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Image Analysis of
Subcellular Patterns for High
Throughput Screening and
Systems Biology

Robert F. Murphy
Departments of Biological Sciences, Biomedical

Engineering, and Machine Learning, and

Goals of this section of short
course
 Introduce image analysis and machine

learning methods
 Illustrate in context of development of

system for automated learning of
subcellular patterns

 Describe utility in basic research and
expectation they will incorporated into
next generation of screening assays
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Image analysis topics
 Introduction to subcellular pattern analysis and

recommendations regarding image acquisition for
subsequent automated analysis

 methods for automated segmentation of multi-cell
images into single cell regions

 types of features used to describe subcellular
patterns and methods for extraction of these
features (especially morphological, texture and
wavelet features)

 statistical and machine learning methods for
comparison, classification and clustering of
patterns

 publicly available image database systems

Segmentation of Images into
Single Cell Regions
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Approaches
 Voronoi
 Watershed
 Seeded Watershed
 Level Set Methods
 Graphical Models

Voronoi diagram

Seed

Edge

Vertex

Given a set of seeds,
draw vertices and
edges such that each
seed is enclosed in a
single polygon where
each edge is
equidistant from the
seeds on either side.
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Voronoi Segmentation
Process
• Threshold DNA image (downsample?)
• Find the objects in the image
• Find the centers of the objects
• Use as seeds to generate Voronoi

diagram
• Create a mask for each region in the

Voronoi diagram
• Remove regions whose object that does

not have intensity/size/shape of nucleus

Original DNA image
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After thresholding and removing small objects

After triangulation
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After removing edge cells and filtering

Final regions masked onto original image
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Watershed Segmentation
 Intensity of an

image ~ elevation in
a landscape
 Flood from minima
 Prevent merging of

“catchment basins”
 Watershed borders

built at contacts
between basins

http://www.http://www.cticctic..purduepurdue..edu/KYW/glossary/whatisawsedu/KYW/glossary/whatisaws.html.html

Watershed Segmentation
 If starting image has intensity centered on the cells

(e.g., DNA) that you want to segment, invert image
so that bright objects are the sources

 If starting image has intensity centered on the
boundary between the cells (e.g., plasma
membrane protein), don’t invert so that boundary
runs along high intensity
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Seeded Watershed
Segmentation

 Drawback is that the number of regions may not
correspond to the number of cells

 Seeded watershed allows water to rise only from
predefined sources (seeds)

 If DNA image available, can use same approach to
generate these seeds as for Voronoi segmentation

 Can use seeds from DNA image but use total
protein image for watershed segmentation

Seeded Watershed
Segmentation

Original image Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries
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Level Set Methods
 Level set function φ(x,y,t)

 Positive inside the contour (mountain)
 Negative outside the contour (valley)
 Zero on the contour, C embedded at its

zero level (sea level)

http://ranger.http://ranger.utauta..edu/~alp/personal/travelImageGalleryedu/~alp/personal/travelImageGallery..htmhtm

n

F > 0

F < 0

φ > 0

φ < 0

C: φ = 0

Graphical Model Methods
 Assumptions

 Two classes of pixels: those part of a cell or part of
the background

 Each pixel is likely to be the same class as its
neighbors

 Have information about where cells are likely to be
and where boundaries (edges) are likely to be

 Probability that two pixels are same class related
to probability that there is an edge between them
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1. Start with initial
DNA and edge potential

2. Run 1st BP, separate
foreground and background.

3. Run 2nd BP, assign the
pixels with the same class of
p to be segmented_cell1,
then set these pixels to be
background

5. Iteration stops when the
segmented cell is too small

4. Pick the most confident
foreground pixel , Run BP, find
another cell, and iterate....

6. The resulting masks

Pick the most confidence
foreground pixel p, set its
DNA potential high

Feature Extraction for
Subcellular Pattern Analysis
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This is a micro-
tubule pattern

Assign proteins to major subcellular structures using fluorescent microscopy
 

Goal

The Challenge
 Problem is hard because differentProblem is hard because different

cells have different cells have different shapes, sizes,shapes, sizes,
orientationsorientations

 Organelles/structures within cells areOrganelles/structures within cells are
not found in fixed locationsnot found in fixed locations

 Therefore, describe each imageTherefore, describe each image
numerically and use thenumerically and use the
descriptorsdescriptors
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1. Create sets of images showing the location of
many different proteins (each set defines one
class of pattern)

2. Reduce each image to a set of numerical
values (“features”) that are insensitive to
position and rotation of the cell

3. Use statistical classification methods to
“learn” how to distinguish each class using
the features

Feature-Based, Supervised
Learning Approach

Subcellular Location Features
(SLF)

 Combinations of features of different types
that describe different aspects of patterns in
fluorescence microscope images have been
created

 Motivated in part by descriptions used by
biologists (e.g., punctate, perinuclear)

 To ensure that the specific features used for a
given experiment can be identified,  they are
referred to as Subcellular Location Features
(SLF) and defined in sets (e.g., SLF1)
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Feature levels and granularity

Object
features

Single
Object

Single
Cell

Single
Field

Cell
features

Field
features

Granularity: 2D, 3D, 2Dt, 3Dt

Aggregate/average operator

Thresholding
 First type of feature is morphological
 Morphological features require some method

for defining objects
 Most common approach is global

thresholding
 Methods exist for automatically choosing a

global threshold (e.g., Riddler-Calvard
method)
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Ridler-Calvard Method
 Find threshold that is equidistant from

the average intensity of pixels below
and above it

 Ridler, T.W. and Calvard, S. (1978)
Picture thresholding using an iterative
selection method. IEEE Transactions on
Systems, Man, and Cybernetics 8:630-
632.

Ridler-Calvard Method
Blue line

shows
histogram of

intensities,
green lines

show average
to left and

right of red
line, red line

shows
midpoint

between them
or the RC
threshold
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Ridler-Calvard Method

original

original

thresholded

Otsu Method
 Find threshold to minimize the

variances of the pixels below and above
it

 Otsu, N., (1979) A Threshold Selection
Method from Gray-Level Histograms,
IEEE Transactions on Systems, Man,
and Cybernetics, 9:62-66.
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Adaptive Thresholding
 Various approaches available
 Basic principle is use automated methods

over small regions and then interpolate to
form a smooth surface

Suitability of Automated
Thresholding for Classification

 For the task of subcellular pattern analysis,
automated thresholding methods perform
quite well in most cases, especially for
patterns with well-separated objects

 They do not work well for images with very
low signal-noise ratio

 Can tolerate poor behavior on a fraction of
images for a given pattern while still
achieving good classification accuracies
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Object finding
 After choice of threshold, define objects

as sets of touching pixels that are
above threshold

2D Features
Morphological Features

The ratio of the largest to the smallest object to COF
distance

SLF1.8
The variance of object distances from the COFSLF1.7

The average object distance to the cellular center of
fluorescence(COF)

SLF1.6
The ratio of the size of the largest object to the smallestSLF1.5

The variance of the number of above-threshold pixels
per object

SLF1.4

The average number of above-threshold pixels per
object

SLF1.3
The Euler number of the imageSLF1.2

The number of fluorescent objects in the imageSLF1.1
DescriptionSLF No.
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2D Features
Morphological Features

108

83

31

# of objects

Average size of objects

Average distance to COF

6

232

4

Any of these
features could be

used to
distinguish these

two classes

ER Nucleoli

Suitability of Morphological
Features for Classification

 Images for some subcellular patterns, such
as those for cytoskeletal proteins, are not
well-segmented by automated thresholding

 When combined with non-morphological
features, classifiers can learn to “ignore”
morphological features for those classes
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2D Features
DNA Features

The fraction of the protein fluorescence that co-localizes with DNASLF2.22
The ratio of the area occupied by protein to that occupied by DNASLF2.21
The distance between the protein COF and the DNA COFSLF2.20
The ratio of the largest to the smallest object to DNA COF distanceSLF2.19
The variance of object distances from the DNA COFSLF2.18
The average object distance from the COF of the DNA imageSLF2.17
DescriptionSLF No.

DNA features (objects relative to DNA reference)

2D Features
Skeleton Features

The ratio of the number of branch points in the skeleton to the length of
skeleton

SLF7.84
The fraction of object fluorescence contained within the skeletonSLF7.83
The fraction of object pixels contained within the skeletonSLF7.82

The ratio of object skeleton length to the area of the convex hull of the
skeleton, averaged over all objects

SLF7.81

The average length of the morphological skeleton of objectsSLF7.80
DescriptionSLF No.

Skeleton features
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Illustration – Skeleton

2D Features
Edge Features

Measure of edge direction differenceSLF1.13
Measure of edge direction homogeneity 2SLF1.12
Measure of edge direction homogeneity 1SLF1.11
Measure of edge gradient intensity homogeneitySLF1.10
The fraction of the non-zero pixels that are along an edgeSLF1.9
DescriptionSLF No.

Edge features
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2D Features
Hull Features

The fraction of the convex hull area occupied by protein fluorescenceSLF1.14
The roundness of the convex hullSLF1.15
The eccentricity of the convex hullSLF1.16

Convex hull (geometrical) features

2D Features
Zernike Moment Features
(SLF 3.17-3.65)

left: Zernike polynomials
A: Z(2,0)
B: Z(4,4)
C: Z(10,6)

right: lamp2 image

• Shape similarity of protein image 
   to Zernike polynomials Z(n,l)
• 49 polynomials and 49 features  
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2D Features
Haralick Texture Features
(SLF7.66-7.78)
 Correlations of adjacent pixels in gray level images
 Start by calculating co-occurrence matrix P:
    N by N matrix, N=number of gray level.

Element P(i,j) is the probability of a pixel with value i
being adjacent to a pixel with value j

 Four directions in which a pixel can be adjacent
 Each direction considered separately and then

features averaged across all directions

312

23414
30403
44032
10301
4321

21334
14303
33412
30101
4321

42414
26303
43612
10121
4321

22324
22413
44422

01
4321

4 2 2 2 4

1 2 4 1 1

3 4 4 4 2

2 2 3 3 2

3 3 3 2 4

Co-occurrence
Matrices

Example image with 4 gray levels
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Pixel Resolution and Gray Levels

 Texture features are influenced by the
number of gray levels and pixel
resolution of the image

 Optimization for each image dataset
required

 Alternatively, features can be calculated
for many resolutions

Wavelet Transformation - 1D

A: approximation (low frequency)

D: detail (high frequency)

X=A3+D3+D2+D1
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2D Wavelets - intuition
 Apply some filter to detect edges

(horizontal; vertical; diagonal)

After Christos Faloutsos

2D Wavelets - intuition
 Recurse

Slide courtesy of Christos Faloutsos
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2D Wavelets - intuition
 Many wavelet basis functions (filters):

 Haar
 Daubechies (-4, -6, -20)

 http://www331.jpl.nasa.gov/public/wave.
html

Slide courtesy of Christos Faloutsos

Daubechies D4 decomposition

Original image Wavelet Transformation
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2D Features
Wavelet Feature Calculation
 Preprocessing

 Background subtraction and thresholding
 Translation and rotation

 Wavelet transformation
 The Daubechies 4 wavelet
 10 level decomposition
 Use the average energy of the three high-

frequency components at each level as features

Gabor Function

Can extend the function to generate Gabor filters by
rotating and dilating
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2D Features
Gabor Feature Calculation
 Preprocessing same as Wavelet
 30 Gabor filters were generated using five

different scales and six different orientations
 Convolve an input image with a Gabor filter
 Take the mean and standard deviation of the

convolved image
 60 Gabor texture features

3D Features
Morphological (SLF-9)
 28 features, 14 from protein objects and

14 from their relationship to
corresponding DNA images
 Based on number of objects, object size,

object distance to COF
 Corresponding DNA image required
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SLF-14
 14 SLF-9 features that do not require DNA

images
 2 Edge features

 Ratio of above threshold pixel along an edge
 Ratio of fluorescence along an edge

 26 3D Haralick texture features
 Gray level co-occurence matrix for 13 directions
 Calculate 13 Haralick statistics for each direction
 Average each statistic over 13 directions and use

mean and range as separate features: result is 26
features

SLF-17
 A feature subset with 7 features

selected from SLF-14 at 256 gray levels
and 0.4 micron pixel resolution
 1 morphological feature
 1 edge feature
 5 texture features
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Object level features (SOF)
 Subset of SLFs calculated on single

objects
Index Feature Description 

SOF1.1 Number of pixels in object 

SOF1.2 Distance between object Center of Fluorescence (COF) and DNA COF  

SOF1.3 Fraction of object pixels overlapping with DNA  

SOF1.4 A measure of eccentricity of the object 

SOF1.5 Euler number of the object  

SOF1.6 A measure of roundness of the object  

SOF1.7 The length of the object’s skeleton 

SOF1.8 The ratio of skeleton length to the area of the convex hull of the skeleton  

SOF1.9 The fraction of object pixels contained within the skeleton  

SOF1.10 The fraction of object fluorescence contained within the skeleton  

SOF1.11 The ratio of the number of branch points in skeleton to length of skeleton  

 

Field level features (SLF21)
 Subset of SLFs that do not require

segmentation into single cells
 Average object features
 Texture features (on whole field)
 Edge features (on whole field)
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Basics of Machine Learning

Contents
 The multivariate data matrix and its

descriptive statistics
 Comparison: Are two samples the

same?
 Classification: Which of a set of known

classes should a new sample be
assigned to?

 Clustering: What classes are present in
a sample?
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Multivariate Distance

Distance at the heart of Machine
Learning

 High dimensionality
 Based on vector

geometry – how
close are two data
points?

Array2

Array 1

Array 1 Array 2

Gene 1 1 4

Gene 2 1 3

…

Gene 1

Gene 2
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a1

a2 b2

b1

Distance

Sample 2

Sample 1

Event a
Event b

Sample 1      sample 2

a1 a2
b1 b2

General Multivariate Dataset
 We are given values of p variables for n

independent observations
 Construct an n x p matrix M consisting

of vectors X1 through Xn each of length
p
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Multivariate Sample Mean
 Define mean vector I of length p

I( j) =

M(i, j)
i=1

n

!

n
I =

X i

i=1

n

!

n

or

matrix notation vector notation

Multivariate Variance
 Define variance vector σ2 of length p

!
2
( j) =

M(i, j) " I( j)( )
i=1

n

#
2

n "1
matrix notation
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Multivariate Variance
 or

!
2
=

X i " I( )
i=1

n

#
2

n "1
vector notation

Covariance Matrix
 Define a p x p matrix cov (called the covariance matrix)

analogous to σ2

cov( j,k) =

M(i, j) ! I( j )( )M(i,k) ! I(k)( )
i=1

n

"

n !1
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Covariance Matrix
 Note that the covariance of a variable with

itself is simply the variance of that variable

cov( j, j) =!
2
( j)

Univariate Distance
 The simple distance between the values of a

single variable j for two observations i and l is

M(i, j) !M(l, j)
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Univariate z-score Distance
 To measure distance in units of

standard deviation between the values
of a single variable j for two observations
i and l we define the z-score distance

M(i, j) !M(l, j)

" ( j)

Bivariate Euclidean Distance
 The most commonly used measure of distance between two

observations i and l on two variables j and k is the Euclidean
distance

M(i, j) !M(l, j)( )
2
+ M(i,k) !M(l,k )( )2
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Multivariate Euclidean
Distance
 This can be extended to more than two

variables

M(i, j) !M(l, j)( )
2

j=1

p

"

Effects of covariance on
Euclidean distance

Points A and B have similar Euclidean distances from the mean,
but point B is clearly “more different” from the population than
point A.

B
A

The ellipse
shows the
50% contour
of a
hypothetical
population.
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Mahalanobis Distance
 To account for differences in variance

between the variables, and to account for
correlations between variables, we use
the Mahalanobis distance

D
2
= X i !X l( )cov-1 X i ! Xl( )

T

Feature Selection and
Classification
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 Human Trained Classifiers
 Traditional approach to development of

screening assays is to pick one or more
features to discriminate between “positive”
and “negative”

 Often use hand-developed rules as part of the
feature definition and/or the classification
process

 Machine Classifiers
 An alternative is to calculate a large set of

features and then use machine learning
methods to
 choose important features and
 rules to use them to discriminate positives and

negatives
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Feature selection
 Having too many features can confuse a

classifier
 Can use comparison of feature distributions

between classes to choose a subset of
features that gets rid of uninformative or
redundant features

Feature Selection Methods
 Principal Components Analysis
 Non-Linear Principal Components

Analysis
 Independent Components Analysis
 Information Gain
 Stepwise Discriminant Analysis
 Genetic Algorithms
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NucleolarMitoch. Actin

TubulinEndosomal ???

Basic classification problem

-+

???

Simple two class problem
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Decision trees
 Pictorially, we have

num. attr#1 (e.g.., ‘area’)

num. attr#2
(e.g.., brightness)

+

-+
+ +

+
+

+

-

-
-

--

Slide courtesy of Christos Faloutsos

Decision trees
 and we want to label ‘?’

num. attr#1 (e.g.., ‘area’)

num. attr#2
(e.g.., brightness)

+

-+
+ +

+
+

+

-

-
-

--

?

Slide courtesy of Christos Faloutsos
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Decision trees
 so we build a decision tree:

num. attr#1 (e.g.., ‘area’)

num. attr#2
(e.g.., brightness)

+

-+
+ +

+
+

+

-

-
-

--

?

50

40

Slide courtesy of Christos Faloutsos

Decision trees
 so we build a decision tree:

area<50

Y

+ bright. <40

N

- ...

Y N

‘area’

bright.

+

-++ +

+
+

+

-

-- --

?

50

40

Slide courtesy of Christos Faloutsos
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Decision trees
 Goal: split address space in (almost)

homogeneous regions
area<50

Y

+ bright. <40

N

- ...

Y N

‘area’

bright.

+

-++ +

+
+

+

-

-- --

?

50

40

Slide courtesy of Christos Faloutsos

Problem: Classification
 we want to label ‘?’

num. attr#1 (e.g.., area)

num. attr#2
(e.g.., bright.)

+

-+
+ +

+
+

+

-

-
-

--

?

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

area

bright.

+

-
+

+
+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

area

bright.

+

-
+

+
+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

area

bright.

+

-
+

+
+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

+

-
+

+
+

+

-

-
-

-
-

?

area

bright.

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??

+

-
+

+
+

+

-

-
-

-
-

?

area

bright.

Slide courtesy of Christos Faloutsos

Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??
 A: the one with the widest corridor!

area

bright.

+

-
+

+
+

+

-

-
-

--

?

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)
 we want to label ‘?’ - linear separator??
 A: the one with the widest corridor!

area

bright.

+

-
+

+
+

+

-

-
-

--

?

‘support vectors’

Slide courtesy of Christos Faloutsos

Evaluating Classifiers

 Divide ~100 images for each class into training set
and test set

 Use the training set to determine rules for the
classes

 Use the test set to evaluate performance
 Repeat with different division into training and test
 Evaluate different sets of features chosen as most

discriminative by feature selection methods
 Evaluate different classifiers (NN, SVM, MOE)
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Flexible assay design
 Same master feature set, same feature

selection method, same classification engine
can be used for many different assays using
supervised learning instead of hand-tuning

2D Classification
Results

Overall accuracy = 92%

Output of the ClassifierTrue
Clas
s

95100100021Tub
281102120010TfR
001000000000Act
01099000000Nuc
33009200030Mit
010001880100Lam
010200821400Gpp
02000079100Gia
10002000970ER
00000000199DNA

TubTfRActNucMitLamGppGiaERDNA
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Human Classification Results

Overall accuracy = 83% (92% for major patterns)

Output of the ClassifierTrue
Clas
s

93030000030Tub
083000300130TfR
001000000000Act
000100000000Nuc
30009600030Mit
020000730600Lam
030000335400Gpp
000033365600Gia
00006300900ER
000000000100DNA

TubTfRActNucMitLamGppGiaERDNA

Computer vs. Human

40

50
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100

40 50 60 70 80 90 100

Computer Accuracy
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3D Classification
Results

Overall accuracy = 98%

Output of the ClassifierTrue
Clas
s

98000000020Tub
29600020000TfR
001000000000Act
000100000000Nuc
00209600200Mit
20000954000Lam
00000496000Gpp
000000010000Gia
000000001000ER
00000000298DNA

TubTfRActNucMitLamGppGiaERDNA

Clustering of Proteins by
Subcellular Location
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Unsupervised clustering algorithms

Many different types:
• Hierarchical clustering
• k – means clustering
• Self-organising maps
• Hill Climbing
• Simulated Annealing

All have the same three basic tasks of:

1. Pattern representation – patterns or features in the data.
2. Pattern proximity – a measure of the distance or

similarity defined on pairs of patterns
3. Pattern grouping – methods and rules used in grouping

the patterns

Hierarchical vs. k-means
clustering
 Hierarchical builds tree sequentially

from the closest pair of points (either
genes or conditions)

 k-means starts with k randomly chosen
seed points, assigns each remaining
point to the nearest seed, and repeats
this until no point moves
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Location Proteomics
 Tag many proteins

 We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell

Principles of CD-Tagging
(CD = Central Dogma)

Exon 1 Intron 1

Exon 2

Genomic DNA +
CD-cassette

Exon 1 Tag

Exon 2

Tagged DNA
CD cassette

Tag Tagged mRNA

Tagged Protein
Tag (Epitope)

Tag
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Location Proteomics
 Tag many proteins

 We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell

 Isolate separate clones, each of which produces express one
tagged protein

 Use RT-PCR to identify tagged gene in each clone
 Collect many live cell images for each clone using spinning

disk confocal fluorescence microscopy

What
Now?

Group
~90

tagged
clones

by
pattern
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Solution: Group them
automatically

 How?
 SLF features can be used to measure

similarity of protein patterns
 This allows us for the first time to create a

systematic, objective, framework for
describing subcellular locations: a
Subcellular Location Tree

 Start by grouping two proteins whose patterns
are most similar, keep adding branches for
less and less similar patterns

Protein name

Human description

From databases

http://murphylab.web.cmu.edu/services/PSLID/tree.html
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Clustering Protein Subcellular
Location Patterns

 Image acquisition
 Feature calculation
 Feature selection
 Distance selection
 Clustering/partitioning
 Evaluation
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Nucleolar Proteins

Punctate Nuclear
Proteins
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Predominantly
Nuclear

Proteins with
Some Punctate

Cytoplasmic
Staining

Nuclear and Cytoplasmic Proteins with Some
Punctate Staining
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Plasma
Membrane

Proteins with
some Punctate

Cytoplasmic
Staining

Uniform
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Bottom: Visual Assignment to
“known” locations

Top: Automated Grouping and
Assignment

Protein name

http://murphylab.web.cmu.edu/services/PSLID/tree.html

Significance
 Can subdivide clusters by

observing response to drugs,
oncogenes, etc.

 These represent protein location
states

 Base knowledge required for
modeling (systems biology)

 Can be used to identify potential
protein interactions
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References on Automated
Interpretation of Subcellular
Patterns

Review Articles
 Y. Hu and R. F. Murphy (2004). Automated Interpretation of Subcellular Patterns

from Immunofluorescence Microscopy. J. Immunol. Methods 290:93-105.
 K. Huang and R. F. Murphy (2004). From Quantitative Microscopy to Automated

Image Understanding.  J. Biomed. Optics 9:893-912.
 R.F. Murphy (2005).  Location Proteomics: A Systems Approach to Subcellular

Location. Biochem. Soc. Trans. 33:535-538.
 R.F. Murphy (2005). Cytomics and Location Proteomics: Automated

Interpretation of Subcellular Patterns in Fluorescence Microscope Images.
Cytometry 67A:1-3.

 X. Chen, and R.F. Murphy (2006). Automated Interpretation of Protein
Subcellular Location Patterns.  International Review of Cytology 249:194-227.

 X. Chen, M. Velliste, and R.F. Murphy (2006). Automated Interpretation of
Subcellular Patterns in Fluorescence Microscope Images for Location Proteomics.
Cytometry 69A:631-640,

http://murphylab.web.cmu.edu/publications
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First published system for
recognizing subcellular location
patterns - 2D CHO (5 patterns)

 M. V. Boland, M. K. Markey and R. F. Murphy (1997). Automated
Classification of Cellular Protein Localization Patterns Obtained via
Fluorescence Microscopy.  Proceedings of the 19th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 594-597.

 M. V. Boland, M. K. Markey and R. F. Murphy (1998). Automated
Recognition of Patterns Characteristic of Subcellular Structures in
Fluorescence Microscopy Images. Cytometry 33:366-375.

http://murphylab.web.cmu.edu/publications

2D HeLa pattern classification (10
major patterns)

 R. F. Murphy, M. V. Boland and M. Velliste (2000). Towards a Systematics for
Protein Subcellular Location: Quantitative Description of Protein Localization
Patterns and Automated Analysis of Fluorescence Microscope Images. Proc Int
Conf Intell Syst Mol Biol 8:251-259.

 M. V. Boland and R. F. Murphy (2001). A Neural Network Classifier Capable of
Recognizing the Patterns of all Major Subcellular Structures in Fluorescence
Microscope Images of HeLa Cells.  Bioinformatics 17:1213-1223.

http://murphylab.web.cmu.edu/publications
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3D HeLa pattern classification (11
major patterns)

 M. Velliste and R.F. Murphy (2002). Automated
Determination of Protein Subcellular Locations from 3D
Fluorescence Microscope Images.  Proceedings of the
2002 IEEE International Symposium on Biomedical
Imaging (ISBI 2002), pp. 867-870.

http://murphylab.web.cmu.edu/publications

Improving features, feature
selection, classification method

 R.F. Murphy, M. Velliste, and G. Porreca (2003). Robust Numerical
Features for Description and Classification of Subcellular Location
Patterns in Fluorescence Microscope Images. J. VLSI Sig. Proc. 35:
311-321.

 K. Huang, M. Velliste, and R. F. Murphy (2003). Feature reduction
for improved recognition of subcellular location patterns in
fluorescence microscope images.  Proc. SPIE 4962: 307-318.

http://murphylab.web.cmu.edu/publications
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Improving features, feature
selection, classification method

 K. Huang and R.F. Murphy (2004). Boosting accuracy of automated
classification of fluorescence microscope images for location
proteomics. BMC Bioinformatics 5:78.

 X. Chen and R.F. Murphy (2004). Robust Classification of
Subcellular Location Patterns in High Resolution 3D Fluorescence
Microscope Images. Proceedings of the 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 1632-1635.

http://murphylab.web.cmu.edu/publications

Classification of multi-cell
images

 K. Huang and R. F. Murphy (2004). Automated Classification of Subcellular
Patterns in Multicell images without Segmentation into Single Cells. Proceedings
of the 2004 IEEE International Symposium on Biomedical Imaging  (ISBI 2004),
pp. 1139-1142.

 S.-C. Chen, and R.F. Murphy (2006). A Graphical Model Approach to Automated
Classification of Protein Subcellular Location Patterns in Multi-Cell Images. BMC
Bioinformatics 7:90.

 S.-C. Chen, G. Gordon, and R.F. Murphy (2006). A Novel Approximate Inference
Approach to Automated Classification of Protein Subcellular Location Patterns in
Multi-Cell Images. Proceedings of the 2006 IEEE International Symposium on
Biomedical Imaging  (ISBI 2006), pp. 558-561.

http://murphylab.web.cmu.edu/publications
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Temporal Texture Features
 Y. Hu, J. Carmona, and R.F. Murphy (2006).

Application of Temporal Texture Features to
Automated Analysis of Protein Subcellular
Locations in Time Series Fluorescence Microscope
Images. Proceedings of the 2006 IEEE
International Symposium on Biomedical Imaging
(ISBI 2006), pp. 1028-1031.

http://murphylab.web.cmu.edu/publications

Temporal Texture Features
 Y. Hu, J. Carmona, and R.F. Murphy (2006).

Application of Temporal Texture Features to
Automated Analysis of Protein Subcellular
Locations in Time Series Fluorescence Microscope
Images. Proceedings of the 2006 IEEE
International Symposium on Biomedical Imaging
(ISBI 2006), pp. 1028-1031.

http://murphylab.web.cmu.edu/publications
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Subcellular Location Trees - 3D
3T3 CD-tagged images

 X. Chen, M. Velliste, S. Weinstein, J.W. Jarvik and R.F. Murphy
(2003). Location proteomics - Building subcellular location trees
from high resolution 3D fluorescence microscope images of
randomly-tagged proteins.  Proc. SPIE 4962: 298-306.

 X. Chen and R. F. Murphy (2005). Objective Clustering of Proteins
Based on Subcellular Location Patterns. Journal of Biomedicine and
Biotechnology 2005: 87-95.

http://murphylab.web.cmu.edu/publications

Subcellular Location Trees -
Analysis of Location Mutants

 P. Nair, B.E. Schaub, K. Huang, X. Chen, R.F.
Murphy, J.M. Griffith, H.J. Geuze, and J. Rohrer
(2005). Characterization of the TGN Exit Signal of
the human Mannose 6-Phosphate Uncovering
Enzyme. J. Cell Sci. 118:2949-2956.

http://murphylab.web.cmu.edu/publications
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PSLID - Protein Subcellular
Location Image Database

 K. Huang, J. Lin, J.A. Gajnak, and R.F. Murphy
(2002). Image Content-based Retrieval and
Automated Interpretation of Fluorescence
Microscope Images via the Protein Subcellular
Location Image Database.  Proceedings of the 2002
IEEE International Symposium on Biomedical
Imaging (ISBI 2002), pp. 325-328.

http://murphylab.web.cmu.edu/publications

SLIF - Subcellular Location
Image Finder

 R. F. Murphy, M. Velliste, J. Yao, and G. Porreca (2001).
Searching Online Journals for Fluorescence Microscope Images
Depicting Protein Subcellular Location Patterns. Proceedings of
the 2nd IEEE International Symposium on Bio-Informatics and
Biomedical Engineering (BIBE 2001), pp. 119-128.

 R. F. Murphy, Z. Kou, J. Hua, M. Joffe, and W. W. Cohen (2004).
Extracting and Structuring Subcellular Location Information from
On-line Journal Articles: The Subcellular Location Image Finder.
Proceedings of the IASTED International Conference on
Knowledge Sharing and Collaborative Engineering (KSCE 2004),
pp. 109-114.

http://murphylab.web.cmu.edu/publications


