supervised
Learning
 Decision Tree
 Support Vector Machine

 Linear kernel
 Polynomial kernel
 Radial basis kernel

 Exponential radial basis
kernel

! 

K(xi,x j ) = xi,x j

! 

K(xi,x j ) = "xi,x j # +1( )
d

! 

K(xi,x j ) = exp "
xi " x j

2

2# 2
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& 
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NucleolarMitoch. Actin

TubulinEndosomal ???

Basic classification problem

-+

???

Simple two class problem Decision trees
 Pictorially, we have

num. attr#1 (e.g.., ‘area’)

num. attr#2
(e.g.., brightness)

+

-+
+ +

+
+

+

-

-
-

--

Slide courtesy of Christos Faloutsos

Decision trees
 and we want to label ‘?’

num. attr#1 (e.g.., ‘area’)

num. attr#2
(e.g.., brightness)

+

-+
+ +

+
+

+

-

-
-

--

?

Slide courtesy of Christos Faloutsos

Decision trees
 Make decisions using  information gain:

num. attr#1 (e.g.., ‘area’)

num. attr#2
(e.g.., brightness)

+

-+
+ +

+
+

+

-

-
-

--

?

50

40

Slide courtesy of Christos Faloutsos
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Decision trees
 Branch at each node

area<50

Y

+ bright. <40

N

- ...

Y N

‘area’

bright.

+

-++ +

+
+

+

-

-- --

?

50

40

Slide courtesy of Christos Faloutsos

Decision trees
 Goal: split address space in (almost)

homogeneous regions
area<50

Y

+ bright. <40

N

- ...

Y N

‘area’

bright.

+

-++ +

+
+

+

-

-- --

?

50

40

Slide courtesy of Christos Faloutsos

Problem: Classification
 we want to label ‘?’

num. attr#1 (e.g.., area)

num. attr#2
(e.g.., bright.)

+

-+
+ +

+
+

+

-

-
-

--

?

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

area

bright.

+

-
+

+
+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

area

bright.

+

-
+

+
+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

area

bright.

+

-
+

+
+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

+

-
+

+
+

+

-

-
-

-
-

?

area

bright.

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

+

-
+

+
+

+

-

-
-

-
-

?

area

bright.

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??
 A: the one with the widest corridor!

area

bright.

+

-
+

+
+

+

-

-
-

--

?

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??
 A: the one with the widest corridor!

area

bright.

+

-
+

+
+

+

-

-
-

--

?

‘support vectors’

Slide courtesy of Christos Faloutsos

Multiclass Support Vector
Machine

 maxwin: trains N support vector machines, each of which
separates class i from non-i.  Choose the predicted class
from the machine generating the highest output score.

 pairwise: trains all possible binary classifiers resulting N(N-
1)/2 machines in total. Each of these binary classifiers gives
a vote to the win class. The class with the most votes will be
selected as the predicted class.

 DAG: puts the N(N-1)/2 binary classifiers trained above into
a rooted binary DAG. Trace down the classifier tree from the
root node disregarding each lose class i at every node and
classify the test point as non-i.

Evaluating Classifiers

 Divide ~100 images for each class into training set
and test set

 Use the training set to determine rules for the
classes

 Use the test set to evaluate performance
 Repeat with different division into training and test
 Evaluate different sets of features chosen as most

discriminative by feature selection methods
 Evaluate different classifiers (NN, SVM, MOE)
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Flexible assay design
 Same master feature set, same feature

selection method, same classification engine
can be used for many different assays using
supervised learning instead of hand-tuning

2D Classification
Results

Overall accuracy = 92%

Output of the ClassifierTrue
Clas
s

95100100021Tub
281102120010TfR
001000000000Act
01099000000Nuc
33009200030Mit
010001880100Lam
010200821400Gpp
02000079100Gia
10002000970ER
00000000199DNA

TubTfRActNucMitLamGppGiaERDNA

Human Classification Results

Overall accuracy = 83% (92% for major patterns)

Output of the ClassifierTrue
Clas
s

93030000030Tub
083000300130TfR
001000000000Act
000100000000Nuc
30009600030Mit
020000730600Lam
030000335400Gpp
000033365600Gia
00006300900ER
000000000100DNA

TubTfRActNucMitLamGppGiaERDNA

Computer vs. Human

40

50

60

70

80

90

100

40 50 60 70 80 90 100

Computer Accuracy

H
u

m
a
n

 A
c
c
u

r
a
c
y

3D Classification
Results

Overall accuracy = 98%

Output of the ClassifierTrue
Clas
s

98000000020Tub
29600020000TfR
001000000000Act
000100000000Nuc
00209600200Mit
20000954000Lam
00000496000Gpp
000000010000Gia
000000001000ER
00000000298DNA

TubTfRActNucMitLamGppGiaERDNA
Clustering of Proteins by
Subcellular Location
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Unsupervised clustering algorithms

Many different types:
• Hierarchical clustering
• k – means clustering
• Self-organising maps
• Hill Climbing
• Simulated Annealing

All have the same three basic tasks of:
1. Pattern representation – patterns or features in the data.
2. Pattern proximity – a measure of the distance or

similarity defined on pairs of patterns
3. Pattern grouping – methods and rules used in grouping

the patterns

Hierarchical vs. k-means
clustering
 Hierarchical builds tree sequentially

from the closest pair of points (either
genes or conditions)

 k-means starts with k randomly chosen
seed points, assigns each remaining
point to the nearest seed, and repeats
this until no point moves

Location Proteomics
 Tag many proteins

 We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell

Principles of CD-Tagging
(CD = Central Dogma)

Exon 1 Intron 1

Exon 2

Genomic DNA +
CD-cassette

Exon 1 Tag

Exon 2

Tagged DNA
CD cassette

Tag Tagged mRNA

Tagged Protein
Tag (Epitope)

Tag

Location Proteomics
 Tag many proteins

 We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell

 Isolate separate clones, each of which produces express one
tagged protein

 Use RT-PCR to identify tagged gene in each clone
 Collect many live cell images for each clone using spinning

disk confocal fluorescence microscopy

What
Now?

Group
~90

tagged
clones

by
pattern
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Solution: Group them
automatically

 How?
 SLF features can be used to measure

similarity of protein patterns
 This allows us for the first time to create a

systematic, objective, framework for
describing subcellular locations: a
Subcellular Location Tree

 Start by grouping two proteins whose patterns
are most similar, keep adding branches for
less and less similar patterns

Protein name

Human description

From databases

http://murphylab.web.cmu.edu/services/PSLID/tree.html

Clustering Protein Subcellular
Location Patterns

 Image acquisition
 Feature calculation
 Feature selection
 Distance selection
 Clustering/partitioning
 Evaluation

Nucleolar Proteins
Punctate Nuclear

Proteins
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Predominantly
Nuclear

Proteins with
Some Punctate

Cytoplasmic
Staining

Nuclear and Cytoplasmic Proteins with Some
Punctate Staining

Plasma
Membrane

Proteins with
some Punctate

Cytoplasmic
Staining

Uniform

Bottom: Visual Assignment to
“known” locations

Top: Automated Grouping and
Assignment

Protein name

http://murphylab.web.cmu.edu/services/PSLID/tree.html

Significance
 Can subdivide clusters by

observing response to drugs,
oncogenes, etc.

 These represent protein location
states

 Base knowledge required for
modeling (systems biology)

 Can be used to identify potential
protein interactions
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Graphical Models for
Subcellular Pattern Analysis

Graphical Models
for Improving Pattern Recognition

 Since cells with same location pattern are
often clustered together, considering multiple
cells may improve the discrimination of similar
location patterns.

 We developed a novel graphical model to
describe the relationship between multiple
cells in a field.

 The classification of a cell is influenced by the
classification results of neighboring cells.

Multiple Cells in an Image
1. Segmentation

3. Cell Classification
2. Feature Extraction

0.071855
0.047583
0.051316
0.015094

0.091835
0.039019
0.048193
0.013216

0.089381
0.049841
0.058387
0.018215

0.073814
0.058718
0.052951
0.014918

0.078173
0.039143
0.061873
0.021942

0.073813
0.041834
0.053829
0.019183

 Individually
 Dependently

o Majority Voting
Homogeneous Field
accuracy: 98%
(Boland and Murphy, 2001)

o Local Dependence 
Heterogenous Field

ActinER

ER

ER

ER

GolgiER

ER

Golgi

ER

Value of Graphical Model
 Graphical models can be used to improve accuracy

of classification of heterogeneous images
 Each individual cell is still classified, and minor or

unusual cells are not “lost”
 Appropriate for cell array experiments (e.g., RNAi)

where heterogeneity expected
 Appropriate for tissue images

Bayes Decision Theory

x:   features
wj: jth class

Bayes Rule

)(

)()|(
)|(

xp

wpwxp
xwp

jj

j
=

evidence

priorlikelihood
posterior

!
=

Bayes Decision Theory

Training

)(

)()|(
)|(

xp

wpwxp
xwp

jj

j
=

Train a classifier given training images of each class

x:   features
wj: jth class
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Assign x to the class with max posterior probability

Bayes Decision Theory

Testing

)(

)()|(
)|(

xp

wpwxp
xwp

jj

j
=

x:   features
wj: jth class

)(

)()|(
)|(

xp

wpwxp
xwp

jj

j
=

Bayes Decision Theory

Testing

Normally, prior distribution assumed or determined ahead
of time (prior!). Our idea: adjust priors to reflect the
neighbors of a cell (iteratively).
> The posterior probability changes to reflect neighbors

x:   features
wj: jth class

Graphical Cell Model

1

2

5

6
3 4

7

Consider multiple cells in a field

Graphical Cell Model

Connect cells if they are close enough 
(either in physical space or feature space)

1

2

5

6
3 4

7

Links are decided by dcutoff

Graphical Cell Model

1

2

5

6
3 4

Class1

Class2

0.81

0.620.16

0.55

0.76

0.53

7

Assign each cell a label and a confidence measure

Class3

0.76

Graphical Cell Model

1

2

5

6
3 4

Class1

Class2

0.81

0.620.16

0.55

0.76

0.53

7

Class3

0.76

Consider 4 Influenced by 
5

6
3 not by 7

Assign each cell a label and a confidence measure
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Graphical Cell Model

1

2

5

6
3 4

Class1

Class2

0.81

0.620.16

0.55

0.76

0.53

7

Class3

0.76

Initial Priors(Uniform)      0.33           0.33          0.33

Class1 Class2 Class3

New Priors

Consider 4 Influenced by 
5

6
3 not by 7

Assign each cell a label and a confidence measure

Graphical Cell Model

1

2

5

6
3 4

Class1

Class2

0.81

0.620.16

0.55

0.76

0.53

7

Class3

0.76

Initial Priors(Uniform)      0.33           0.33          0.33

Class1 Class2 Class3

Consider 4 Influenced by 
5

6
3 not by 7

Assign each cell a label and a confidence measure

New Priors       0.40           0.58          0.02

New Priors       0.40           0.58          0.02

Graphical Cell Model

1

2

5

6
3

Class1

Class2

0.81

0.62

0.55

0.76

0.53

7

Class3

0.76

Class1 Class2 Class3

Classify the cell with the new priors

4
0.160
4

Graphical Cell Model

1

2

5

6
3

Class1

Class2

0.81

0.62

0.55

0.76

0.53

7

Class3

0.76
4
0.160
4

Iterate until no label changes

After Class1

Class2

1

4

Class3 7

2

5

3

6

Before Class1

Class2

1

Class3 7

2

5

3

6

4

Evaluating Prior
Updating Scheme

 Use the 10 class 2D
HeLa data set to create
synthetic multi-cell
images where the class
of each individual cell is
known

 Compare performance
to base (single cell)
classifier (SVM)

N1=number of cell in class 1, N1+N2=12

Results for
2-Class Images

dissimilar classes

similar classes

all classes
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