

Voronoi Segmentation Process

- Threshold DNA image (downsample?)
- Find the objects in the image
- Find the centers of the objects
- Use as seeds to generate Voronoi diagram
- Create a mask for each region in the Voronoi diagram
- Remove regions whose object that does not have intensity/size/shape of nucleus

Carnegie Mellon

- Seeded watershed allows water to rise only from predefined sources (seeds)
- If DNA image available, can use same approach to generate these seeds as for Voronoi segmentation
- Can use seeds from DNA image but use total protein image for watershed segmentation

2D Features Morphological Features									
	SLF No.	Description							
	SLF1.1	The number of fluorescent objects in the image							
	SLF1.2	The Euler number of the image							
	SLF1.3	The average number of above-threshold pixels per object							
	SLF1.4	The variance of the number of above-threshold pixels per object							
	SLF1.5	The ratio of the size of the largest object to the smallest							
	SLF1.6	The average object distance to the cellular center of fluorescence(COF)							
	SLF1.7	The variance of object distances from the COF							
from invege to knowledge Carnegie Mellon	SLF1.8	The ratio of the largest to the smallest object to COF distance							

2D Features DNA Features									
DNA features (objects relative to DNA reference)									
SLF No.	Description								
SLF2.17	The average object distance from the COF of the DNA image								
SLF2.18	The variance of object distances from the DNA COF								
SLF2.19	The ratio of the largest to the smallest object to DNA COF distance								
SLF2.20	The distance between the protein COF and the DNA COF								
SLF2.21	The ratio of the area occupied by protein to that occupied by DNA								
SLF2.22	The fraction of the protein fluorescence that co-localizes with DNA								
Carnegie Mellon									

2D Features Skeleton Features										
Skeleton f	Skeleton features									
SLF NO.	Description									
SLF7.80	The average length of the morphological skeleton of objects									
SLF7.81	The ratio of object skeleton length to the area of the convex hull of the									
	skeleton, averaged over all objects									
SLF7.82	The fraction of object pixels contained within the skeleton									
SLF7.83	The fraction of object fluorescence contained within the skeleton									
SLF7.84	The ratio of the number of branch points in the skeleton to the length of									
	skeleton									
Francisco Los and La ko-anded	terrer in and in the second lade									
Carnegie Mello	<u>n</u>									

2D Features Edge Features										
Edge featu	Edge features									
SLF No.	Description									
SLF1.9	The fraction of the non-zero pixels that are along an edge									
SLF1.10	Measure of edge gradient intensity homogeneity									
SLF1.11	Measure of edge direction homogeneity 1									
SLF1.12	Measure of edge direction homogeneity 2									
SLF1.13	Measure of edge direction difference									
Forme in age to be overled by Carnegie Mellon										

2D Features Hull Features									
Convex hull (geometrical) features									
SLF1.14	The fraction of the convex hull area occupied by protein fluorescence								
SLF1.15 The roundness of the convex hull									
SLF1.16	The eccentricity of the convex hull								
	R								
for the second design of the s									
Carnegie Mello	<u>n</u>								

	Image at t0 4 2 2 2 4						-	4	Ima 2	ige a	nt t1 2	4	
	1 3 2 3	2 4 2 3	4 4 3 3	1 4 3 2	1 2 2 4			1 3 2 3	2 4 2 3	4 4 3 3	1 4 3 2	1 2 2 4	
	Т	emj	oor	al					1	2	3	4	
	co)-0	ccu	rre	nce	e	1		3	0	0	0	
matrix (for							2	2	0	9	0	0	
image that does							3	3	0	0	6	0	
Carnegie Mel	^{ludge} n (ot c	har	nge)		4	ŀ	0	0	0	7	

2D Classification Results											
	True				Outp	out of th	ne Clas	sifier			
	Çlas s	DNA	ER	Gia	Gpp	Lam	Mit	Nuc	Act	TfR	Tub
	DNA	99	1	0	0	0	0	0	0	0	0
	ER	0	97	0	0	0	2	0	0	0	1
	Gia	0	0	91	7	0	0	0	0	2	0
	Gpp	0	0	14	82	0	0	2	0	1	0
	Lam	0	0	1	0	88	1	0	0	10	0
	Mit	0	3	0	0	0	92	0	0	3	3
	Nuc	0	0	0	0	0	0	99	0	1	0
	Act	0	0	0	0	0	0	0	100	0	0
	TfR	0	1	0	0	12	2	0	1	81	2
	Tub	y r ont (2	0	0	0	1	0	0	1	95
Overall accuracy = 92%											

	Human Classification Results											
	True				Outp	out of th	ne Clas	sifier				
	¢las s	DNA	ER	Gia	Gpp	Lam	Mit	Nuc	Act	TfR	Tub	
	DNA	100	0	0	0	0	0	0	0	0	0	
	ER	0	90	0	0	3	6	0	0	0	0	
	Gia	0	0	56	36	3	3	0	0	0	0	
	Gpp	0	0	54	33	0	0	0	0	3	0	
	Lam	0	0	6	0	73	0	0	0	20	0	
	Mit	0	3	0	0	0	96	0	0	0	3	
	Nuc	0	0	0	0	0	0	100	0	0	0	
	Act	0	0	0	0	0	0	0	100	0	0	
	TfR	0	13	0	0	3	0	0	0	83	0	
Andaula	Tub	0	3	0	0	0	0	0	3	0	93	
Carr	Oye negie M	r a łł a ellon	ccur	acy :	= 839	% (92	2% f	or ma	ajor p	oatte	rns)	

	3D Classification										
Results											
	True				Outp	out of th	e Clas	sifier			
	Çlas s	DNA	ER	Gia	Gpp	Lam	Mit	Nuc	Act	TfR	Tub
	DNA	98	2	0	0	0	0	0	0	0	0
	ER	0	100	0	0	0	0	0	0	0	0
	Gia	0	0	100	0	0	0	0	0	0	0
	Gpp	0	0	0	96	4	0	0	0	0	0
	Lam	0	0	0	4	95	0	0	0	0	2
	Mit	0	0	2	0	0	96	0	2	0	0
	Nuc	0	0	0	0	0	0	100	0	0	0
	Act	0	0	0	0	0	0	0	100	0	0
	TfR	0	0	0	0	2	0	0	0	96	2
	Tub	Ó	2	0	0	0	0	0	0	0	98
Overall accuracy = 98%											

Chen &	& Murphy, 2006										
_	Classification accuracies for multicell images from two classes										
	No. training images	Without updating (%)	With updating (%)	Improvem ent (%)							
	50	90.1	95.6	5.5							
	40	89.2	95.1	5.9							
	30	88.1	94.6	6.5							
	20	86.4	93.8	7.4							
Andarian Dia	10	82.9	90.3	7.4							
Improvement is greater for weaker base classifier Carnegie Mellon (more room to improve)											

- K. Huang and R. F. Murphy (2004). Automated Classification of Subcellular Patterns in Multicell images without Segmentation into Single Cells. *Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging (ISBI 2004)*, pp. 1139-1142.
- E. Garcia Osuna, J. Hua, N.W. Bateman, T. Zhao, P.B. Berget and R.F. Murphy (2007). Large-Scale Automated Analysis of Protein Subcellular Location Patterns in Randomly-Tagged 3T3 Cells. *Annals Biomed. Eng., in press*

