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‘ Goal of tutorial

= Introduce problem of automated
interpretation of articles containing text
and images

= Describe relevant methods, mostly in
context of SLIF (Subcellular Location
Image Finder) system

= Describe future directions for field
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‘ Ultimate Goal of the field

= Machine understanding of biological
journal articles (text and image)

= Criteria for success: Turing test - have
machine be able to answer questions
about an article as well as a human

scientist
i
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‘ Intermediate Goal

= Extract information from combination of
text and any kind of image in biological
journal article

= Criteria for success: Achieve high
precision and recall for extracted
assertions (compared to expert

‘ Immediate Goal (SLIF)

= Extract information about subcellular
location from captions and figures
containing fluorescence microscope
images in biological journal articles

= Criteria for success: Achieve high
precision and recall for extracted
assertions (compared to expert
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State of art: Bio Journal
Information Extraction
= A number of systems to index literature
via extracted terms
= A few systems to index image content
in literature
= A few systems for document
classification
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Information Extraction from Image
and Text in Journal Articles

Practices in Biological Journal
Articles

= Articles not monolithic: they can support
more than one biological conclusion

= Different types of data often combined
in one article and in one figure

= Assume knowledge of basic biology

= Captions should be understandable
without reference to paper

= Materials often defined in separate
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Eukaryotic cells have many
parts

nuclear pore

nuclear envelope} —
nucleolus

Golgi complex

{ lysosome
vesicle - Y

cytosol
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! Open questions

= How many distinct locations can
proteins be found in? What are they?

= How many distinct motifs direct proteins
to those locations? What are they?
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Introduction to Protein
! Subcellular Location
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! Protein localization

= The sequence of each protein
determines where it is localized in cells

= Subsequences (“motifs”) within a
protein’s sequence are responsible for
targeting it to one (or more) locations
(structures/organelles)
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Proteomics

= The set of proteins expressed in a given
cell type or tissue is called its proteome
= Proteomics projects
= Ssequence
= structure
= activity
= partners
= location

WW;

I
Yo 2o 1o bbbt

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy

“arnegie Mellon




Information Extraction from Image
and Text in Journal Articles

Location information in protein Location information in protein
‘databases: Traditional approach ‘ databases: Ontology approach
= conduct experiments of various types = Systematic analysis and comparison of
= Cell fractionation these descriptions were made difficult
= Electron microscopy by both the unstructured nature of the

= Fluorescence microscopy

= describe the results in unstructured text (first
in journal articles and then in summaries in

text and the variation in terminology
used from one laboratory to another

databases) = To address this problem, a restricted
= “Protein X is located primarily in protrusions from vocabulary for cellular components was
the early endosomal membrane but is also found created by the Gene Ontolo
‘m\\\ Il ’” ' in the plasma membrane” w‘ I 'H .ﬁf‘;ensortiur? ay
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Restricted Vocabulary Aoproaches Restricted Vocabulary Approaches
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GENE ONTOLOGY™ CONSORTIUM AmiGO

What s the Gene Ontology?  Download the Ontologies

Golgi lumen

sed by the membranes of any cistema of the Golgi apparatus.

all - a Graphical View

This sestch uses the ATIGO browser. Yo can sso use ona of the many other GO Brwse
m‘ 50]  What's New? 4 ‘m“‘ H H\ H ‘H
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Comparison of
‘ Use of GO terms ‘ GO terms for two proteins

= Databases such as SwissProt use

manual curation to assign GO terms to GolgB1 GPP130
proteins based on reading of relevant Integral to Integral to
literature membrane; membrane;
= A major problem is consistency of Golgi membrane; | Golgi cis-face;
application of terms Golgi stack; Golgi lumen;
endocytotic
w”‘ il ‘“ W\H ~ y transport vesicle

Source: SwissProt
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Information Extraction from Image
and Text in Journal Articles

‘ Determining protein location

= The primary method used to determine
the subcellular location of a protein is to
“tag” it with a fluorescent probe and
then image its distribution within cells
using fluorescence microscopy
(abbreviate resulting Fluorescence
Microscope Image as FMI)
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Tagging proteins for fluorescence
microscopy

= GFP-tagging
= Can create fusion between GFP and a
cDNA, in which case all regulatory
sequences that control expression of the
corresponding protein is lost

= Can create fusion between GFP and the
genomic sequence of a gene, in which
case regulatory sequences preserved
m“”w (il = Example: CD-tagging
L doorlily
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! Analysis of example paper
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Tagging proteins for fluorescence
microscopy

= Immunofluorescence
= “primary” antibody against the target,

= “secondary” antibody against the “primary” and
conjugated with a fluorescent probe

= Fixed-cells only
= Gene/cDNA-tagging

= merge DNA coding for a naturally fluorescent
protein (or vital probe binding sequence) with
~__coding sequence of a protein of interest
\\1=L|‘H‘HHH 14 Live-cell possible
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Major information to extract for
FMI in article figures

= Sample
= Cell or tissue type
= Treatments (drug addition, fixation)
= Probes (fluorophores, targets)
= Acquisition
= Microscope type
= Magnification
= Display
= Color mapping
W“‘w \[llls Internal Annotations

e ety Panel labels
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Direct Observation of Rapid Internalization and
Intracellular Transport of Sterol by Macrophage Foam Cells

WHW

I
Yo 2o 1o bbbt

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy

“arnegie Mellon




Information Extraction from Image

and Text in Journal Articles
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= Example

gray scale

image
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Figure 1: Dehydroergosterol (DHE)
is transported to recycling
endosomes but not to late
endosomes and lysosomes. (A-C)
J774 macropheges were lbeled for
Smin at 37°C with DHE/MBCD,
washed and chased for Omin (A),
Smin (B) or 30min (C) at 37°C.
Vesicles were observed after Smin
chase and accumulated in the
perinuclear region after 30-min chase
(arrowheads). (D-I) Cells were
incubated for 15min at 37°C with
10pgL Alexs 48842M, washed,
incubated for Smin at 37°C with
DHEMJICD, washed and chased in
the presence of Alexa 546-ransferrin
(T1 for 5 or 30 min at 37°C. Dehydro-
ergosterol D, G) colocalzedwith Alexa
546-Tf (E, H) after 5-min (D, E) and
30min chase at 37°C (G, H) (amows).
In contrast, DHE did not colocalize
with Alexa 4882M (F, ) after Smin
(F) or after 30-min chase at 37 °C ()
Bar, 10um.
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Note panel labels, arrows, text annotation, scale bars (and
inference needed to infer which panels they apply to)
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Figure 2: Dehydroergosterol
(DHE) does not accumulate in
the trans-Golgi network (TGN).
Cells were incubated in the
absence (A-C) or presence (D-F)
0f 33 nocodazole, washed and
labeled for 5min at 37°C with
DHE/MBCD. Cells were washed
and chased for 25min at 37 °C in
the absence or presence of
nocodazole. Subsequently, cells
were labeled with 10p C6-
NBDCer for 5min at 37°C. In
experiments with nocodazole to
disrupt cell’s microtubules,
nocodazole was akso present in
+ nocodazole the labeling solutions
Dehydroergosterol (A, D,
arfowheads) did not colocalize
with C&-NBD-Cer (B, E, arows).
The color overlay (C, P shows|
segregation of DHE (green) from
C6-NBD-Cer (red), especally after
nocodazole trestment (D-F),
which disperses the Golgi
apparatus and the ERC. Bar,
10pm.

DHE C6-NBD-Cer Overlay

Separate probe images

Two color overlay
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DHE Nile Red

Note phase contrast
image in figure with
mostly fluorescence

images

Note
correspondence
between panels
defined in caption

[Figure &
lfoam cells. Cels were incubated for 4h with 10g/mL acetylated low-density ipoprotein in iipoprotein-epleted serum, washed and
labelod for 5min at 37°C with DHE/MBCD. Cells were chased for Omin (A-C), 30min (D-F) o 60min (G-l at 37°C and imaged. Cells
[were incubated for 10min with 10w Nile Red prior to labeling with DHE (A-C) or during the last 10-min chase at 37 °C (D-1, see above.
Initally, DHE stained the plasma membrane and showed diffuso staining of the cytoplasm (A). Large Nile Red labeled droplots were found

in the cytoplasm (8) in regions that lacked DHE. matchy Jar objects in th image (C).
[fer 30rin chas, OHE accuusin i Mo Rtined oot rronbosds, 07 nc accaaly nth pakucoer gk s
Panels D-F reprosent a sum projection image stacks for o: e

o
Koo i, DHE. e st i () snows DT arcen v e R 06 Mo OIVE s o it bocams o i 80
[chase, when staining of the plasma membrane by DHE was very low. Again, droplets could be detacted in the corresponding phase-
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Information Extraction from Image
and Text in Journal Articles
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Figure10: Dehydroergosterol
(DHE) is not enriched in

Note blank field sphingomyelinase C-induced
endocytic vesicles. J774 Mos

Rh-dextran Overlay were incubated with medium

containing DHE/MBCD (30 mu)
and Rh-dextran (1.25mg/mL)

without (A-C) or with (D-F)

50mU/mL of SMase for 5min,

—SMase washed, and chased in Medium 1

with or without 50mU/mL of

SMase for 10min at 37°C

Dehydroergosterol became

enriched in internal structures

(arrows, A & D) but did not

colocalize with Rh-dextran
(arrowheads, E) in endocytic
vesicles formed after SMase
treatment. F, color overlay
showing DHE in green and Rh-

+SMase dextran labeled vesicles in red.
Cells that were not treated with
SMase took up very little
Rh-dextran during this brief
incubation (B). Bar, 10um
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Three color overlay
M DHE Transferrin Overlay

Total

chase:

20 min

80 min

Figure 11: Dehydroergosterol (DHE) derived from hydrolysis of acetylated low-density lipoprotein (AcLDL}-DHE esters
colocalizes with transferrin (Tf). J774 macrophages were labeled for 20 min with 26 ugimL of DHE ester-labeled AcLDL and 50 ugimL.
of Alexa 483-22M, washed and chased for 20min in presence of 10 ug/mL of Alexa 5467Tf (A-D). Alternatively, cells were chased for 60 min in
Medium 1 alone before chasing for 20 min in presence of 10 ugimL of Alexa 546Tf (E-H). After the inital chase, DHE fluorescence was found in

Alexa 48822M, of the labeled AcLDL to late endosomes and lysosomes (amowheads, A-C). At this time,
DHE did not colocalize with Alexa 546-TF in the perinuclear region (amow, C). After an additional 60-min chase, DHE released from the degradative
compatments was found in the perinuclear area containing Alexa 546-Tf @mows, F, G), but did not colocalize with Alexa 488a2M
(aowheads, E). (D, H) Coloroverlay shows DHE in biue, Alexa 488:x2M in green and Alexa 546-Tfin red after the inital (D) and prolonged (60 min)
chase (H. Bar, 10um.
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panel [0
labeling

Figure6: Dehydroergosterol (DHE)

enriched in lipid droplets is

replenished rapidly after photo
aching. Colls were ncutts

4h with 104/ of acatyatad low-

wpar one-third of the cal

Note mixture

of graph and vere ssasrel o e demod on
B Normatzed mescorce
micrographs ¢ DIE i blachod drolrs ek

in one figure

fluorascence recovery indroplets wias
p +0.3min. For compaison,
the nomaized fluorascance recovery
of DHE roplats n ATP-depletad cals
s shown (open circlas). Data
represent mean £SEM of six
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Information Extraction from Image
and Text in Journal Articles
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AcLDL+DUP-128 Chol/MBCD
DHE Nile Red

Figure8: Free cholesterol loading of J774 mavrophages resuits in delivery of ing lipid droplets. (A-D)
cells were incubated for 4h with 10 pg/mL of acetylated low-density lipoprotein in lipoproteindepleted serum in the presence of the ACAT
inhibitor DUP128, washed and labeled for 5 min at 37°C with DHE/MBCD. Cels were chased for Omin (A, B) or for 60 min (C, D) at 37 °C and
imaged. The cells were incubated for 10 min with 10 v Nile Red prior to labeling with DHE (A, B) or during the last 10 min of the chese (C, D, see
above). Initially, DHE (A) stained the cytoplasm and was rapidly defivered to droplets labeled with Nile Red (B) (thin arrowheads). The number of
double-lebeled droplets increased during prolonged incubation (C, D). The insets at the top right of panels C and D show higher magnification
images of the regions indicated by a white square. (E-J) cells were cholesterol-overloaded by incubation with 10mw Chol/MBCD for 10min at
37°C. The cells were pulselabeled with DHE/MBCD, washed and chased for Smin (E) or 30min (F-J) with Nile Red () being present during the
last 10 min of chase (1, J). Dehydroergosterol became enviched n droplets identiied by their appearance in the phase-conrast image (G) and by
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Inputs for automated paper

Data Sources

= All journals published electronically
Many biological journals are open access
= Pubmed Central collects them in one place

= Biomed Central collection contains a number of
journals in same style

Many others have delayed open access
Some have initial open access

= Those without open access have subscription
access
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! Paper Formats

= All provide PDF version
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= All(?) journals use Publishing XML

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy

! Biological Databases

= Many biological database containing
structure information, especially about
gene and protein names, sequences,
structures, interactions
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Information Extraction from Image
and Text in Journal Articles

Basics of Supervised Machine
Learning: Feature Selection
!and Classification

s
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‘ Feature selection

= Having too many features can confuse a
classifier

= Can use comparison of feature distributions
between classes to choose a subset of
features that gets rid of uninformative or
redundant features

W\w Il
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‘ Feature Selection Methods

= Principal Components Analysis

= Non-Linear Principal Components
Analysis
= Independent Components Analysis
= Information Gain
= Stepwise Discriminant Analysis
m‘ - : :Penetlc Algorithms
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‘ k-Nearest Heighbor (kNN)

= |n feature space, training examples are

Feature #2
(e.g.., roundness)

m‘ W; i il Feature #1 (e.g.., ‘area’)
UL
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‘ Simple two class problem
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‘ k-Nearest Heighbor (kNN)

= We want to label ‘?’

Feature #2
(e.g.., roundness)

m‘ W; i il Feature #1 (e.g.., ‘area’)
UL
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Information Extraction from Image
and Text in Journal Articles

‘ Decision trees

= Again we want to label “?’

Feature #2
(e.g.., roundness)

Feature #1 (e.g.., ‘area’)

mu\\\ i I

oo 2o 0 bt Slide courtesy of Christos Faloutsos
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‘ k-Nearest Heighbor (kNN)
= Find k nearest neighbors and vote
So we label it + for k=3,
Feature #2 ?
(e.g.., roundness) F’ L nearest
+ neighbors
are
+ + -
. R
+
W\ H il il Feature #1 (e.g.., ‘area’)
oo 2o 0 bt
~arnegie Mellon
‘ Decision trees
= SO we build a decision tree:
Feature #2 ?
(e.g.., roundness) +
+ +
40
+ +
+
+
50
W\ H il il Feature #1 (e.g.., ‘area’)
o e 30 bt Slide courtesy of Christos Faloutsos
~arnegie Mellon

‘ Decision trees

= so we build a decision tree:

area<50

’ ? ~ Y / N
round. R

40— . round. <40
+ +++ - + l:l v \ N
50 ‘area’ R ﬁ

Slide courtesy of Christos Faloutsos
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‘ Decision trees

homogeneous regions

’ ? ~ Y / N
round. R

40~

= Goal: split address space in (almost)

area<50

round. <40

‘ Support vector machines

= Again we want to label ‘?’

Feature #2
(e.g.., roundness)

mu\\\ i
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R . Y \ N
50 ‘area’ R

Slide courtesy of Christos Faloutsos
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Feature #1 (e.g.., ‘area’)

Slide courtesy of Christos Faloutsos




Information Extraction from Image
and Text in Journal Articles

Support Vector Machines
‘ (SVMs)

= Use single linear separator??

round.
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Slide courtesy of Christos Faloutsos

Support Vector Machines
! (SVMs)

= Use single linear separator??

round.
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area

Slide courtesy of Christos Faloutsos

Support Vector Machines
! (SVMs)

= Use single linear separator??

round.
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Slide courtesy of Christos Faloutsos
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Support Vector Machines
‘ (SVMs)

= Use single linear separator??

round.
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Slide courtesy of Christos Faloutsos

Support Vector Machines
! (SVMs)

= Use single linear separator??

round.

e A
\\1=L|‘HHHL Wil N
e Slide courtesy of Christos Faloutsos
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Support Vector Machines
! (SVMs)

= we want to label ‘?’ - linear separator??
= A: the one with the widest corridor!

round.

-
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. : Slide courtesy of Christos Faloutsos
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Information Extraction from Image
and Text in Journal Articles

Support Vector Machines
‘ (SVMs)

= we want to label ‘?’ - linear separator??
= A: the one with the widest corridor!

-

:

-~

round.

+_—
.

| ‘support vectors’
/

+
+

v
1

l ‘IHI\H i area

\
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‘ Describing classifier errors

= For multi-class classifiers, typically report

= Accuracy = # test images correctly classified
# test images

= For binary classifiers (positive or negative),
define
= TP = true positives, FP = false positives
= TN = true negatives, FN = false negatives
= Recall=TP /(TP + FN)
= Precision =TP /(TP + FP)

m i il F-measure= 2*Recall*Precision/(Recall + Precision)
(s AV
oo 2onage 30 holt
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System structure
considerations

= Even immediate goal requires complex mixture of
functions to process papers

= Some functions require outputs of other functions as
inputs

= Inputs and outputs may change as system evolves

= Functions may be written in different languages

= System uses and creates large number of images

W\H o
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Cross-Validation

= If we train a classifier to minimize error on a
set of data, have no ability to generalize error
that will be seen on new dataset

= To calculate generalizable accuracy, we use
n-fold cross-validation

= Divide images into n sets, train using n-1 of
them and test on the remaining set

= Repeat until each set is used as test set and
average results across all trials

\ \IHI‘H il i \“
oo 2onage 30 holt
“arnegie Mellon

! Design Issues

g o w
oo Sorsge Yo o/
arnereMLllon

[

System structure
considerations

= Incremental nature of project argues for flexible pipeline system
= Good choices available (not when we started SLIF project!)

= Large numbers of papers and processing times for images
argue for ability to compute (or recompute) only some results

= Large numbers and sizes argue for storage of images on disk
rather than inside database

= Desire for modules using heterogenous languages argues for
use of scripting language to manage system

mw i T

Ve Zonsge 2 bl
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Information Extraction from Image
and Text in Journal Articles

‘ Labeling and evaluation

= Hand label as many cases as possible
for each step to enable machine
learning for that step and evaluation of
effectiveness of each step in pipeline

mw I

e 2o 30 bl
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‘ SLIF design

= Preprocessing job to take PXML or PDF files and
convert to “standard” organization
= Pipeline to process each paper and store results on
disk and in relational database
= Use machine learning as much as possible
= Web application to interface between user and
database

mw I

e 2o 30 bl
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‘ SLIF Preprocessor

= Can handle small differences between
input formats

= Spiders source directories
= creating a directory for each paper it finds
= remembering Pubmed ID for each paper
= creating subdirectories for each figure it

finds
= extracting figure as JPEG image
m‘ il i - extracting caption as plain text

e 2o 30 bl
“arnegie Mellon

‘ SLIF Pipeline

= Master Controller script in Perl

= Inputs and outputs for each module defined in terms
of files that they need or create

= Controller can be asked to make any target
= Order that modules are run defined by dependencies

= Processing of each paper independent so compute
cluster can be used for collection

= Results stored in Postgresgl database

mw I

e 2o 30 bl
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‘ SLIF Web Application

= Java Server Pages to define queries and
display results

= Programmatic access support through
modifiers on URL
= SOAP interface written and being tested

mw I

e 2o 30 bl
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! SLIF Pipeline
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Information Extraction from Image
and Text in Journal Articles

! SLIF Pipeline components Panel Splitting [image]

Entity
| extraction

see text]

protinnanes, = Difficult task in general case
= SLIF focuses on images, so chose
approach with high precision and recall
for images
ntcs and pamels = Recursive detection of light areas
between panels with trimming

Scope

Caption|

Cohen et al, 2003]

subcellular
Micro. BORGESN  pattern
Panels Panels assignment
analysis
see text]

Panel typing
[Murphy ef al, 2001]

doror L
i g AT
P e e 10 ol P e e 10 ol
“arnegie Mellon “arnegie Mellon
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Panel Splitting [image]

= Find horizontal or vertical line through figure with
lowest average intensity

= [f lowest is above threshold, stop ‘v [

= Cut figure into two pieces p=t ’;" 3 e

= Trim horizontal or vertical lines from edges of pieces _M J
if those lines have average intensity close to white or

black
= [f piece too small, discard
= Recurse on resulting pieces

L Ry
TAL

i il T ——— —
A DA RS
P e e 10 ol I o v 0 bl
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Semi-automated labeling tool ! SLIF Pipeline components

1 Initialize list of previously labeled results to empty; Initialize
panel splitter parameters

> Runinitial panel splitter on some figures; output is coordinates
of each putative panel

3. Compare to list of previously labeled putative panels

4. If match, assign previous label (correct or incorrect)

~ Entity
| extraction

[see text]

protein names,
cell types

s If not, display figure/panel and get label Label aligned captibn
) . Panel finding entities apd panels
5. If desired, change algorithm/parameters and go to step 2 splitting e, 2003
7. Run again on new set of figures and just save initial results as Murphy et o — subcellular
i i al, 2001 icro. [Annotated| [T
unbiased estimate of accuracy et Tmage Panels assignment

Panel typing

analysis
[Murphy ef al, 2001]

see text]
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Information Extraction from Image
and Text in Journal Articles

U2B"-GFP anti-coilin AB . . .
Identify all image pointers:

Substrings that refer to parts
of the image

Image pointer detection [text]

= Parse caption using set of rules to
identify potential image pointers

= Single letters followed by period or

comma
. Figure 1.@
= Single letters or short phrases followed double lab¥féd fvi
Three nuclei g
or surrounded by parentheses or
brackets

hree nuclei are shown. Most coiled bodies
m - c n}lqleoplasm, but occasiomaiiy are seen in the nucleolull coiled

(T ‘jHL Il ' bodie: jmat\coﬁtain U2B 0 also express the U2B 0-GFP fusion. Bars; ™. Movement
) ] of Cailed Bodigs Vol. 10, July 1999 2299

“arnegie Mellon

e 2o 30 bl

“arnegie Mellon

[dentifying Image Pointers:

Learning vs Hand-coded Panel Label Finding [image

Heuristics and text]
= Finding annotations is not difficult
HC-1 HC-2 ABWI ABWI SABWI + look for sharp edges,efc
(W=2) +NA + NA = Interpreting annotations (what letter
Precis 985 745 897 85.9 88.6 isit?) is hard
= complex backgrounds
. = partially occluded letters
Recall 456 98.0 91.0 92.2 93.8 = Method:
= find candidate regions (using

position & size)

enhance, rescale, binarize
apply OCR to regions

match possible label patterns to
labels from text

F1 623 846 903 89.0 91.1

\ AN J
L IR M .
AR M‘ ||/l Hand-coded methods Learned filters on hand-coded iRl “HL i
L candidate generator e 30 hoalilit

“arnegie Mellon

“arnegie Mellon

H ou et al, Biol . [ Kou et al, BioKDD 2003]
‘ Label matching e« aerer = ‘ Evaluation

# panels # text regions

= Labels from caption (sorted): ABCDEF

. 3 A B g
cE s s s
= ABGD_F (row-major)
= Closest match by dynamic programming: OCR directly on panels OCR on intensity-normalized
text regions
# Prec. | Recall # Prec. Recall

271 71.3% 63.5%

15 3.9% 3.5%

o |-
= ABGD_F ~ ABCDEF D -
/
CE

A B

OCR on enhanced text OCR on enhanced text regions,

correct using best alignment with respect to
after string-match corrections

Needleman-Wunsch edit distance, using D regions

model of common OCR errors to set weights E # Prec. Recall # Prec, Recall
il i gpiRp> | 7o1% | Tor% 316 832% | 740% )
1 RO R 0

g 3o boorlidip

e 2o 30 bl
“arnegie Mellon

“arnegie Mellon

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy



Information Extraction from Image
and Text in Journal Articles

‘ Limitations

= Only looks for labels within panels
(misses labels next to panel)

= Can’t assign same label to set of panels

= Only recognizes single letter labels
(does not recognize “control”)

W\M I

I e g 10 ool
“arnegie Mellon

Scale bar finding [image and
‘ text]

= |In image, look for solid, horizontal black
or white bars

= |n text, look for strings of form “(Bb)ar”
followed by number followed by “m”

= Assume number is in um (microns)

= Scale in microns per pixel is number
divided by length of bar in pixels

W\M I

oo g 0 bt

“arnegie Mellon

‘ Caption scoping [text]

= Goal is to try to determine which words
in the caption refer to which parts of the
figure

W\M I

I e g 10 ool
“arnegie Mellon

‘ Annotation removal [image]

= All candidate annotations (including
panel labels) are removed (set to
background)

= Future: could define filters to recognize
non-alpha symbols (arrows)

W\M I

I e g 10 ool
“arnegie Mellon

SLIF Pipeline components

\, Entity
| Jextraction JNHEIES

S [see text]

cell types

Label
finding
[Kou et al, 2003]

subcellular
[Annotated ez
Image Panels assignment
Panel typing analysis
m oo il [Murphy ef al, 2001] see ext]
it ‘MHL T

I e g 10 ool

aligned caption
entities and panels

“arnegie Mellon

protein names,

U2B"-GFP anti-collin AB

Classify image pointers
as citation-style or
bullet-style.

Figure 1. @ingle confocal optical section of BY-2 cells expressing U2B 0-GEP
double labetéd with GFPd autoantibody against p80 coilin
Three nuclei are shown, andthe-bright GFP spots colocalize with bright foctuf-antt=
coilin labeling. There is some labeling of the cytoplasm by anti-p80 coilin.|

A

confocal optical section of BY-2 cells expressing U2B 0 -GFP, double labeled
(left panel) 3nd 4G3 antibody((right panel).JThree nuclei are shgsa—Mestgoiled bodies
€ nucleoplasm, but occastomatty are seen in the nuclell coiled

" bod FF mm\‘c(;ﬁlain U2B 0 also express the U2B 0-GFP fusion. Bars, > m m. Movement

Va£Coiled Bodigs Vol. 10, July 1999 2299

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy

“arnegie Mellon
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Information Extraction from Image
and Text in Journal Articles

U2B"-GFP anti-coilin AB

Style determines scope:

image pointer is all words

(double labeféd with GFP
jThree nuclei are shown, a__

_scope of (4)

confocal optical section of BY-2 cells expressing UZB U -GFP, double Tal

ot Coiled Bodigs Vol. 10, July 1999 2299
“arnegie Mellon

- The scope of a bullet-style

between it and the next “bullet”

Figure I.QE@IS confocal optical section of BY-2 cells expressing U2B 0-GFP, "
+ against p80 coilin (right panel)!
g __calize with bright fociofanti- !
coilin labeling. There is some labeling of the cytoplasm by anti-p80 coililg’_ Single
eled-with GFP
(left panel) and 4G3 antibody (right panel). Three nuclei are shown. Most coiled bodies
n the nuclegplasm, but occasionally are seen in the nucleolus (arrows). All coiled
m ‘ﬁhat‘coﬂnain U2B 0 also express the U2B 0-GFP fusion. Bars, 5 m m. Movement

‘ SLIF Pipeline components

[see text] Scopes 4
,

Caption|
understanding|
[Cohen et al, 2003]

Label aligned caption
Panel finding entities and panels
splitting [Kou et al, 2003]
[Murphy er|
al, 20

Panel typing analysis
m ‘ il [Murphy e al, 2001 see ext]
L )
Yoo Zons wlidit
“arnegie Mellon

U2B"-GFP anti-coilin AB

Style determines scope:

- The scope of a bullet-style
image pointer is all words
between it and the next “bullet”

- The scope of a citation-style
image pointer is some set of
words nearby it (heuristically
determined by separating words and
punctuation)

Figure 1. (A) Single confocal optical section of BY-2 cells expressing U2B 0-GEP
double labeled with GF ): nd autoantibody against p80 coilin 4@)
Three nuclei are shown, and the bright GFP spots colocalize with bright foct of anti-
coilin labeling. There is some labeling of the cytoplasm by anti-p80 coilin. (B) Single
confocal optical section of BY-2 cells expressing U2B 0 -GFP, double labeled with GFP
(left panel) and 4G3 antibody (right panel). Three nuclei are shown. Most coiled bodies
n the nucleoplasm, but occasionally are seen in the nucleolus (arrows). All coiled

m ‘ﬁhat‘coﬂnain U2B 0 also express the U2B 0-GFP fusion. Bars, 5 m m. Movement
of Coilgd Bodigs Vol. 10, July 1999 2299

“arnegie Mellon

. Entity protein names,
extraction PN ceII types

subcellular

Panels Panels assignment

Named entity recognition
‘ (NER) [text]

= Need to match results of image analysis
of panel contents with words describing
the image

= Name of protein visualized, cell type
used, etc.

= Very hard task because names of
biological entities not used consistently

oo 2ot

“arnegie Mellon

‘ Protein Name Recognition

association with the Rb protein.

Two  potentially  oncogenic cyclins,
cyclin A and cyclin D1, share common
properties of subunit configuration,
tyrosine phosphorylation and physical

‘ Protein Name Recognition

Two  potentially  oncogenic cyclins,
cyclin A and cyclin D1, share common
properties of subunit configuration,
tyrosine phosphorylation and physical
association with the Rb protein.

-

oo 2ot

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy

“arnegie Mellon
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Information Extraction from Image
and Text in Journal Articles

‘ Use cases

= Possible query: “find all images of some protein involved in ribosome
assembly that appears to be located in the cytoplasm”

= “Proteins involved in ribosome assembly” determined by membership in a
database (eg PIR,...)

= A high recall protein name extractor is preferred
= We care most about proteins from databases of all known proteins

WHH il M\

Yoo v 1o bl
Jarnegie Mel II(m

Problems with dictionary based
algorithms

- Words in a dictionary may not always be proteins,
particularly after generalization to a pattern (e.g., “AT”,
“fragment”, ...)
— Dictionaries must be first curated by removing such words
— Constructing patterns requires engineering

Dictionary Pattern Dictionary
Two
potentially alpha tubulin Greek tubulin
oncogenlc
cyclins, . !
yclin A cyclin CapitalLetter
Mﬂ i eyclin A and _ -
;.._.4‘4,».»44/41 cyc clin D1..... cyclin D1 cyclin CapitalLetter+Digit

JarnegieMellon = ...

An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

@-O—&®—®-0-0-&®-®

RSP
Ww il \UH \@/

Yoo v 1o bl
Jarnegie Mel II(m

Dictionary based algorithms for
protein name recognition

TWO Dictionary Pattern Dictionary
potentially L i
oncogenic alpha tubulin Greek tubulin
cyclins,

cyclin A cyclin A cyclin CapitalLetter
and Cyclin cyclin D1 cyclin CapitalLetter+Digit
D1 e

WHH il HlH

Yoo v 1o bl
Jarnegie Mel II(m

Context based algorithms

= Context based algorithms g alpha  .000002
learning algorithms tubulin.000013
= Hidden Markov Models(HM -+
from text cyclin ~.000009

machine

extract names

Go—CGo—

Phait G

Jarnegie Mel II(m

An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

O-@—®—®-0-0-&®-®

RSP
Ww il HlH \@/

oo 2o 2o bl

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy
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Information Extraction from Image
and Text in Journal Articles

An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

OO —@—&-0-6-&6-®
AT
\ /

\\1=LI‘HW i &
o v 1o bl
“arnegie Mellon

An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

OO —®—@-0-6-&6-®
AT
\ /

"ﬁ“lw il >
o v 1o bl
“arnegie Mellon

An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

OO —®—&-0-6-&C-®
At
\ /

"ﬁ“lw il >
o v 1o bl
“arnegie Mellon

An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

O-O—®—®-0-0-&®-®
TR
\ /

WHW @

il
o v 1o bl

An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

OO —®—-&-0-0-&6-®
R
\ /

"ﬁ“lw il >
o v 1o bl
“arnegie Mellon
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An HMM for protein name

‘ extraction

Two potentially oncogenic cyclins, cyclin A and cyclin D1

OO —®—&-0-0-&0-®
AT
\ /

"ﬁ“lw il >
o v 1o bl
“arnegie Mellon
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Information Extraction from Image
and Text in Journal Articles

. Discriminative versions of HMMS
An HMM for protein name (CRFs, MEMMs/MaxEnt

‘ extraction ‘ Taggers)

= New HMM-like methods:
= Each token can have many features associated with it
(isCapitalized, containsNumber, containsGreekLetter)

Two potentially oncogenic cyclins, cyclin A and cyclin D1
as well as an “identity” (“alpha-3”)
= State is predicted with a linear weighting scheme that

considers features and previous state
—

@@ @@ -O-O-@ @ okt

Eo—>Ep~>C ; C@»@
\ / 0.1013 +
containsNumber*0.3
s & s @

41+ .+
previousStatelsS2*0

\r:m:;\‘h llon \r:m:;\‘h llon
Combining a dictionary with a hidden
. rkov model (Dictionary-HMM
! SemiCRFs 's ( y-HMM)
-Semi-markov version of CRES ictionary base_d _ algorithms can take
advantage of existing resources, such as

«Viterbi search replaced with search for best protein names in PIR database

sequence of segments
- Distance to dictionary is feature of segments = Context based algorithms do not in
Two potentially oncogenic cyclins, cyclin A and cyclin D1 principle need updating
- ——Go— GO —@-»E-Go(®+® = Dictionary-HMM: learn how to do a soft
match based on a small number of training
data

@ﬂ@*
i i i \ / i i i
g b el et s
@ Jarnegie I\I(Ilon

“arnegie Mel Ilnu

Combining a dictionary with a hidden

Combining a dictionary with a hidden
Iﬁrkov model (Dictionary-HMM)

rkov model (Dictionary-HMM)

@ 0-® & @G —
D)
- . % - — ¥
H \\\ B . ,\\\
~ g ~
™ o a path corresponding ™ o a path corresponding
to a protein name to a protein name
,,,,,,,,,,,,,,,,,,,,,,,,,, entry @; 5.5, entry @155,
UH I H ‘H States introduced by a dictionary

“H I H ‘H States introduced by a dictionary
;-._..‘fu

;-._..‘fu
-arnegie I\I(II(m -arnegie I\I(II(m
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Information Extraction from Image
and Text in Journal Articles

‘ Soft match to a path ‘ Dictionary-HMM
With jumps and loops, path is like a profile-HMM

s — ; We need to specify:

ignal recognition particle protein

%/—j = Structure: states and transitions
Py o = Alphabet: set of emissions

@ = Initial Probability, Transition matrix,

. Emission matrix
Signal recognition particle B @

”HI\H” i NIH i
Voo e 2o brsolil e 2o 30 bl
“arnegie Mellon “arnegie Mellon

Building the structure of the

ctlonary— HMM _—
- 6 ‘ Building the alphabet
%@, o ‘7>.@% = Emissions we have

5 : / = Tokens from training data

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, = Tokens from dictionary
= Subsampling to avoid too many emitted words

= Strategies of introducing paths

Intxate the whole dictionary: huge structure will bring huge = Unknown token
tra n and emission matrix

— Use heuristics to choose a small number of

likely paths
W\H i T WH\H i T
1:1: :;;ﬁlnu 1:1: :;;ﬁlnu
‘ Initial probability ‘ Transition matrix A:

p i @ = Depends on a small number of

) /@ . @\ parameters a,b,g
= |nitial probability .<‘i . @D/GC;ED PGS, 18 )=
= Learn from data G © i) N

k=
= {GE} =1, P(GE|S,,)=1
= T{S;}=(1-m) /N P(GE|GE) = ’; .
P(S,, |GE) = ’ (
\l“I‘HH H \U \l“I‘HH H \H 0<aﬁy<1
o S o braolil o imag e bosody 7,7, are for normalization, N is the number of paths
“arnegie Mellon “arnegie Mellon
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Information Extraction from Image
and Text in Journal Articles

m” i

L boorlidip
“arnegie Mellon

" P(a, S, ;)=

« POW,|S,;)=0P(W,| Dict)

= PW,1S,;) =& P(W,|GE)

1-g-0
m

i

‘ Emission matrix B

= P(W;|GE): estimate from the training data

W, is a word only in the dictionary
of protein names, except

W, is a word only observed in GE

a; isany tokenin a,,,.... .a,

‘ Learning the parameters

= EM approach based on Baum-Welch

= E-step: run B-W on the test data to learn A, B,
then estimate the average parameters @, ,y,¢,6
from A, B.

= M-step: Use these estimated @.f.7.¢.9 to
recalculate A,B

m” i

L boorlidip
“arnegie Mellon

Performance of different algorithms on different datasets

Precision/Recall/F-measure (%)

‘ Experiments

= Available datasets
= Univ. of Texas: 700 Medline abstracts
= GENIA 3.04: 2000 Medline abstracts
= Yapex: 200 Medline abstracts
= None of these is completely appropriate for us
= Contains non-dictionary as well as dictionary proteins
= Baseline methods
= CRFs, MaxEnt
= Competitive previously published method on same dataset

= Features (for CRF,MaxEnt) and tokenization (for
dictHMM)

m‘m I

e 2o 30 bl
“arnegie Mellon

based method

(Bunescu et al,, 2004)

U. of Texas GENIA YAPEX
Previously published 73.4/47.8/57.9| 49.2/66.4/56.5 | 67.8/66.4/67.1
methods (Bunescu et al., 2004) (Kazama, et al., 2002) (Franzén, et al., 2002)
Bunescu’s dictionary- | 62.3/45.9/52.8

MaxEnt 87.2/57.3/69.1| 67.3/65.4/66.2 | 69.3/58.1/63.2
CRFs 83.5/66.1/73.8| 75.0/67.6/71.1 | 76.0/59.5/66.7
SemiCRFs 83.1/66.8/73.9| 748/68.3/72.3 | 76.1/58.9/66.1

M‘W\ Il

46.0/69.2/55.2

44.8/70.1/54.7

42.4/64.1/51.0

Ve <o 0 bl
“arnegie Mellon

Performance of different algorithms on different datasets

Performance on U. of Texas

Precision/Recall/F-measure (%)

based method

(Bunescu et al,, 2004)

U. of Texas GENIA YAPEX
Previously published 73.4/47.8/57.9| 49.2/66.4/56.5 | 67.8/66.4/67.1
methods (Bunescu et al., 2004) (Kazama, et al., 2002) (Franzén, et al. 2002)
Bunescu’s dictionary- | 62.3/45.9/52.8

MaxEnt 87.2/57.3/69.1| 67.3/65.4/66.2 | 69.3/58.1/63.2
CRFs 83.5/66.1/73.8| 75.0/67.6/71.1 | 76.0/59.5/66.7
SemiCRFs 83.1/66.8/73.9| 748/68.3/72.3 | 76.1/58.9/66.1

M‘W\ Il

46.0/69.2/55.2

44.8/70.1/54.7

42.4/64.1/51.0

Ve <o 0 bl
“arnegie Mellon

U of Texas
0
+ Published
+ Bunescu
" + MaxEnt ]
+ CRFs
W SemiCRFs ||
+ & Dict-HiM
85 * ,
T & —
8
55 i
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N
r * g
m o
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il © . . . . ‘
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Information Extraction from Image
and Text in Journal Articles

Performance on GENIA and
Yapex datasets

GENA Vapex

DictHMM

recal
5 8 8 8 8 3

u E] C] 70 CJ £l 00 u EY E] 70 o EY 00

pacison snison
HTO
m i [
[t ] “ “ H ‘ \‘ {§
[

I e g 10 ool
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Two strategies to improve the
Dictionary-HMM (2)

= Dictionary-HMM with more states

W\M I

I e g 10 ool

“arnegie Mellon

Performance on words that
match dictionary

= Many putative protein names by CRFs or semiCRFs
are poor matches to dictionary entries

= Can measure similarity of a putative name to its
closest match in dictionary using TFIDF (term
frequency * inverse document frequency)

= Calculate as number of words in common divided by
total number of words in both (weighted by frequency
of words overall)

= Examine only putative protein names with TFIDF
score greater than 0.9

W\M I

I e g 10 ool
“arnegie Mellon

W\M I

I e g 10 ool
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Two strategies to improve the
Dictionary-HMM (1)

= Boosting-like strategy:

= Step 1. build a Dictionary-HMM on a test
sentence. If no protein found, end.

= Step 2. learn the dictionary-HMM and calculate the
optimal state sequence. Find the single protein
path with highest likelihood and report it.

= Step 3. remove the protein found in step 2 from
test sentence. Go to step 1 with the reduced test
sentence.

j Performance of improved Dict-HMMs

Precision/Recall/F-measure (%)

U. of Texas GENIA YAPEX
CRFs 83.5/66.1/73.8| 75.0/67.6/71.1 | 76.0/59.5/66.7
SemiCREs 83.1/66.8/73.9| 74.8/68.3/72.3 | 76.1/58.9/66.1
Dict-HMM 46.0/69.2/55.2| 44.8/70.1/54.7 | 42.4/64.1/51.0
Dict-HMM + 498/7431 4831739/ 45.1/69.7/
boosting-like method | 59.6 58.5 54.8
DM 51.8/72.3/60.4| 51.3/72.4/60.1 | 45.1/65.7/53.5

W\M I

I e g 10 ool

“arnegie Mellon

‘ Evaluation for protein names with TFIDF > 0.9

Precision/Recall/F-measure (%)

U. of Texas GENIA YAPEX
CRFs 84.7/685/75.7 | 76.9/67.3/71.8| 78.5/60.3/68.2
SemiCRFs 85.3/69.8/76.8 | 77.9/73.6/75.7| 80.1/61.9/69.8
Dict-HMM 69.1/99.3/81.5 | 65.8/98.7/79.0| 64.3/100/78.3

W\M I

I e g 10 ool

IASTED BIOMed/SPPRA 2007 - R.F.
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Information Extraction from Image
and Text in Journal Articles

‘ Conclusions

= SemiCRFs have higher precision, lower recall

= Dictionary-HMM has higher recall, lower
precision

= Dictionary-HMMs have high recall for dictionary-
like protein names

WM\ il HH

Yoo v 1o bl
“arnegie Mel Ilnu

! Panel typing [image and text]

= Goal is to identify the general type of
each panel

= Possibilities are graph, cartoon, electron
micrograph, light micrograph,
fluorescence micrograph, gel picture

WM\ il HH

Yoo v 1o bl
“arnegie Mel Ilnu

! Initial approach (2001)

= Downloaded PDF files from Pubmed
Central

= Extracted figures, split into panels

= Labeled 1586 panels as either FMI or
non-FMI by viewing panel

= Made 64-bin histogram of gray levels
for each panel

WM\ il HH

Yoo v 1o bl
“arnegie Mel Ilnu

‘ SLIF Pipeline components

~ Entity
__extraction [T
Scopes

protein names,
cell types

Scope

Caption|
understanding
[Cohen et al, 2003]

Label aligned caption
Pane i entities and panels

Murphy et| subcellular
al, 2001 o~ Micro. BORGEEEN  pattern

Panels Panels assignment
Mﬂ i e

analysis
oo 2o 2o bl

[see text]
“arnegie Mel Ilnu

Panel typing
[Murphy ef al, 2001]

! Observations/Assumptions

= Graphs and cartoons have very high contrast
(black on white)

= Electron micrographs and light micrographs
have gray background and little contrast
= Fluorescence micrographs and gel pictures

have near black backgrounds and full range
of gray levels

WM\ il HH

Yoo v 1o bl
“arnegie Mel Ilnu

! Initial approach

Used 64 values as features to “train” k-nearest
nelghbor classifier for FMI vs. non-FMI

= Used labeled examples with leave-one-out cross
validation to choose best k

= Calculate number of neighbors that are FMI

= Choose threshold on this number to trade precision
vs. recall

WM\ il HH

oo 2o 2o bl
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Information Extraction from Image
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‘ Initial approach

= Best kwas 9

= Obtained recall of 70% and precision of 100% for
high threshold

= Obtained recall of 92% and precision of 97% for
lower threshold
= Tested for another set of 100 panels

= For k=11 and T=5, obtained recall of 90% and
precision of 100%

M\\H i

o e 2o sl
“arnegie Mellon

‘ Second approach

= For new collection of figures from
PNAS, precision not as good (~50%)

= Especially observed gel pictures
frequently being classified as FMI

o e 2o sl
“arnegie Mellon

‘ Second approach

= Labeled 1993 panels (one panel each from
898 figures and all panels from 175 figures)

Displayed both figure and caption during
labeling to increase accuracy

= Initial labeling by one person, checked by
another

= 41% were FMI, 19% were gels

M\\H j

o e 2o sl
“arnegie Mellon

‘ Second approach

= Calculated 64 histogram features

= Added 7 edge features measuring fraction of
edge, homogeneity of edge direction and
horizontal and vertical edge content

= Added “bag of words” text features

= One feature for each word found in all of the
training examples (20,767 words)

= For each panel, words in the scope of that

m“ Il lllpanel and words in the scope of the entire
== t=Bantion were counted

“arnegie Mellon

Performance with different
feature sets

All features

Support Vector Machi K-Nearest Neighbor

M\\H i

e 2 o ool

“arnegie Mellon
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‘ Second approach

SVM classifier with
all features

o
©

I
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o
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o
N
S

Previous kNN
classifier retrained <
on new data

Precision
°
» o
S

o
>

Previously trained classifier ¢

.
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Information Extraction from Image
and Text in Journal Articles

‘ Cotraining

Experiments Recall Precision | Error Rate
50% SVM 0.829 0.836 0.132
training Co- 0.826 0.828 0.137
training
10% SVM 0.561 0.791 0.229
training Co- 0.666 0.849 0.179
training

WHHHM ‘u'wl

oo 2o 2o bl

“arnegie Mellon

‘_Graphical model classification

b)

\\:lwl‘u\\w .

oo i B0
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Example with
one panel
wrong

Actual panel class Initial label probabilities Final label probabilities Final label probabilities

(x=0,A=2) (=05 (a=1,1=2)

FMI Non-FMI FMI_Non-FMI FMI Non-FMI FMI_Non-FMI

T 0792 0209 0958 0042 0946 093 0062

FMI 0784 0216 0956 0044 0948 0946 0054

FMI 07s 0282 0939 0061 0928 0921 0079

FMI 0.796 0204 0959 0.042 0.942 0.932 0.068

FMI 0.731 0.269 0925 0.075 0.916 0.926  0.074

FMI 0.492  0.508 0.797 _ 0.203 0.726 0.672 0328
2o e
“J‘IUH}H‘ I h‘H

Yo 2o 1o bbbt

“arnegie Mellon

‘ Cotraining

= Conclusion is that representation of
classes among labeled examples is
good

W\“HHHH ‘M'ilﬁf

Yo 2o 1o ol
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Example where A
original classes &
correct -

Actual panel class Initial label probabilities Final label probabilities Final label probabilities Final label probabilities
(a=0.2-2) (=05.%=2) (@=1.2=2)
FMI Non-FMI FMI Non-FMI FMI Non-FMI FMI Non-FMI
G 0790 0260 08w 0162 0882 0119 088 0117
FMI 0.704  0.296 0.809 0.191 0835  0.165 0.863  0.138
FMI 0.695  0.305 0.800  0.200 0762 0238 0.742 0.258
Non-FMI 0.000 1.000 0.000 1.000 0.000 1000 0.000 1000
4 ! “
i
i
o v 1o bl
“arnegie Mellon
A B c o

% 75 30 45 v
Time of metaboic inhibiton (min)

Example with panels
of different classes
and one wrong i

“Actual panel class Initial label probabilities _Final label probabilities _ Final label probabilities _ Final label probabilities
( ) (a=05.1=2) (a=1.2=2)
FMI Non-FMI EMI Non-FMI FMI Non-FMT FMI Non-FMI
Y 0571 0123 0947 0,053 0955 0045 0972 0.028
M1 0869 0131 0940 0.060 0953 0047 0974 0.026
v 0810 0,190 0905 0.095 0917 0083 0940 0.060
FMI 0.491  0.509 0.664  0.336 0.667  0.333 0.675  0.325
Non-FMI 0038 0.962 0045 0955 00s 0975 0006 0.994
Non-FMI 0.018 0982 0.004_0.996 0.003_0.997 0.003_0.997
m 2o e
il UHH‘\ Il h‘H
Yo 2o 1o bbbt
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‘ Precision Recall Analysis

a)
1
Prior updating
095 with A=0 and A =2
5
@
5
“ o9
No updating (baseline
single cell classifer)
Wl oss
s 0 02 0.4 06 08
e 2ongs 2o hoanlilt

“arnegie Mellon

! Pattern classification [image]

= For each panel that has an identified
scale bar, calculate subset of
Subcellular Location Features that do

not require segmentation into single
cells

\\:I\‘Iw;‘w I
Yo v 1o brililt
“arnegie Mellon

Approaches to classify protein
patterns

= Features can be calculated at each
level and aggregated to higher levels

Single Single
Object Cell

Object Cell Field
features features features
We operator

\\:I\‘Iw;‘w I
Yo v 1o brililt
“arnegie Mellon

WW

‘ SLIF Pipeline components

protein names,
% cell types

~ Entity
| extraction

[see text]

Scope

Caption|
understanding
[Cohen et al, 2003]

Figure

Label

aligned caption

Pane| entities and panels

splittin;

[Murphy e = subcellular
al, 2001] ). Micro. BOHGER pattern

( Panels Panels assignment
analysis
[see text]

Panel typing
e ¥ 1 [Murphy ef al, 2001]
\‘5 Wil
e 0 Aol
“arnegie Mellon

Approaches to classify protein
patterns

= Fluorescence micrographs can contain
subcellular region, single cell, or
multiple cells/tissues

\\:I\‘Iw;‘w I
Yo v 1o brililt
“arnegie Mellon

Approaches to classify protein
patterns

= Analyzing patterns at single cell level
requires segmenting multi-cell images

= Not easy in general case (algorithms
usually customized to type of data
available)

IS
e 2ongs 2o hoanlilt

“arnegie Mellon
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Field-level classification

= Alternative: assume entire field has
same subcellular pattern (mostly true)
= Use features that
= don’t require cell segmentation
= are not sensitive to number of cells in field
= can be calculated without reference to

nucleus
ingle

Field

gt 3o hoanlidlt

Single (

Field-level classification

= Object features (object size, shape)
= Edge features
= Texture features

M‘\ |

oo g 0 bt
“arnegie Mellon

o g
Larne

‘ Scale normalization

= Images in figures have widely varying
scales

= Use of features for classification
requires scale to be the same

= Can use pixel size to rescale images to
common size

M‘\ |

g 40 boarlidit

gie Mellon

Thresholding

= First type of feature is morphological

= Morphological features require some method
for defining objects

= Most common approach is global
thresholding

= Methods exist for automatically choosing a
global threshold (e.g., Riddler-Calvard
method)

M‘\ |

e 2o 30 bl
“arnegie Mellon

“arnegie Mellon

Ridler-Calvard Method

= Find threshold that is equidistant from
the average intensity of pixels below
and above it

= Ridler, T.W. and Calvard, S. (1978)
Picture thresholding using an iterative
selection method. IEEE Transactions on
Systems, Man, and Cybernetics 8:630-
632.

bl

IASTED BIOMed/SPPRA 2007 - R.F.

Murphy

‘ Ridler-Calvard Method

Blue line Ridler-Calvard Illustration
shows
histogram of
intensities,

0.25

green lines 0.2
show average
to left and
right of red
line, red line
shows
midpoint
between them 0.05
or the RC

m threshold o
papfan bl |

Frequency

73
) 0 20 40 [
g G bl Pixel Value

o
“arnegie Mellon
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Ridler-Calvard Method

original thresholded

Otsu Method

= Find threshold to minimize the
variances of the pixels below and above
it

= Otsu, N., (1979) A Threshold Selection
Method from Gray-Level Histograms,
IEEE Transactions on Systems, Man,
and Cybernetics, 9:62-66.

Adaptive Thresholding

= Various approaches available
= Basic principle is use automated

interpolate to form a smooth surface

bl

e 2o 30 bl

“arnegie Mellon

methods over small regions and then

Suitability of Automated
Thresholding for Classification

= For the task of subcellular pattern
analysis, automated thresholding
methods perform quite well in most
cases, especially for patterns with well-
separated objects

= They do not work well for images with
very low signal-noise ratio

= Can tolerate poor behavior on a fraction
BN ofiimages for a given pattern while still
~—aehieving good classification accuracies

“arnegie Mellon

‘ Object finding

as sets of touching pixels that are
above threshold

bl

oo <o 2 bt

“arnegie Mellon

= After choice of threshold, define objects

2D Features
Morphological Features

SLF No. Description

SLF1.3 The average number of above-threshold pixels per
object

SLF1.4 The variance of the number of above-threshold pixels
per object

SLF1.5 The ratio of the size of the largest object to the smallest

bl

oo <o 2 bt
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Suitability of Morphological
Features for Classification

= Images for some subcellular patterns,
such as those for cytoskeletal proteins,

2D Features

Skeleton features

Object Skeleton Features

thresholding

morphological features for those
classes

m;‘\ |

o e 0 bl

“arnegie Mellon

are not well-segmented by automated

= When combined with non-morphological

features, classifiers can learn to “ignore”

‘ lllustration — Skeleton
-

2
“arnegie Mellon

2D Features

‘ (SLF7.66-7.78)

Start by calculating co-occurrence matrix P:
N by N matrix, N=number of gray level.

being adjacent to a pixel with value j

averaged across all directions

m;‘\ |

o e 0 bl
“arnegie Mellon

Haralick Texture Features

Correlations of adjacent pixels in gray level images

Element P(i,j) is the probability of a pixel with value i

= Four directions in which a pixel can be adjacent
= Each direction considered separately and then features

IASTED BIOMed/SPPRA 2007 - R.F.
Murphy

SLF No. Description

SLF7.80 The average length of the morphological skeleton of objects

SLF7.81 The ratio of object skeleton length to the area of the convex hull of the
skeleton, averaged over all objects

SLF7.82 The fraction of object pixels contained within the skeleton

SLF7.83 The fraction of object fluorescence contained within the skeleton

SLF7.84 The ratio of the number of branch points in the skeleton to the length of
skeleton

Mi\‘ ‘

o e 2o sl

“arnegie Mellon

2D Features
Edge Features

Edge features

SLF No. Description

SLF1.9 The fraction of the non-zero pixels that are along an edge
SLF1.10 Measure of edge gradient intensity homogeneity

SLF1.11 Measure of edge direction homogeneity 1

SLF1.12 Measure of edge direction homogeneity 2

SLF1.13 Measure of edge direction difference

2
“arnegie Mellon

Example image with 4 gray levels

42224

12411

34442

Co-occurrence 22332
Matrices 33324
11234 11234 1123|4 11234
11012|1(3] {1/2(1]|0{1] {1/0{1|0/3] [1/0/3|0|1
2|2|4|4\4( [2|1|6|3|4| [2|1|4|3|3| |2/3|0/4|4
N3(1|4/2|2| |3/0|3|6|2| [3|0|3|4|1| [3|0]4/0|3
141213|2(2| |4(1|4|2|4]| |4(3|3|1(2]| |4|1]|4|3|2
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number of gray levels and pixel
resolution of the image

required

for many resolutions

= Optimization for each image dataset

Pixel Resolution and Gray Levels

= Texture features are influenced by the

= Alternatively, features can be calculated

“arnegie Mellon

e
U2B"-GFP
' d
into
“panels”

Detect & remove
annotations

anti-U2B" AB

Classify
panels

Find scale bars

Mw‘\ |

e 2o 30 bl

“arnegie Mellon

Overview: Image processing tasks
e

U2B"-GFP anti-coilin AB
4

Overview: Text processing
tasks

« Find entity names in text, and panel
labels in text and the image.

« Match panels labels in text to panel
labels on the image.

« Associate entity names to textual
panel labels using scoping rules.

(left panel) and 4G3 antibody (right panel). Three nuclei are shown. Most coiled bodies

n the nucleoplasm, but occasionally are seen in the nucleolus (arrows). All coiled
'bodies that/contain U2B 0 also express the U2B 0-GFP fusion. Bars, 5 m m. Movement
of Coiled Bodiés Vol. 10, July 1999 2299

“arnegie Mellon

Feature Value
. . NumObjects: 125.0
image analysis
EulerNumber: -43.0
34
346

Assertions:

objectSizeRatio:
\ CenterOfFluor:

N\
« panel(P14) /
« imageType(P14,FMI)

« slfFeatures(P14,SLF14)

Figure 1/ ingle confocal optical section owﬁlexpressin 2
double labeled with GFP (left panel) and
Three nuclei are shown....

m H | |
e e 10 brsolilt

“arnegie Mellon

o/U2B85GFP,
putoantibody against p80 coilin @

« containsProtein(P14,anti-p80-coilin)
« containsCellType(P14,BY2-cells)

IASTED BIOMed/SPPRA 2007 - R.F.
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WELCOME TO

SL1=

Subcellular Location Image Finder

SLIF (Subcellular Location Image Finder) automatically extracts information about protein subcellular locations from figure-caption pairs
in biological literature. SLIF separates figures into panels and decides which panels contain fluorescence microscope images (FMI). It
applies image processing methods to analyze the FMI and extract a quantittive description of the localization pattems they display. The
associated captions are also processed to identify which portions of the caption refer to which panels and to identify the names of proteins
contained in the captions. The results of ths analysis are stored in the SLIF database.

Our long-term goal is to develop a large library of annotated and analyzed fluorescence microscope images, in order to support
data-mining

PNAS, version 3.0

‘The current version of the database contains records for 15180 papers from volumes 94-99 of the Proceedings of the National Academy of
Sciences (USA), generously made available by the Academy for demonstration purposes.

BioMed Central, version 1.0
Due for release 22 January 2007.
Pubmed Central, version 1.0

‘The database will be expanded shortly to include all open access articles in Pubmed Central, including BMC papers but not PNAS papers
(approximately 45,000 as of 31 December 2007).

A service of the Robert F. Murphy laboratory
Departments of Biological Sc Biome: nd Machine Learing ]

an
Camegie Mello 2, USA
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806 Murphy Lab SUF service (=)
Murphy Lab SLIF Service
SLIF (Subcellular Location Image Finder) automatically extracts information about protein subcellular locations
Home from figure-capion pairs i iologieal it SLIF eparis fgures il panels  decdes whicpancs
ain fluorescence microscope images (FMI). It applics imag methods to analyze
Search by words in caption extact a quaniitative description of the localizat ot patiems they dlxplly The associated c
processed to identify which portions of the caption refer to which panels and to identify the names of proteins
Search by pixel resolution contained in the captions. The results of this analysis are stored in the SLIF database, which can be queried ither
interactively (using the links at the let) o via extemal program-generated links.
§ Our long-term goal is to develop a large library of annotated and analyzed fluorescence microscope images, in
Search for FMI figures/pancls order to support data-mining. The currently version of the database contains records for 1. from
volumes 94-99 of the Proceedings of the National Academy of Sciences (USA), generously made available by
Search by location inferred from | the Academy for demonstration purposes. The database will be expanded shortly to include all articles in BMC
GO terms Central and Pubmed Central
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SLIF stands for Subeelllar Location Image Finder, which ty sbout protein subcelll
Tocations from figure-caption pairs in biologicallterature. SLIF applies image processiag methods to analyze fuorescence
‘microscope images and extract a quantiative description of the localization pattens of the tagged proteins. Detailed
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Patterns in Multicell images without Segmentatlon into Smgle Cells. Proceedings
of the 2004 IEEE International Symp on B dical Imaging (ISBI 2004),
pp. 1139-1142.

= S.-C. Chen, and R.F. Murphy (2006). A Graphical Model Approach to Automated

Classification of Protein Subcellular Location Patterns in Multi-Cell Images. BMC
Bioinformatics 7:90.

= S.-C. Chen, G. Gordon, and R.F. Murphy (2006). A Novel Approximate Inference
Approach to Automated Classification of Protein Subcellular Location Patterns in
Multi-Cell Images. Proceedings of the 2006 IEEE International Symposium on
Biomedical Imaging (ISBI 2006), pp. 558-561.
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Information Extraction from Image
and Text in Journal Articles

Subcellular Location Trees -
$3D 3T3 CD-tagged images

= X. Chen, M. Velliste, S. Weinstein, J.W. Jarvik and R.F. Murphy
(2003). Location proteomics - Building subcellular location trees
from high resolution 3D fluorescence microscope images of
randomly-tagged proteins. Proc. SPIE 4962: 298-306.

= X. Chen and R. F. Murphy (2005). Objective Clustering of Proteins
Based on Subcellular Location Patterns. Journal of Biomedicine and
Biotechnology 2005: 87-95.

mw; I

'l
‘ ey o 0 boonlilit
“arnegie Mellon

SLIF - Subcellular Location
Image Finder

= R.F. Murphy, M. Velliste, J. Yao, and G. Porreca (2001).
Searching Online Journals for Fluorescence Microscope Images
Depicting Protein Subcellular Location Patterns. Proceedings of
the 2" IEEE International Symposium on Bio-Informatics and
Biomedical Engineering (BIBE 2001), pp. 119-128.

= W.W. Cohen, R. Wang and R.F. Murphy (2003). Understanding
Captions in Biomedical Publications. Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2003), pp. 499-504.
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SLIF - Subcellular Location
Image Finder

= R. F. Murphy, Z. Kou, J. Hua, M. Joffe, and W. W. Cohen (2004). Extracting
and Structuring Subcellular Location Information from On-line Journal
Articles: The Subcellular Location Image Finder. Proceedings of the IASTED
International Conference on Knowledge Sharing and Collaborative
Engineering (KSCE 2004), pp. 109-114.

= Z.Kou, W.W. Cohen and R.F. Murphy (2005). High-recall protein entity
recognition using a dictionary. Bioinformatics 21(suppl_1):1266-i273.

= Z.Kou, W.W. Cohen, and R.F. Murphy (2007). A Stacked Graphical Model
for Associating Information from Text and Images in Figures. Pacific
Symposium on Biocomputing 12:257-268.
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