Machine Learning **Approaches to Information** Goal of tutorial **Extraction from Text and Images in Biomedical** Introduce problem of automated interpretation of articles containing text **Journal Articles** and images Robert F. Murphy Describe relevant methods, mostly in Departments of Biological Sciences, Biomedical context of SLIF (Subcellular Location Engineering and Machine Learning and Image Finder) system Describe future directions for field **Carnegie Mellon** arnegie Mellon





## State of art: Bio Journal Information Extraction A number of systems to index literature via extracted terms A few systems to index image content in literature A few systems for document classification

arnegie Mellon















 Location information in protein databases: Ontology approach
 Systematic analysis and comparison of these descriptions were made difficult by both the unstructured nature of the text and the variation in terminology used from one laboratory to another
 To address this problem, a restricted vocabulary for cellular components was created by the Gene Ontology Consortium Carnegie Mellon







| Comparison<br>GO terms for                             | of<br><sup>·</sup> two proteins |
|--------------------------------------------------------|---------------------------------|
| GolgB1                                                 | GPP130                          |
| Integral to membrane;                                  | Integral to membrane;           |
| Golgi membrane;                                        | Golgi cis-face;                 |
| Golgi stack;                                           | Golgi lumen;                    |
|                                                        | endocytotic                     |
|                                                        | transport vesicle               |
| from integration for a formed ally.<br>Carnegie Mellon | Source: SwissProt               |



 Tagging proteins for fluorescence microscopy
 Immunofluorescence

 "primary" antibody against the target,
 "secondary" antibody against the "primary" and conjugated with a fluorescent probe

Fixed-cells only

#### Gene/cDNA-tagging

 merge DNA coding for a naturally fluorescent protein (or vital probe binding sequence) with coding sequence of a protein of interest

Live-cell possible

Carnegie Mellon













Figure 1: Dehydroergosterol (DHE) is transported to recycling endosomes but not to late endosomes and lysosomes. (A-C) J774 macrophages wene labeled for Smin 81 37° C. with DHELM/BCD, washed and chased for Omin (A) Smin (B) or 30min (C) at 37°C. Vesicles were observed after 5min crimenimulated in the Simm top or summ (C) at 37°C. Vesicles were observed after 5mi chase and accumulated in the perinuclear region after 30-min chass (arrowheads). (D–I) Cells were incubated for 15min at 37°C with 10µgmL Alexa 488+22M, washed 





Figure 2: Dehydroergosterol (DHE) does not accumulate in the trans-Golgi network (TGN). Cells were incubated in the absence (A-C) or presence (D-F) Cells were incubated in the absence (A-C) or presence (D-F) of 33 µan nocodanole, washed and labeled for shins at 37°C with both of the second or presence C-F he absence or presence C-NBD-Cor for 5min at 37°C. In experiments with noux Cells disrupt cell's microtubules, nocodazel was also present or disrupt cell's microtubules, nocodazel was also present in the labeling solutions. Dehydrograposterol (A. Du, Du, solutions), the color overlay (C. B shows, sograpaton of DHE (green) from CCHNBD-Cer (B, E, anowed, The color overlay (C. B), with CD-NBD-Cer (B, E, anowed, The color overlay (C. B), solver, sograption of DHE (green) from CCHNBD-Cer (B, E, anowed, The color overlay (C. B), which disperses the Colgi apparatus and the ERC. Bar, Topm. appara 10μm.









 Three color overlay

 Total
 c2M
 DHE
 Transferrin
 Overlay

 20 min
 Image: Color overlay
 Image: Color overlay
 Image: Color overlay
 Image: Color overlay

 80 min
 Image: Color overlay
 Image: Color overlay
 Image: Color overlay
 Image: Color overlay
 Image: Color overlay

 Figure 11: Delydroercosterol (DHE)
 Image: Color overlay
 Image: Color overlay
 Image: Color overlay
 Image: Color overlay

 Folderabes with transferrin (TM: 7/4 morphages were badder for 20mm in presence of 10 ug/mL of Alexa 54BT (E-H. Alter the intel other, DHE interests, AcO, At the time, DHE interests, AcO, At the interval, Alexa 54BT (E-H. Alter the intel other, DHE interests, AcO, At the interval, Alexa 54BT (E-H. Alter the intel other, DHE interests, AcO, At the interval overlay interval, AcO, At the interval, Alexa 54BT (E-H. Alter the intel other, DHE interval, AcO, At the interval overlay interval, AcO, At the interval, AcO, At the interval, AcO, At the interval overlay, AcO, At the interval overlay interval, AcO, At the interval overlay, AcO, At the interval overlay



















































































































Style determines **scope:** - The *scope* of a **bullet-style** image pointer is all words between it and the next "bullet" - The scope of a citation-style image pointer is some set of words nearby it (heuristically determined by separating words and

Figure 1. (A) Single confocal ontical section of BY-2 cells expressing U2B 0-GFP, double labeled with GF (left panel) and <u>autoantibody against p80 collin (right panel</u>). Three nuclei are shown, and the bright GFP spots colocalize with bright foct of anticollin labeling. There is some labeling of the cytoplasm by anti-p80 collin. (B) Single confocal optical section of BY-2 cells expressing U2B 0-GFP, double labeled with GFP (left panel) and 4G3 antibody (right panel). Three nuclei are shown. Most coiled bodies of the nucleoplasm, but occasionally are seen in the nucleolus (arrows). All coiled bodies that contain U2B 0 also express the U2B 0-GFP fusion. Bars, 5 m m. Movement of Coiled Bodies Vol. 10, July 1999 2299 Carneeric Mellon













































| Soft match to a path                             |
|--------------------------------------------------|
| With jumps and loops, path is like a profile-HMM |
| Signal recognition particle protein              |
| Carnegie Mellon                                  |

















| Performa                              | nce of different algo                        | rithms on different da                       | atasets                                    |
|---------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|
|                                       | Precisio                                     | n/Recall/F-meas                              | ure (%)                                    |
|                                       | U. of Texas                                  | GENIA                                        | YAPEX                                      |
| Previously published<br>methods       | 73.4 / 47.8 / 57.9<br>(Bunescu et al., 2004) | 49.2 / 66.4 / 56.5<br>(Kazama, et al., 2002) | 67.8/ 66.4/67.1<br>(Franzén, et al., 2002) |
| Bunescu's dictionary-<br>based method | 62.3 / 45.9 / 52.8<br>(Bunescu et al., 2004) | -                                            | -                                          |
| MaxEnt                                | 87.2 / 57.3 / 69.1                           | 67.3 / 65.4 / 66.2                           | 69.3/ 58.1/ 63.2                           |
| CRFs                                  | 83.5 / 66.1 / 73.8                           | 75.0 / 67.6 / 71.1                           | 76.0/ 59.5/ 66.7                           |
| SemiCRFs                              | 83.1 / 66.8 / <b>73.9</b>                    | 74.8 / 68.3 / <b>72.3</b>                    | 76.1/ 58.9/ 66.1                           |
| HMM                                   | 46.0 / 69.2 / 55.2                           | 44.8 / 70.1 / 54.7                           | 42.4/ 64.1/ 51.0                           |
| Carnegie Mellon                       |                                              |                                              |                                            |

| Performa                              | nce of different algo                        | rithms on different da                       | atasets                                    |
|---------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|
|                                       | Precisio                                     | n/Recall/F-meas                              | ure (%)                                    |
|                                       | U. of Texas                                  | GENIA                                        | YAPEX                                      |
| Previously published<br>methods       | 73.4 / 47.8 / 57.9<br>(Bunescu et al., 2004) | 49.2 / 66.4 / 56.5<br>(Kazama, et al., 2002) | 67.8/ 66.4/67.1<br>(Franzén, et al., 2002) |
| Bunescu's dictionary-<br>based method | 62.3 / 45.9 / 52.8<br>(Bunescu et al., 2004) | -                                            | -                                          |
| MaxEnt                                | 87.2 / 57.3 / 69.1                           | 67.3 / 65.4 / 66.2                           | 69.3/ 58.1/ 63.2                           |
| CRFs                                  | 83.5 / 66.1 / 73.8                           | 75.0 / 67.6 / 71.1                           | 76.0/ 59.5/ 66.7                           |
| SemiCRFs                              | 83.1 / 66.8 / <b>73.9</b>                    | 74.8 / 68.3 / <b>72.3</b>                    | 76.1/ 58.9/ 66.1                           |
| HMM                                   | 46.0 / <mark>69.2</mark> / 55.2              | 44.8 / <mark>70.1</mark> / 54.7              | 42.4/ 64.1/ 51.0                           |
| Carnegie Mellon                       |                                              |                                              |                                            |









| Perfc                              | ormance of imp            | proved Dict-HN                     | IMs                               |
|------------------------------------|---------------------------|------------------------------------|-----------------------------------|
|                                    | Precisio                  | n/Recall/F-meas                    | sure (%)                          |
|                                    | U. of Texas               | GENIA                              | YAPEX                             |
| CRFs                               | 83.5 / 66.1 / 73.8        | 75.0 / 67.6 / 71.1                 | 76.0/ 59.5/ <b>66.7</b>           |
| SemiCRFs                           | 83.1 / 66.8 / <b>73.9</b> | 74.8 / 68.3 / <b>72.3</b>          | 76.1/ 58.9/ 66.1                  |
| Dict-HMM                           | 46.0 / 69.2 / 55.2        | 44.8 / 70.1 / 54.7                 | 42.4/ 64.1/ 51.0                  |
| Dict-HMM +<br>boosting-like method | 49.8 / 74.3 /<br>59.6     | 48.3 / <mark>73.9</mark> /<br>58.5 | 45.1/ <mark>69.7</mark> /<br>54.8 |
| Dict-HMM +<br>additional states    | 51.8 / 72.3 / 60.4        | 51.3 / 72.4 / 60.1                 | 45.1/ 65.7/ 53.5                  |
| Carnegie Mellon                    |                           |                                    |                                   |



| Eva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aluation for prot                      | ein names with                         | 1 TFIDF > 0.9          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Precisior                              | /Recall/F-meas                         | ure (%)                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U. of Texas                            | GENIA                                  | YAPEX                  |
| CRFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.7 / 68.5 / 75.7                     | 76.9 / 67.3 / 71.8                     | 78.5/ 60.3/ 68.2       |
| SemiCRFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.3 / 69.8 / 76.8                     | 77.9 / 73.6 / 75.7                     | 80.1/ 61.9/ 69.8       |
| Dict-HMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.1 / <mark>99.3</mark> / <b>81.5</b> | 65.8 / <mark>98.7</mark> / <b>79.0</b> | 64.3/ 100/ <b>78.3</b> |
| Francisco de la constala de la const |                                        |                                        |                        |























| C              | otrair   | ning            |        |           |            |  |
|----------------|----------|-----------------|--------|-----------|------------|--|
|                | Expe     | riments         | Recall | Precision | Error Rate |  |
|                | 50%      | SVM             | 0.829  | 0.836     | 0.132      |  |
|                | training | Co-<br>training | 0.826  | 0.828     | 0.137      |  |
|                | 10%      | SVM             | 0.561  | 0.791     | 0.229      |  |
|                | training | Co-<br>training | 0.666  | 0.849     | 0.179      |  |
| Carnegie Mello | lg<br>n  |                 |        |           |            |  |









































| 2D<br>Mo                | Featu   | ures<br>ogical Features                                                 |
|-------------------------|---------|-------------------------------------------------------------------------|
|                         | SLF No. | Description                                                             |
|                         | SLF1.1  | The number of fluorescent objects in the image                          |
|                         | SLF1.2  | The Euler number of the image                                           |
|                         | SLF1.3  | The average number of above-threshold pixels per<br>object              |
|                         | SLF1.4  | The variance of the number of above-threshold pixels<br>per object      |
|                         | SLF1.5  | The ratio of the size of the largest object to the smallest             |
|                         | SLF1.6  | The average object distance to the cellular center of fluorescence(COF) |
|                         | SLF1.7  | The variance of object distances from the COF                           |
| from image to broodedge | SLF1.8  | The ratio of the largest to the smallest object to COF distance         |
| Carnegie Mellon         | -       |                                                                         |







| Edge fea | atures                                                     |
|----------|------------------------------------------------------------|
| SLF No.  | Description                                                |
| SLF1.9   | The fraction of the non-zero pixels that are along an edge |
| SLF1.10  | Measure of edge gradient intensity homogeneity             |
| SLF1.11  | Measure of edge direction homogeneity 1                    |
| SLF1.12  | Measure of edge direction homogeneity 2                    |
| SLF1.13  | Measure of edge direction difference                       |

















| 900                                                                                                                                                                                  | Murphy Lab SLIF service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Murphy Lab SLII                                                                                                                                                                      | F Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Home<br>Search by work in caption<br>Search by polei resolution<br>Search by potein name<br>Search by Contain informed from<br>GO arms<br>Advanced Search<br>Advanced Search<br>Help | SLIF (Subcellular Location Image Finder) automatically extracts information about protein subcellular locations from (gave-copilon pairs in biological literature. SLIF separates (gave at inposed) and decides which parels contain fluorescience microcope image. (HOI, Happle) image processing methods to analyze the FMA and processed to identify which proteins of the start of the |
| Nugày Lab SLIF Service                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| ah 51 11      |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|---------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|
| ah CI II      |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
| av SLII       | <sup>7</sup> Service                                                  |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               | Search by words in ca                                                 | aption                                                                                  |                                                                                          |                                                           |                                                                    |                                                         |
| caption       | tubulia                                                               |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
| olution       | rubulin                                                               |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
| ame           | Number of records                                                     | displayed per page: 10 💌                                                                |                                                                                          |                                                           |                                                                    |                                                         |
| ires/panels   | Search                                                                |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
| inferred from |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               | J                                                                     |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               |                                                                       |                                                                                         |                                                                                          |                                                           |                                                                    |                                                         |
|               | n_caption<br>solution<br>name<br>pures/panels<br>Linferred from<br>\$ | search by words in c<br>bubblin<br>solution<br>name<br>parschands<br>inferred from<br>s | scarch by words in caption<br>a caption<br>solution<br>parsipanels<br>inferred from<br>s | a caption<br>solution<br>menophaneh<br>inferred from<br>s | a caption<br>solution<br>many<br>pars/panels<br>inferred from<br>s | solution<br>solution<br>solution<br>same<br>search<br>s |



| Home<br>Search by words in caption<br>Search by pixel resolution<br>Search by pixel resolution<br>Search for FMI figures/panels<br>Search by location inferred from<br>GO terms<br>Advanced Search | Search by pixel resolution The min resolution is 192.0 Microns/Pixel and the max is 0.02 Microns/Pixel # High: 0.02 - 0.43 C Medium: 0.43 - 9.03 C Low: 9.03 - 192.0 C Otte: |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acknowledgments<br>Help<br>Negal La ELT Breter                                                                                                                                                     | Search                                                                                                                                                                       |



| Firefox File Edit View Go                                                                                                                                                             | Bookmarks Tools Window Help 🗮 🛜 4 🖬 (81%) Wed 10:19 AM 🖇 😭<br>Murphy Lab SLIF service                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Murphy Lab SLII                                                                                                                                                                       | F Service                                                                                                                                                                                                                                         |
| Home<br>Search by words in caption<br>Search by pixel resolution<br>Search for JMI figure/panels<br>Search for Loadon inferred from<br>GO arms<br>Advanced Search<br>Acknowledgements | Search by protein name, wikin<br>Captories with the words action<br>I Protein name extraced by CRFs<br>I Prease select I<br>C Protein name extraced by Dick HIM<br>I Prease select I<br>Search by protein name<br>C Protein name extraced by CRFs |
| Help<br>Maryly Lad BLIT Berrice                                                                                                                                                       | Pease select      Potein name extracted by Dict-HMM    Please select     Number of records displayed per page 10                                                                                                                                  |
|                                                                                                                                                                                       | seich                                                                                                                                                                                                                                             |

|                                              | Murphy Lab SLIF service                                          |
|----------------------------------------------|------------------------------------------------------------------|
| Murphy Lab SL                                | IF Service                                                       |
| Home                                         | Search by protein name, within<br>Captions with the words actin. |
| Search by words in caption                   | C Protein names extracted by CRFs                                |
| Search by pixel resolution                   | Please select                                                    |
| Search by protein name                       | G Destain names astronted by Dist UMM                            |
| Search for FMI figures/panels                | · Floren names extracted by Dicement                             |
| Search by location inferred from<br>GO terms | Please select                                                    |
| Advanced Search                              | 2-1<br>a 0                                                       |
| Acknowledgments                              | A1<br>A5<br>CRFs                                                 |
| Help                                         | ACS ·                                                            |
|                                              | ALP<br>alpha Dict-HMM                                            |
| Murphy Lab SLIF Service                      |                                                                  |
|                                              | ATTase                                                           |
|                                              | B5 B5                                                            |
|                                              | 87<br>BAF180                                                     |
|                                              | beta-actin *                                                     |
|                                              | BMP 1                                                            |
|                                              |                                                                  |
|                                              |                                                                  |
|                                              |                                                                  |

| Murphy Lab SL                                                                                                                                                                                                       | IF Service                                                                                            |   |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---|------|
| Home<br>Search by work in caption<br>Search by protein name<br>Search by protein name<br>Search to: PMI figures/panels<br>Search to: ISMI figures/panels<br>Search to: Search<br>Advanced Search<br>Acknowledgments | Search by protein same, within Captions with the words actin.                                         |   | <br> |
| Help<br>Meght Lub BLIF Berrine                                                                                                                                                                                      | Protein names extracted by Dict-HMM     Please select      Number of records displayed per page: 10 × | • |      |
|                                                                                                                                                                                                                     | Search                                                                                                |   |      |



| Murphy Lab SLI                               | F Service                                  |  |
|----------------------------------------------|--------------------------------------------|--|
|                                              |                                            |  |
| Home                                         | Search for FMI figures/panels              |  |
| Search by words in caption                   | G figure or C namel                        |  |
| Search by pixel resolution                   | Number of records displayed ner page: 10 - |  |
| Search by protein name                       | remot or records anymyte per pages 140     |  |
| Search for FMI figures/panels                | Search                                     |  |
| Search by location inferred from<br>GO terms |                                            |  |
| Advanced Search                              |                                            |  |
| Acknowledgments                              |                                            |  |
| Help                                         |                                            |  |
|                                              | 1                                          |  |
| Murphy Lad SLIF Service                      |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |
| enony Montor                                 |                                            |  |

|                                              | Murphy Lab SLIF service                    |  |
|----------------------------------------------|--------------------------------------------|--|
|                                              |                                            |  |
| Murphy Lab SLI                               | F Service                                  |  |
|                                              | _                                          |  |
| Home                                         | Search by location inferred from GO terms  |  |
| Search by words in cantion                   |                                            |  |
| Sameh by nivel modution                      | Please select                              |  |
| Search by pixer resolution                   | Number of records displayed per page: 60 - |  |
| Search by protein name                       | Search                                     |  |
| Search for FMI figures/panels                |                                            |  |
| Search by location inferred from<br>GO terms |                                            |  |
| Advanced Search                              |                                            |  |
| Acknowledgments                              |                                            |  |
| Help                                         |                                            |  |
|                                              |                                            |  |
| Muphy Lab SLIF Service                       |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |
|                                              |                                            |  |



| Firefox File Edit View C                                                      | o Bookmarks Tools Window Help 🗮 🛜 4 🔳 (84%) Wed 10:13 AM 🗱<br>Murphy Lab SLIF service |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Murphy Lab SL                                                                 | IF Service                                                                            |
| Home                                                                          | Advanced Search                                                                       |
| Search by words in caption                                                    | □ Search by words in caption                                                          |
| Search by protein name                                                        |                                                                                       |
| Search for FMI figures/panels<br>Search by location inferred from<br>GO terms | Search by protein name     Protein name extracted by CRFs                             |
| Advanced Search<br>Acknowledgements                                           | Please select                                                                         |
| Help                                                                          | Protein names extracted by Dict-HMM    Please select                                  |
| Muydy Lad SLIT Service                                                        | Search for FMI figures/panels                                                         |
|                                                                               | regure or * panel     Search by pixel resolution                                      |
|                                                                               | The min resolution is 192.0 Microns/Pixel and the max is 0.02 Microns/Pixel           |
|                                                                               | <ul> <li>High: 0.02 ~ 0.43</li> <li>Medium: 0.43 ~ 9.03</li> </ul>                    |
|                                                                               | C Low: 9.03 ~ 192.0                                                                   |

| Home<br>Search by words in caption<br>Search by pixel resolution<br>Search by protein name                                   | SLIF studie for Subcellage Location Image Finder, which automatically extract antirmation about proton subcella<br>locations from finger conjunp aris in balancial locations. SLIF applications processing studies to analy D. Basco-<br>tential automations of the images and associated proteins are also generated by analyting the accompanying captions.<br>Our long-term goal is to drively a large Brazy of amoutated and analyted fiberescence microscepe images, in order<br>support data-minipa |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Search for FMI figures/panels<br>Search by location inferred from GO<br>terms<br>Advanced Search<br>https://www.comment.com/ | Nogly Ld III7 Innin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                              | Ą                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |











# Review Articles

- K. Huang and R. F. Murphy (2004). From Quantitative Microscopy to Automated Image Understanding. J. Biomed. Optics 9:893-912.
- X. Chen, and R.F. Murphy (2006). Automated Interpretation of Protein Subcellular Location Patterns. *International Review of Cytology* 249:194-227.
- X. Chen, M. Velliste, and R.F. Murphy (2006). Automated Interpretation of Subcellular Patterns in Fluorescence Microscope Images for Location Proteomics. *Cytometry* 69A:631-640.
- E. Glory and R.F. Murphy (2007). Automated Subcellular Location Determination and High Throughput Microscopy. *Developmental Cell* 12:7-16.





# 3D HeLa pattern classification (11 major patterns)



#### Classification of multi-cell images

- K. Huang and R. F. Murphy (2004). Automated Classification of Subcellular Patterns in Multicell images without Segmentation into Single Cells. *Proceedings* of the 2004 IEEE International Symposium on Biomedical Imaging (ISBI 2004), pp. 1139-1142.
- S.-C. Chen, and R.F. Murphy (2006). A Graphical Model Approach to Automated Classification of Protein Subcellular Location Patterns in Multi-Cell Images. *BMC Bioinformatics* 7:90.
- S.-C. Chen, G. Gordon, and R.F. Murphy (2006). A Novel Approximate Inference Approach to Automated Classification of Protein Subcellular Location Patterns in Multi-Cell Images. *Proceedings of the 2006 IEEE International Symposium on Biomedical Imaging (ISBI 2006)*, pp. 558–561.



#### IASTED BIOMed/SPPRA 2007 - R.F. Murphy

Carnegie Mellon



#### SLIF - Subcellular Location Image Finder

- R. F. Murphy, M. Velliste, J. Yao, and G. Porreca (2001). Searching Online Journals for Fluorescence Microscope Images Depicting Protein Subcellular Location Patterns. *Proceedings of* the 2<sup>nd</sup> IEEE International Symposium on Bio-Informatics and Biomedical Engineering (BIBE 2001), pp. 119-128.
- W.W. Cohen, R. Wang and R.F. Murphy (2003). Understanding Captions in Biomedical Publications. *Proceedings of the Ninth* ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2003), pp. 499-504.





arnegie Mellon