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Goals of this section of short

‘ course

= Introduce image analysis and machine
learning methods

= lllustrate in context of development of
system for automated learning of
subcellular patterns

= Describe utility in basic research and
expectation they will incorporated into
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Feature Calculation Lecture

‘ Image analysis topics

= Introduction to subcellular pattern analysis and

recommendations regarding image acquisition for
subsequent automated analysis

methods for automated segmentation of multi-cell
images into single cell regions

types of features used to describe subcellular
patterns and methods for extraction of these
features (especially morphological, texture and
wavelet features)

» statistical and machine learning methods for

comparison, classification and clustering of
patterns

= publicly available image database systems
| Carnegie Mellon

Segmentation of Images into

‘Single Cell Regions
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Feature Calculation Lecture

‘ Approaches

= \Voronoi
Watershed
Seeded Watershed
Level Set Methods
Graphical Models
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‘ Voronoi diagram

Given a set of seeds,
draw vertices and

edges such that each
seed is enclosed in a
single polygon where ~ °¢f
each edge is 0s
equidistant from the ~ ost
seeds on either side. o3}
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Voronoi Segmentation

‘ Process

Threshold DNA image (downsample?)
Find the objects in the image

Find the centers of the objects

Use as seeds to generate Voronoi
diagram

Create a mask for each region in the
Voronoi diagram

Remove regions whose object that does
H . not have intensity/size/shape of nucleus
| "\I ‘ ‘\ [ “
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Original DNA image
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After thresholding and removing small objects

After triangulation

3D IP workshop 2005 - R.F. Murphy



Feature Calculation Lecture

3D IP workshop 2005 - R.F. Murphy



Feature Calculation Lecture

Watershed Segmentation

= Intensity of an i
image ~ elevation in %=
a landscape
= Flood from minima

= Prevent merging of
“catchment basins” 9
= Watershed borders http://www.ctic.purdue.edu/KYW/glossary/whatisaws.html
built at contacts
between basins

|Carnegie Mel lon

‘ Watershed Segmentation

= If starting image has intensity centered on the cells
(e.g., DNA) that you want to segment, invert image
so that bright objects are the sources

= If starting image has intensity centered on the
boundary between the cells (e.g., plasma
membrane protein), don’t invert so that boundary
runs along high intensity
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Seeded Watershed
‘ Segmentation

Drawback is that the number of regions may not
correspond to the number of cells

= Seeded watershed allows water to rise only from
predefined sources (seeds)

= If DNA image available, can use same approach to
generate these seeds as for Voronoi segmentation

= Can use seeds from DNA image but use total
protein image for watershed segmentation

i
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Seeded Watershed
‘ Segmentation

Original image Seeds and boundary

Applied directly to protein image (no DNA image)

i " \|“||”HMW”HHW Note non-linear boundaries
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‘ Level Set Methods

= Level set function ¢(x,y,t)
= Positive inside the contour (mountain)
= Negative outside the contour (valley)

= Zero on the contour, C embedded at its
zero level (sea level)
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‘ Graphical Model Methods

= Assumptions

= Two classes of pixels: those part of a cell or part of
the background

= Each pixel is likely to be the same class as its
neighbors

= Have information about where cells are likely to be
and where boundaries (edges) are likely to be

= Probability that two pixels are same class related

to probability that there is an edge between them

iy
|Carnegie Mellon
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1. Start with initial 2. Run 18t BP, separate

DNA and edge potential foreground and background.
Pick the most confidence
foreground pixel p, set its
DNA potential high

“ i most confident 5. Iteration stops when the
o “fefegfoﬂn@“éﬁxel Run BP, find  segmented cell is too small

| CarnenothbleHibiand iterate...

3. Run 2nd BP, assign the
pixels with the same class of
p to be segmented_cell1,
then set these pixels to be
background

6. The resulting masks

0yl
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Feature Extraction for
Subcellular Pattern Analysis
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This is a micro-
tubule pattern
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Assign proteins to major subcellular structures using fluorescent microscopy
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‘ The Challenge

= Problem is hard because different
cells have different shapes, sizes,
orientations

= Organelles/structures within cells are
not found in fixed locations

n Therefore, describe each image
numerically and use the
descriptors
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Feature-Based, Supervised
‘ Learning Approach

1. Create sets of images showing the location of
many different proteins (each set defines one
class of pattern)

2. Reduce each image to a set of numerical
values (“features”) that are insensitive to
position and rotation of the cell

3. Use statistical classification methods to
‘learn” how to distinguish each class using

H\“U'HVWG features
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Subcellular Location Features
(SLF)

= Combinations of features of different types
that describe different aspects of patterns in
fluorescence microscope images have been
created

= Motivated in part by descriptions used by
biologists (e.g., punctate, perinuclear)

= To ensure that the specific features used for a
given experiment can be identified, they are
referred to as Subcellular Location Features

ﬂm‘hf) and defined in sets (e.g., SLF1)
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‘ Feature levels and granularity

Single Single Single
Object Cell Field

\ 4 A\ 4 A\ 4
Object Cell Field
—>( g —> > —>
features features ® features
b ®Wafge operator

Granularity: 2D, 3D, 2Dt, 3Dt
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‘ Thresholding

= First type of feature is morphological

= Morphological features require some method
for defining objects

= Most common approach is global
thresholding

= Methods exist for automatically choosing a
global threshold (e.g., Riddler-Calvard
method)
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Ridler-Calvard Method

= Find threshold that is equidistant from
the average intensity of pixels below
and above it

= Ridler, T.W. and Calvard, S. (1978)
Picture thresholding using an iterative
selection method. IEEE Transactions on
Systems, Man, and Cybernetics 8:630-
632.
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‘ Ridler-Calvard Method

Blue line Ridler-Calvard Illustration

shows
histogram of
intensities,
green lines 0.2
show average
to left and
right of red
line, red line
shows
midpoint
between them 0.05
or the RC
th‘rgsh‘old J
itk i (il ‘w”‘ 0 20 w K
oo zerage 2o hirolidgt Pixel Value
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Ridler-Calvard Method

L original thresholded
o I‘H A

T oo 2onage 2o dwonledis
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Otsu Method

= Find threshold to minimize the
variances of the pixels below and above
it

= Otsu, N., (1979) A Threshold Selection
Method from Gray-Level Histograms,
IEEE Transactions on Systems, Man,
and Cybernetics, 9:62-66.

Carnegie Mellon
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Feature Calculation Lecture

‘ Adaptive Thresholding

= Various approaches available

= Basic principle is use automated methods
over small regions and then interpolate to
form a smooth surface

|Carnegie Mellon

Suitability of Automated
Thresholding for Classification

= For the task of subcellular pattern analysis,
automated thresholding methods perform
quite well in most cases, especially for
patterns with well-separated objects

= They do not work well for images with very
low signal-noise ratio

= Can tolerate poor behavior on a fraction of
images for a given pattern while still

|Carnegie Mellon
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‘ Object finding

= After choice of threshold, define objects
as sets of touching pixels that are
above threshold

flantald D "‘l""“‘l"n"f‘jl‘ljz
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2D Features
‘ Morphological Features

SLF No. Description

SLF1.1 The number of fluorescent objects in the image

SLF1.2 The Euler number of the image

SLF1.3 The average number of above-threshold pixels per
object

SLF1.4 The variance of the number of above-threshold pixels
per object

SLF1.5 The ratio of the size of the largest object to the smallest

SLF1.6 The average object distance to the cellular center of
fluorescence(COF)

i | SLF1.7 The variance of object distances from the COF

. P "“‘I"!L ‘
SM i I E‘Hl””:mll ’HU'MHH\»““* SLF1.8 The ratio of the largest to the smallest object to COF
A oo 2o 0 bl distance
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2D Features
‘ Morphological Features
E

[

108 # of objects 6

Any of these
83 Average size of objects 232 « features could be
TR . used to
L sl Average distance to COF 4+ distinguish these
P o s 1o bl two classes

| Carnegie Mellon

Suitability of Morphological
Features for Classification

= Images for some subcellular patterns, such
as those for cytoskeletal proteins, are not
well-segmented by automated thresholding

= When combined with non-morphological
features, classifiers can learn to “ignore”
morphological features for those classes

Ll
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2D Features
‘ DNA Features

DNA features (objects relative to DNA reference)

SLF No. Description

SLF2.17 The average object distance from the COF of the DNA image
SLF2.18 The variance of object distances from the DNA COF

SLF2.19 The ratio of the largest to the smallest object to DNA COF distance
SLF2.20 The distance between the protein COF and the DNA COF

SLF2.21 The ratio of the area occupied by protein to that occupied by DNA
SLF2.22 The fraction of the protein fluorescence that co-localizes with DNA

L oo GG
i
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2D Features
‘ Skeleton Features

Skeleton features

SLF No. Description

SLF7.80 The average length of the morphological skeleton of objects

SLF7.81 The ratio of object skeleton length to the area of the convex hull of the
skeleton, averaged over all objects

SLF7.82 The fraction of object pixels contained within the skeleton

SLF7.83 The fraction of object fluorescence contained within the skeleton

SLF7.84 The ratio of the number of branch points in the skeleton to the length of
skeleton
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‘ lllustration — Skeleton

e o

TG
1y

Wu\ i

oo soage lo o »‘nﬁl"’%@

|Carnegie Mellon

2D Features
‘ Edge Features

Edge features

SLF No. Description

SLF1.9 The fraction of the non-zero pixels that are along an edge
SLF1.10 Measure of edge gradient intensity homogeneity

SLF1.11 Measure of edge direction homogeneity 1

SLF1.12 Measure of edge direction homogeneity 2

SLF1.13 Measure of edge direction difference

W\HH i I
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2D Features
Hull Features

Convex hull (geometrical) features

SLF1.14 The fraction of the convex hull area occupied by protein fluorescence
SLF1.15 The roundness of the convex hull
SLF1.16 The eccentricity of the convex hull

Wnu Y
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2D Features
Zernike Moment Features
l' ' (SLF 3.17-3.65)
i ~* Shape similarity of protein image
to Zernike polynomials Z(n,l)

* 49 polynomials and 49 features

left: Zernike polynomials
A:Z(2,0)

B:Z(4,4)

C: Z(10,6)

right: lamp2 image
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2D Features
Haralick Texture Features

‘ (SLF7.66-7.78)

= Correlations of adjacent pixels in gray level images
= Start by calculating co-occurrence matrix P:
N by N matrix, N=number of gray level.

Element P(i,j) is the probability of a pixel with value i
being adjacent to a pixel with value j

= Four directions in which a pixel can be adjacent

= Each direction considered separately and then
features averaged across all directions

o
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Example image with 4 gray levels

42224
‘ 12411
344 42
Co-occurrence [ ol ol 3 3 2
Matrices 33324
12|34 12|34 11234 112|314
11012113 |1]2]{1({0{1] [1|0(1]{0|3| |1|0]|3|0|1
2124|414 |12|1/6|3/4]| [2]|1|4|3|3]| |2|3|0/4|4
M3|1]/4(2|2| |3|/0|3/6|2]| [3]0(3]4(1| |3]/0|4|0|3
lal2(3|2|2| |4|1]4]2|4]| |4]3[3|1]2] [4]1|4]3]2
(Carregrvremomr—
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‘ Pixel Resolution and Gray Levels

= Texture features are influenced by the
number of gray levels and pixel
resolution of the image

= Optimization for each image dataset
required

= Alternatively, features can be calculated

for many resolutions
i DUl
Yrom 2o :*Muﬂlﬂf@i
|Carnegie Mellon

‘ Wavelet Transformation - 1D

( X |

/\

| Al | D1 |
//‘\\\

L A2 |[E

A: approximation (low frequency)

2 |

D: detail (high frequency)
X=A3+D3+D2+D1
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Feature Calculation Lecture

‘ 2D Wavelets - intuition

= Apply some filter to detect edges
(horizontal; vertical; diagonal)

@ O
QO

|Carnegie Mellon After Christos Faloutsos
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‘ 2D Wavelets - intuition

= Recurse

® O 35O
QO QO

Lo sovage o honlidit
|Carnegie Mellon Slide courtesy of Christos Faloutsos
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‘ 2D Wavelets - intuition

= Many wavelet basis functions (filters):
= Haar
=« Daubechies (-4, -6, -20)

= http://www331.jpl.nasa.gov/public/wave.
html o

it gt it “;l“‘
il “»'Lll' MJM@
|Carnegie Mellon

Slide courtesy of Christos Faloutsos

‘ Daubechies D4 decomposition

— Original image Wavelet Transformation
‘\‘”w‘r' YTiihit 1\
il :M,lHilbWH“%
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2D Features
Wavelet Feature Calculation

= Preprocessing
= Background subtraction and thresholding
= Translation and rotation

= Wavelet transformation
= The Daubechies 4 wavelet
= 10 level decomposition
= Use the average energy of the three high-
frequency components at each level as features

i
" I‘]M

|Carnegie Mellon

Gabor Function

Gahor Function

One Dimensional

Can extend the function to generate Gabor filters by
rotating and dilating

s
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2D Features

‘ Gabor Feature Calculation

Preprocessing same as Wavelet

30 Gabor filters were generated using five
different scales and six different orientations

Convolve an input image with a Gabor filter

Take the mean and standard deviation of the
convolved image

60 Gabor texture features

Ll

3D Features
‘ Morphological (SLF-9)

i T

= 28 features, 14 from protein objects and

14 from their relationship to
corresponding DNA images

= Based on number of objects, object size,
object distance to COF

= Corresponding DNA image required

At ‘|:“‘r“‘\‘\1‘
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‘ SLF-14

= 14 SLF-9 features that do not require DNA
images

= 2 Edge features
= Ratio of above threshold pixel along an edge
= Ratio of fluorescence along an edge

= 26 3D Haralick texture features
= Gray level co-occurence matrix for 13 directions
» Calculate 13 Haralick statistics for each direction

= Average each statistic over 13 directions and use
Jill, mean and range as separate features: result is 26
. features

|Carnegie Mellon

i

‘ SLF-17

= A feature subset with 7 features
selected from SLF-14 at 256 gray levels
and 0.4 micron pixel resolution
= 1 morphological feature
= 1 edge feature
= 5 texture features

S oo ol
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‘ Object level features (SOF)

= Subset of SLFs calculated on single
objects

Index Feature Description

SOF1.1  Number of pixels in object

SOF1.2  Distance between object Center of Fluorescence (COF) and DNA COF
SOF1.3  Fraction of object pixels overlapping with DNA

SOF1.4 A measure of eccentricity of the object

SOF1.5  Euler number of the object

SOF1.6 A measure of roundness of the object

SOF1.7  The length of the object’s skeleton

SOF1.8  The ratio of skeleton length to the area of the convex hull of the skeleton
SOF1.9  The fraction of object pixels contained within the skeleton

SOF1.10 The fraction of object fluorescence contained within the skeleton
SOF1.11 The ratio of the number of branch points in skeleton to length of skeleton

i

‘ Field level features (SLF21)

= Subset of SLFs that do not require
segmentation into single cells
= Average object features
= Texture features (on whole field)
= Edge features (on whole field)
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! Basics of Machine Learning

| ' ﬂ)‘

i

Carnegie Mellon

‘ Contents

= The multivariate data matrix and its
descriptive statistics

= Comparison: Are two samples the
same?

» Classification: Which of a set of known
classes should a new sample be
assigned to?

= Clustering: What classes are present in

mﬂm H\Mllnl% sample?

.Mgle Mellon
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! Multivariate Distance

Carnegie Mellon

Distance at the heart of Machine

‘ Learning
Array 1 Array 2

Gene 1 1 4
= High dimensionality Gene2 | 1 3
= Based on vector
geometry — how | T
close are two data O
. Genel—_r‘ \|
points? Sty
,———.‘ """"
2 e
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Sample 1  sample 2
Eventa al 2
Eventb bl b2
o Distance
Sample 1
bl |
A
a2 b2  Sample?2
PRV AR
il 0kt e | \HJ
g B

‘ General Multivariate Dataset

= We are given values of p variables for n
independent observations

= Construct an n x p matrix M consisting
of vectors X, through X, each of length

p

e
[Carnegie Mellon

3D IP workshop 2005 - R.F. Murphy



Feature Calculation Lecture

‘ Multivariate Sample Mean

= Define mean vector I of length p

n 0 O n
I(]) _ =1 or I = i=1
n n
matrix notation vector notation

|Carnegie Mellon

‘ Multivariate Variance

= Define variance vector ¢? of length p

2

(MG, j) - 1(j))

20 _ =l
o (j) =
n-1
matrix notation

A Vel
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‘ Multivariate Variance
m Or
n 2
(X;-1)
02 _ i=l
n-1
vector notation
g i
_ Carnewg?z Mellon

‘ Covariance Matrix

= Define a p x p matrix cov (called the covariance matrix)
analogous to o?

S (M(i, j) - 1)) (M. k) - (k)

i=1

cov(j,k) = —

it i) it “;l“‘
EJ\M “»'Lll' MJM@
|Carnegie Mellon

3D IP workshop 2005 - R.F. Murphy



Feature Calculation Lecture

‘ Covariance Matrix

= Note that the covariance of a variable with
itself is simply the variance of that variable

cov(j,j) =0 (j)

11‘

_ (' arnegle Mellon

‘ Univariate Distance

= The simple distance between the values of a
single variable j for two observations j and / is

M(, j) - M, j)

11‘

_ (' arnegle Mellon
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‘ Univariate z-score Distance

= To measure distance in units of
standard deviation between the values
of a single variable j for two observations
i and [ we define the z-score distance

MG, j) -M({,))
o(Jj)

p, ARG
O A
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‘ Bivariate Euclidean Distance

= The most commonly used measure of distance between two
observations i and / on two variables j and k is the Euclidean
distance

VMG, ) - ML) + (M, k) - M(Lk))?

IR

|Carnegie Mellon
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Multivariate Euclidean

‘ Distance

= This can be extended to more than two
variables

2 (MG, j) - MU, )’

il i) 'J“lu"il““
Guu‘d “"M Mﬁi’w!@
|Carnegie Mellon

Effects of covariance on
‘ Euclidean distance

The ellipse

shows the

50% contour

of a

hypothetical

population.
Points A and B have similar Euclidean distances from the mean,
but point B is clearly “more different” from the population than
point A.

B
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‘ Mahalanobis Distance

= To account for differences in variance
between the variables, and to account for
correlations between variables, we use
the Mahalanobis distance

D’ =(X,-X,)eov (X, - X,)"

it gt it “;l“‘
il “»'Lll' MJM@
|Carnegie Mellon

Feature Selection and
!Classification

0
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‘ Human Trained Classifiers

= Traditional approach to development of
screening assays is to pick one or more
features to discriminate between “positive”
and “negative”

= Often use hand-developed rules as part of the
feature definition and/or the classification
process

WHH i“\ MHHHH iy

oo Zorasge

|Carnegie Mel lon

‘ Machine Classifiers

= An alternative is to calculate a large set of
features and then use machine learning
methods to
= choose important features and

= rules to use them to discriminate positives and
negatives

Wnu w\ \m\mu I
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‘ Feature selection

= Having too many features can confuse a
classifier

= Can use comparison of feature distributions
between classes to choose a subset of
features that gets rid of uninformative or
redundant features

T Mwmu w
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‘ Feature Selection Methods

= Principal Components Analysis

= Non-Linear Principal Components
Analysis

= Independent Components Analysis

= Information Gain

= Stepwise Discriminant Analysis

; \\.l\ Genetic Algorithms
TR L

M “ ‘ |
%m wm.‘gdluh "'

|Carnegie Mellon
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‘ Basic classification problem

Mitoch.

Nucleolar Actin

Endosomal

Tubulin ?7?

i
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‘ Simple two class problem
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‘ Decision trees

= Pictorially, we have

num. attr#2

(e.g.., brightness)

‘}‘A:‘ I
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|Carnegie Mellon

num. attr#1 (e.g.., ‘area’)

Slide courtesy of Christos Faloutsos

‘ Decision trees

num. attr#2

A DA i "“"”‘I}“:“:l‘l:j
Ll e

|Carnegie Mellon

I
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= and we want to label ‘?’

(e.g.., brightness)

num. attr#1 (e.g.., ‘area’)

Slide courtesy of Christos Faloutsos
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‘ Decision trees

= SO we build a decision tree:

num. attr#2 ? _ _
(e.g.., brightness) .
+ +
40
+ + _ -
+ -
+ -
birpf 50
A Vel o ot (0. are
bt ] A B B
(l' "*"’**‘ﬂa‘11;/[“'”’““;?@Z Slide courtesy of Christos Faloutsos
[Carnegie Viellon

‘ Decision trees

= SO we build a decision tree:

bright. + -
+
40
+ -

}‘A:“]‘p\
1 [ |‘M

i b “'l“}" it ‘
uuw| Mw JM“;’M&

AT
S5 RS A

area<50

bright. <40
N

Slide courtesy of Christos Faloutsos

|Carnegie Mellon
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‘ Decision trees

= Goal: split address spa
homogeneous regions

bright. ? + - Y /
+ L]

40 -
I

ce in (almost)

area<50

bright. <40

o

Slide courtesy of Christos Faloutsos

|Carnegie Mel lon

= we want to label ‘?’

‘ Problem: Classification

num. attr#2
(e.g.., bright.) +
+

num. attr#1 (e.g.., area)

Slide courtesy of Christos Faloutsos

|Carnegie Mel lon
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Support Vector Machines
(SVMs)

= we want to label ‘?’ - linear separator??

bright. ?
+
+
+
+
+
T
il Y e
i dedene . Slide courtesy of Christos Faloutsos

|Carnegie Mellon

Support Vector Machines
(SVMs)

= we want to label ‘?’ - linear separator??

bright. ?
+
+
O A area
il Y e
i dedene . Slide courtesy of Christos Faloutsos
|Carnegie Mellon
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Support Vector Machines
(SVMs)

= we want to label ‘?’ - linear separator??

bright. ?
+
+
i
é J”’““““""’:ﬁ’ ‘;;’"‘;’i(y@z Slide courtesy of Christos Faloutsos
Luarnegie vieltion

Support Vector Machines
(SVMs)

= we want to label ‘?’ - linear separator??

bright.

area

T L
il I
LA gy mv(&‘@i R .
oo g o b Slide courtesy of Christos Faloutsos

|Carnegie Mellon
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Support Vector Machines
(SVMs)

= we want to label ‘?’ - linear separator??

bright. ?
+
+
+
+
\——"’

T area
i >
b Ww":ﬁ ;;/[M;la@z Slide courtesy of Christos Faloutsos
Luarnegie vieltion

Support Vector Machines
(SVMs)

= we want to label ‘?’ - linear separator??
= A: the one with the widest corridor!

bright. ?
+
+
+
+
— —
y 1o [EAAIRHING
o '“”””:'ﬂ”{}“WH'HWH\ area
il Y -
C Ww‘:ﬁ' ;;/[&w;lw@i Slide courtesy of Christos Faloutsos
[Carnegie Mellon
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Support Vector Machines
‘ (SVMs)

= we want to label ‘?’ - linear separator??
= A: the one with the widest corridor!

bright.
‘support vectors’

—

i \muuu [

oo e 2o bl Slide courtesy of Christos Faloutsos

|Carnegie Mellon

‘ Evaluating Classifiers

=« Divide ~100 images for each class into training set
and test set

= Use the training set to determine rules for the
classes

= Use the test set to evaluate performance
= Repeat with different division into training and test

= Evaluate different sets of features chosen as most
discriminative by feature selection methods

= Evaluate different classifiers (NN, SVM, MOE)
P g

%Mwm.sdlu([w“

|Carnegie Mellon
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Flexible assay design

1

uh a,.l ||11‘|fl!|il!/i,
oo sovage do

= Same master feature set, same feature
selection method, same classification engine
can be used for many different assays using
supervised learning instead of hand-tuning

L
&mwiy@z

2D Classification

Results
Output of the Classifier

s DNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 99 1 0 0 0 0 0 0 0 0
ER 0 97 0 0 0 2 0 0 0 1
Gia 0 0 91 7 0 0 0 0 2 0
Gpp 0 0 14 82 0 0 2 0 1 0
Lam 0 0 1 0 88 1 0 0 10 0
Mit 0 3 0 0 0 92 0 0 3 3
Nuc 0 0 0 0 0 99 0 1 0
Act 0 0 0 0 0 0 100 0 0
TfR 0 1 0 0 12 2 0 1 81 2

]T 2 0 0 0 1 0 0 1 95
e Overall accuracy = 92%

|Carnegie Mellon

3D IP workshop 2005 - R.F. Murphy
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Human Classification Results

Output of the Classifier

S DNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 100 0 0 0 0 0 0 0 0 0
ER 0 90 0 0 3 6 0 0 0 0
Gia 0 0 56 36 3 3 0 0 0 0
Gpp 0 0 54 33 0 0 0 0 3 0
Lam 0 0 6 0 73 0 0 0 20 0
Mit 0 3 0 0 0 96 0 0 0 3
Nuc 0 0 0 0 0 0 100 0 0 0
Act 0 0 0 0 0 0 0 100 0 0
TR 0 13 0 0 3 0 0 0 83 0
i 3 0 0 0 0 0 3 0 93

M T

Ul
/

|Carnegie Mellon

Qverall accuracy = 83% (92% for major patterns)

Computer vs. Human

100

90 A

80 A

70 1

Human Accuracy

60

50 A

*

2

40
40

50

60 70 80
Computer Accuracy

90

100

|Carnegie Mellon
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3D Classification

Results
Output of the Classifier
DNA | ER Gia Mit | Nuc | Act Tub

N Gpp | Lam TfR
DNA | 98 2 0 0 0 0 0 0 0 0
ER 0 100 0 0 0 0 0 0 0 0
Gia 0 0 100 0 0 0 0 0 0 0
Gp| 0 | o[ o9 | 4] o] ool ol o
Lam 0 0 0 4 95 0 0 0 0 2
Mit 0 0 2 0 0 96 0 2 0 0
Nuc 0 0 0 0 0 0 100 0 0 0
Act 0 0 0 0 0 0 0 100 0 0
TfR 0 0 0 0 2 0 0 0 96 2
Tb b0 | 2 [ o oo o] o] o] ofous

At T

) JLQ&W‘X Overall accuracy = 98%

|Carnegie Mellon

Clustering of Proteins by
‘Subcellular Location

'|‘r

Carnegie Mellon
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Unsupervised clustering algorithms

Many different types:
‘  Hierarchical clustering

* k — means clustering

* Self-organising maps

* Hill Climbing

* Simulated Annealing

All have the same three basic tasks of:

1. Pattern representation — patterns or features in the data.

2. Pattern proximity — a measure of the distance or
similarity defined on pairs of patterns

3. Pattern grouping — methods and rules used in grouping

the patterns

o DS ARHHIOTAS
B IR
YA l‘in‘mn :‘.M‘%‘z P &mﬂrﬂﬂ»’ﬁ‘

|Carnegie Mellon

Hierarchical vs. k-means

‘ clustering

= Hierarchical builds tree sequentially
from the closest pair of points (either
genes or conditions)

= k-means starts with k randomly chosen
seed points, assigns each remaining
point to the nearest seed, and repeats
this until no point moves

PR Y o AV
il

At
il
oo soage lo &mﬂm’ﬂ'dlﬁi

|Carnegie Mellon
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| Carnegie Mellon

! Location Proteomics

= Tag many proteins Y (cae
= We have used CD-tagging I~ %
(developed by Jonathan Jarvik and b
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene

|

Principles of CD-Tagging
(CD = Central Dogma)

Exon | NEOREEE xon 2 N CD-cassette

Genomic DNA +

s

| Carnegie Mellon

/- -\ Tagged DNA
CD cassette ﬂ
I Tagged mRNA

m /, Tagged Protein

3D IP workshop 2005 - R.F. Murphy 53
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‘ Location Proteomics

Tag many proteins
= We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene e
= Isolate separate clones, each of which produces express one
tagged protein
= Use RT-PCR to identify tagged gene in each clone
= Collect many live cell images for each clone using spinning
disk confocal fluorescence microscopy

R

(BB
‘ Grao Aam‘«.gt 1s %»»vﬂ’i‘“lﬁy‘

|Carnegie Mellon

What
Now?

Group
~90
tagged
clones
by
pattern

3D IP workshop 2005 - R.F. Murphy
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Clustering Protein Subcellular
Location Patterns

= Image acquisition

= Feature calculation

= Feature selection

= Distance selection

= Clustering/partitioning
= Evaluation

- TihiIme
I e
‘@.MA ioage o %»»’c“ﬂ’i‘“%

|Carnegie Mellon

3 - |o]x

File Edit View Favorites Tools Help

Q sock - x| [ @ O seach Favorkes (%) cis M -
Address ~ | ] http:/jmurphylab.web.cru.edujservices/PSLID/tree.html v B ks >
Google + web.muphylab.cmu.edu v | (G| Search ~ B §P Sh2ablocked A% Check ~ X Autolink ~ fdoptions & [ web [F) murphylab [ cmu [ edu

T T i |

»

]

Z-scored Euclide'J
N (2]

-

o

< >
X | piscussions~ | ) B B D €W D Discussions not avadable on hitp:{murphylab.web. cmu.eduf )
€] http:jmurphylab.web. cmu.edujservices/PSLID/3T3{90MET_E_MRC_clone3.cgiid=518quan=5 © Internet

Gene name:
AtpSal-1
No. of
images in
this clone:

31

3D IP workshop 2005 - R.F. Murphy




Feature Calculation Lecture

nknown-4
zm:oz:\ w
nknown-—

: :oz:|mm
nown-—
—gam

) :mw

nknown-23
b358422m09R1

.w 36

nown-19

=

SaT=
23-5133400D

wn-11

larToSiahbp

1 | | L Unknown-—
N © 0 < ™ ~ - =]
asue)siq Ueapl|doNg Palods-7

Mito

cytopl mHﬂHMH
c b rticle
s Ji4
nucl+nuéIfemb+w cyto Nuc
Mito Mito+Rib+Un
Mito

Mito
cyfto art
o‘now art

msmww

sma

nucleusAER Nuc+Unk

@Wﬁ Www+0 top+U.
voske/leton cytoskeTEls

asm
asm+nucleus Rib+Unk

£ 0kon SYESERETD o
eleton

w.mw._ cytoplasm S
(=

njcleus
nmm+::OHZw5U
pucleus+w cytoplasm -—

m«mmw wwﬁ+z nucleus

cytoplasm

b1 RCGE0p1+PlasMenb

cytoplasm

cytoplasm
Rastieoet

%m+z cyto

asm
asm+PlasMemb

15
m

sys
cytoplasm+w nucleus
nmwme smtw nucleus
nuc olar

::owwo ar

nuc

Nucleolar Prote

€o

© n - © ~ -

3oURSIq UBAPIONT PaI0ds—7

o

COCOCOCmNCCOT HIUNDE CH U THINE H O

1

al-2
noyn=

A

T

c

o : 0D

+E DO GO I E skchrhiborh 0 off

921"

=

o a]
S e 5 S8 T ot 0 RO e 5D O D

el lelel=r=l=] i =rele]

3
Ep132
Unknown-—
nown-—

30

www\wpwwboou

W%wbomwpwww

2

1
11

wMMmOMPwTUU
a

%

3
asm+w ::ow
asm+w nuc

Punctate Nuclear

eys
cytoplasm+w nucleus
nMﬁMWmeE+z nucleus
nuc olar

nucjleojar

nucleo

=
2]
=

-

Proteins

nucleus
nown

nucleus
nucleus

Unknow
Rib+Un

57

3D IP workshop 2005 - R.F. Murphy



Feature Calculation Lecture

58

3 Unknown—4 uniform
smtw nucleus cyto Wmm3+z nucleus
smtw nucleus cytoplasm+w nucleus
sm cyto

cyto

cyto

Nuclear
Proteins with
ining

Some Punctate
Sta

sm Cytop+Unk
Rib+Unk

WwwmwmmzoomP
nown-19
M.OEZIHMW

™
mb+w uniform
nown-15 cytoplasm

EYESBRET L ron

Cytoplasmic

Bru uni
+w uniform
sm

m
eton

Predominantly

Las c

Epsy Rib+Unk
2610301D06Rik-1 cyfoplasm
T cytoskeleto

s+w cytoplasm nucleus
asm
nucleus
ONWWW+EEOHZmEU
nficleus+w cytoplasm
Unknown=11 ::nwm:m+z cyto WWWB
Simjlar®oSiahbp nucleus+w cytoplasm
Batla nuclens+w n%now asm nucleus
UpEnown— c asm+w” nucleus
nown-—
WZOEZI toplasm
nown- fopl+PlasMemb

Jnknown=
STRTTATToS 1 ahbp
Batla

dzm:o::\
Un
Un

toplasm

5 toplasm
Rhc1RCGE0pl+PlasMenb

toplasm

asm
wmnn+z nucl
w nucleus

eys
cytoplasm+w nucleus

#2132 Shiplyamew nuclus
Unj :oz:iwm nucleolar
nown-— nucleo

1
~ o ['+] A o« ~N o (=]
2oUBSI UBSPIONT PAI0IS—7

ing

Punctate Stain

Nuclear and Cytoplasmic Proteins with Some

3D IP workshop 2005 - R.F. Murphy



Feature Calculation Lecture

Plasma
Membrane
Proteins with
some Punctate

QQCcCccccc000=0=0000=000000C

%novhmma

n«mmmwmma Fhucleus

«mww

R e

eus
eys
o%nov asm+w nucleus

:mmmwowm3+z nucleus
Un :oz:\wm mmm wo ar

© n - © ~ - o

3oURSIq UBAPIONT PaI0ds—7

Cytoplasmic
Sta

ining

cytoplasm

nuc
nuc

Un
Ri

leus
nown

eus
eus

now;
+Un

x1
nown-—

e

nown:

9

3

=1

m EYESRYY
e I¥nud INeydb i n<no
Mito

59

3D IP workshop 2005 - R.F. Murphy



Feature Calculation Lecture

http://murphylab.web.cmu.edu/services/PSLID/tree.html

Tﬂmﬁ@ﬁw

Z-scored Euclidean Distance
] - N W n o (]

Bottom: Visual Assignment to
“known” locations

Top: Automated Grouping and
Assignment

= Can subdivide clusters by
observing response to drugs,
oncogenes, efc.

= These represent protein location
states

= Base knowledge required for
modeling (systems biology)

= Can be used to identify potential
Mg Il protein interactions

oo somage Lo %A»f’”/‘“%t

|Carnegie Mellon
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References on Automated
Interpretation of Subcellular
Patterns

i
i

Carnegle Mellon

http://murphylab.web.cmu.edu/publications

Review Articles

= Y. Huand R. F. Murphy (2004). Automated Interpretation of Subcellular Patterns
from Immunofluorescence Microscopy. J. Immunol. Methods 290:93-105.

= K. Huang and R. F. Murphy (2004). From Quantitative Microscopy to Automated
Image Understanding. J. Biomed. Optics 9:893-912.

= R.F. Murphy (2005). Location Proteomics: A Systems Approach to Subcellular
Location. Biochem. Soc. Trans. 33:535-538.

= R.F. Murphy (2005). Cytomics and Location Proteomics: Automated
Interpretation of Subcellular Patterns in Fluorescence Microscope Images.
Cytometry 67A:1-3.

= X. Chen, and R.F. Murphy (2006). Automated Interpretation of Protein
Subcellular Location Patterns. International Review of Cytology 249:194-227.

= X. Chen, M. Velliste, and R.F. Murphy (2006). Automated Interpretation of
Subcellular Patterns in Fluorescence Microscope Images for Location Proteomics.
Cytometry 69A:631-640,

3D IP workshop 2005 - R.F. Murphy
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First published system for
recognizing subcellular location
‘ patterns - 2D CHO (5 patterns)

= M. V. Boland, M. K. Markey and R. F. Murphy (1997). Automated
Classification of Cellular Protein Localization Patterns Obtained via
Fluorescence Microscopy. Proceedings of the 19th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 594-597.

= M. V. Boland, M. K. Markey and R. F. Murphy (1998). Automated
Recognition of Patterns Characteristic of Subcellular Structures in
Fluorescence Microscopy Images. Cytometry 33:366-375.

‘ Iy DI |"‘|‘"““‘|:‘!}"“‘:1‘“;
N\H W{wsw IMQL Q'.'\w ;

[CarnegieMalloRttp://murphylab.web.cmu.edu/publications

http://murphylab.web.cmu.edu/publications
2D Hel.a pattern classification (10
major patterns)

= R. F. Murphy, M. V. Boland and M. Velliste (2000). Towards a Systematics for
Protein Subcellular Location: Quantitative Description of Protein Localization
Patterns and Automated Analysis of Fluorescence Microscope Images. Proc Int
Conf Intell Syst Mol Biol 8:251-259.

= M. V. Boland and R. F. Murphy (2001). A Neural Network Classifier Capable of
Recognizing the Patterns of all Major Subcellular Structures in Fluorescence
Microscope Images of HeLa Cells. Bioinformatics 17:1213-1223.

fantaid D |"wl""‘“|"n"“‘:1‘11
|Carnegie Mellon
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http://murphylab.web.cmu.edu/publications

3D Hel a pattern classification (11
major patterns)

= M. Velliste and R.F. Murphy (2002). Automated
Determination of Protein Subcellular Locations from 3D
Fluorescence Microscope Images. Proceedings of the

2002 IEEFE International Symposium on Biomedical
Imaging (ISBI 2002), pp. 867-870.

‘H

T M\uw

%Mwm.sdlu([w

|Carnegie Mel lon
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http://murphylab.web.cmu.edu/publications
Improving features, feature

selection, classification method

= R.F. Murphy, M. Velliste, and G. Porreca (2003). Robust Numerical
Features for Description and Classification of Subcellular Location

Patterns in Fluorescence Microscope Images. J. VLSI Sig. Proc. 35:
311-321.

= K. Huang, M. Velliste, and R. F. Murphy (2003). Feature reduction
for improved recognition of subcellular location patterns in
fluorescence microscope images. Proc. SPIE 4962: 307-318.
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http://murphylab.web.cmu.edu/publications
Improving features, feature

selection, classification method

= K. Huang and R.F. Murphy (2004). Boosting accuracy of automated
classification of fluorescence microscope images for location
proteomics. BMC Bioinformatics 5:78.

= X. Chen and R.F. Murphy (2004). Robust Classification of
Subcellular Location Patterns in High Resolution 3D Fluorescence
Microscope Images. Proceedings of the 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 1632-1635.

W il
L e

|Carnegie Mellon

http://murphylab.web.cmu.edu/publications
Classification of multi-cell

Images

= K. Huang and R. F. Murphy (2004). Automated Classification of Subcellular
Patterns in Multicell images without Segmentation into Single Cells. Proceedings
of the 2004 IEEE International Symposium on Biomedical Imaging (ISBI 2004),
pp. 1139-1142.

= S.-C. Chen, and R.F. Murphy (2006). A Graphical Model Approach to Automated
Classification of Protein Subcellular Location Patterns in Multi-Cell Images. BMC
Bioinformatics 7:90.

= S.-C. Chen, G. Gordon, and R.F. Murphy (2006). A Novel Approximate Inference
Approach to Automated Classification of Protein Subcellular Location Patterns in
Multi-Cell Images. Proceedings of the 2006 IEEE International Symposium on
Biomedical Imaging (ISBI 2006), pp. 558-561.

T
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http://murphylab.web.cmu.edu/publications

‘Temporal Texture Features

= Y. Hu, J. Carmona, and R.F. Murphy (2006).
Application of Temporal Texture Features to
Automated Analysis of Protein Subcellular
Locations in Time Series Fluorescence Microscope
Images. Proceedings of the 2006 IEEE
International Symposium on Biomedical Imaging
(ISBI 2006), pp. 1028-1031.

. p IR
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|Carnegie Mellon

http://murphylab.web.cmu.edu/publications

‘Temporal Texture Features

= Y. Hu, J. Carmona, and R.F. Murphy (2006).
Application of Temporal Texture Features to
Automated Analysis of Protein Subcellular
Locations in Time Series Fluorescence Microscope
Images. Proceedings of the 2006 IEEE
International Symposium on Biomedical Imaging
(ISBI 2006), pp. 1028-1031.
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http://murphylab.web.cmu.edu/publications
Subcellular Location Trees - 3D

$3T3 CD-tagged images

= X. Chen, M. Velliste, S. Weinstein, J.W. Jarvik and R.F. Murphy
(2003). Location proteomics - Building subcellular location trees
from high resolution 3D fluorescence microscope images of
randomly-tagged proteins. Proc. SPIE 4962: 298-306.

= X. Chen and R. F. Murphy (2005). Objective Clustering of Proteins
Based on Subcellular Location Patterns. Journal of Biomedicine and
Biotechnology 2005: 87-95.
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http://murphylab.web.cmu.edu/publications
Subcellular Location Trees -

Analysis of Location Mutants

= P. Nair, B.E. Schaub, K. Huang, X. Chen, R.F.
Murphy, J.M. Griffith, H.J. Geuze, and J. Rohrer
(2005). Characterization of the TGN Exit Signal of

the human Mannose 6-Phosphate Uncovering
Enzyme. J. Cell Sci. 118:2949-2956.
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http://murphylab.web.cmu.edu/publications

PSLID - Protein Subcellular
Location Image Database

= K. Huang, J. Lin, J.A. Gajnak, and R.F. Murphy
(2002). Image Content-based Retrieval and
Automated Interpretation of Fluorescence
Microscope Images via the Protein Subcellular
Location Image Database. Proceedings of the 2002
IEEE International Symposium on Biomedical

Imaging (ISBI 2002), pp. 325-328.
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SLIF - Subcellular Location

‘ Image Finder

= R. F. Murphy, M. Velliste, J. Yao, and G. Porreca (2001).
Searching Online Journals for Fluorescence Microscope Images
Depicting Protein Subcellular Location Patterns. Proceedings of
the 2"? IEEE International Symposium on Bio-Informatics and
Biomedical Engineering (BIBE 2001), pp. 119-128.

= R. F. Murphy, Z. Kou, J. Hua, M. Joffe, and W. W. Cohen (2004).
Extracting and Structuring Subcellular Location Information from
On-line Journal Articles: The Subcellular Location Image Finder.
Proceedings of the IASTED International Conference on
Knowledge Sharing and Collaborative Engineering (KSCE 2004),
pp- 109-114.
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