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Image Analysis of Subcellular 
Patterns for High Throughput 
Screening and Systems 
Biology 

Robert F. Murphy 
Ray and Stephanie Lane Professor of Computational Biology 
Molecular Biosensors and Imaging Center, Departments of 
Biological Sciences, Biomedical Engineering and Machine 

Learning and 

Goals of this section 
  Introduce image analysis and machine 

learning methods 
  Illustrate in context of development of 

system for automated learning of 
subcellular patterns 

  Describe utility in basic research and 
expectation they will incorporated into 
next generation of screening assays 
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Image analysis topics 
  Introduction to subcellular pattern analysis and 

recommendations regarding image acquisition for 
subsequent automated analysis 

  methods for automated segmentation of multi-cell 
images into single cell regions 

  types of features used to describe subcellular 
patterns and methods for extraction of these 
features (especially morphological, texture and 
wavelet features) 

  statistical and machine learning methods for 
comparison, classification and clustering of 
patterns 

Segmentation of Images into 
Single Cell Regions 
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Approaches 
  Voronoi 
  Watershed 
  Seeded Watershed 
  Level Set Methods 
  Graphical Models 

Voronoi diagram 

Seed 

Edge 

Vertex 

Given a set of seeds, 
draw vertices and 
edges such that each 
seed is enclosed in a 
single polygon where 
each edge is 
equidistant from the 
seeds on either side. 
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Voronoi Segmentation 
Process 
•  Threshold DNA image (downsample?) 
•  Find the objects in the image 
•  Find the centers of the objects 
•  Use as seeds to generate Voronoi 

diagram 
•  Create a mask for each region in the 

Voronoi diagram 
•  Remove regions whose object that does 

not have intensity/size/shape of nucleus 

Original DNA image 
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After thresholding and removing small objects 

After triangulation 
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After removing edge cells and filtering 

Final regions masked onto original image 
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Watershed Segmentation 
  Intensity of an image 

~ elevation in a 
landscape 
  Flood from minima 
  Prevent merging of 

“catchment basins” 
  Watershed borders 

built at contacts 
between basins 

Watershed Segmentation 
  If starting image has intensity centered on the cells 

(e.g., DNA) that you want to segment, invert image 
so that bright objects are the sources 

  If starting image has intensity centered on the 
boundary between the cells (e.g., plasma 
membrane protein), don’t invert so that boundary 
runs along high intensity 
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Seeded Watershed 
Segmentation 

  Drawback is that the number of regions may not 
correspond to the number of cells 

  Seeded watershed allows water to rise only from 
predefined sources (seeds) 

  If DNA image available, can use same approach to 
generate these seeds as for Voronoi segmentation 

  Can use seeds from DNA image but use total 
protein image for watershed segmentation 

Seeded Watershed 
Segmentation 

Original image Seeds and boundary 

Applied directly to protein image (no DNA image) 

Note non-linear boundaries 
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Level Set Methods 
  Level set function φ(x,y,t)  

  Positive inside the contour (mountain) 
  Negative outside the contour (valley) 
  Zero on the contour, C embedded at its 

zero level (sea level) 

n

F > 0 

F < 0 

φ > 0 

φ < 0 

C: φ = 0 

Graphical Model Methods 
  Assumptions 

  Two classes of pixels: those part of a cell or part of 
the background 

  Each pixel is likely to be the same class as its 
neighbors 

  Have information about where cells are likely to be 
and where boundaries (edges) are likely to be 

  Probability that two pixels are same class related 
to probability that there is an edge between them  
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1. Start with initial  
DNA and edge potential 

2. Run 1st BP, separate 
foreground and background. 

3. Run 2nd BP, assign the 
pixels with the same class of 
p to be segmented_cell1, 
then set these pixels to be 
background 

5. Iteration stops when the 
segmented cell is too small 

4. Pick the most confident 
foreground pixel , Run BP, find 
another cell, and iterate.... 

6. The resulting masks  

Pick the most confidence 
foreground pixel p, set its 
DNA potential high 

Feature Extraction for 
Subcellular Pattern Analysis 
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This is a micro- 
tubule pattern 

Assign proteins to major subcellular structures using fluorescent microscopy 
 

Goal 

The Challenge 
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1. Create sets of images showing the location of 
many different proteins (each set defines one 
class of pattern) 

2. Reduce each image to a set of numerical 
values (“features”) that are insensitive to 
position and rotation of the cell 

3. Use statistical classification methods to 
“learn” how to distinguish each class using 
the features 

Feature-Based, Supervised 
Learning Approach 

Subcellular Location Features 
(SLF) 

  Combinations of features of different types 
that describe different aspects of patterns in 
fluorescence microscope images have been 
created 

  Motivated in part by descriptions used by 
biologists (e.g., punctate, perinuclear) 
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Feature levels and granularity 

Object 
features 

Single 
Object 

Single 
Cell 

Single 
Field 

Cell 
features 

Field 
features 

Granularity: 2D, 3D, 2Dt, 3Dt 

Aggregate/average operator

Thresholding 
  First type of feature is morphological 
  Morphological features require some method 

for defining objects 
  Most common approach is global 

thresholding 
  Methods exist for automatically choosing a 

global threshold (e.g., Riddler-Calvard 
method) 
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Ridler-Calvard Method 
  Find threshold that is equidistant from 

the average intensity of pixels below 
and above it 

  Ridler, T.W. and Calvard, S. (1978) 
Picture thresholding using an iterative 
selection method. IEEE Transactions on 
Systems, Man, and Cybernetics 
8:630-632. 

Ridler-Calvard Method 
Blue line 

shows 
histogram of 

intensities, 
green lines 

show average 
to left and 

right of red 
line, red line 

shows 
midpoint 

between them 
or the RC 
threshold 

Ridler-Calvard Illustration
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Ridler-Calvard Method 

original 

original 

thresholded 

Otsu Method 
  Find threshold to minimize the 

variances of the pixels below and above 
it 

  Otsu, N., (1979) A Threshold Selection 
Method from Gray-Level Histograms, 
IEEE Transactions on Systems, Man, 
and Cybernetics, 9:62-66. 
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Adaptive Thresholding 
  Various approaches available
  Basic principle is use automated methods 

over small regions and then interpolate to 
form a smooth surface

Suitability of Automated 
Thresholding for Classification 

  For the task of subcellular pattern analysis, 
automated thresholding methods perform 
quite well in most cases, especially for 
patterns with well-separated objects

  They do not work well for images with very 
low signal-noise ratio

  Can tolerate poor behavior on a fraction of 
images for a given pattern while still 
achieving good classification accuracies
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Object finding 
  After choice of threshold, define objects 

as sets of touching pixels that are 
above threshold 

2D Features 
Morphological Features 

SLF No. Description 
SLF1.1 The number of fluorescent objects in the image 

SLF1.2 The Euler number of the image 
SLF1.3 The average number of above-threshold pixels per 

object 
SLF1.4 The variance of the number of above-threshold pixels 

per object 
SLF1.5 The ratio of the size of the largest object to the smallest 
SLF1.6 The average object distance to the cellular center of 

fluorescence(COF) 
SLF1.7 The variance of object distances from the COF 
SLF1.8 The ratio of the largest to the smallest object to COF 

distance 
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2D Features 
Morphological Features 

108 

83 

31 

# of objects 

Average size of objects 

Average distance to COF 

6 

232 

4 

Any of these 
features could be 

used to 
distinguish these 

two classes 

ER Nucleoli 

Suitability of Morphological 
Features for Classification 

  Images for some subcellular patterns, such 
as those for cytoskeletal proteins, are not 
well-segmented by automated thresholding

  When combined with non-morphological 
features, classifiers can learn to “ignore” 
morphological features for those classes
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2D Features 
DNA Features 

SLF No. Description 
SLF2.17 The average object distance from the COF of the DNA image 
SLF2.18 The variance of object distances from the DNA COF 
SLF2.19 The ratio of the largest to the smallest object to DNA COF distance 
SLF2.20 The distance between the protein COF and the DNA COF 
SLF2.21 The ratio of the area occupied by protein to that occupied by DNA 
SLF2.22 The fraction of the protein fluorescence that co-localizes with DNA 

DNA features (objects relative to DNA reference) 

2D Features 
Skeleton Features 

SLF No. Description 
SLF7.80 The average length of the morphological skeleton of objects 

SLF7.81 The ratio of object skeleton length to the area of the convex hull of the 
skeleton, averaged over all objects 

SLF7.82 The fraction of object pixels contained within the skeleton 
SLF7.83 The fraction of object fluorescence contained within the skeleton 
SLF7.84 The ratio of the number of branch points in the skeleton to the length of 

skeleton 

Skeleton features 
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Illustration – Skeleton 

2D Features 
Edge Features 

SLF No. Description 
SLF1.9 The fraction of the non-zero pixels that are along an edge 
SLF1.10 Measure of edge gradient intensity homogeneity 
SLF1.11 Measure of edge direction homogeneity 1 
SLF1.12 Measure of edge direction homogeneity 2 
SLF1.13 Measure of edge direction difference 

Edge features 



HCS - Image Analysis 

2008 SBS Short Course: R.F. Murphy 21 

2D Features 
Hull Features 

SLF1.14 The fraction of the convex hull area occupied by protein fluorescence 
SLF1.15 The roundness of the convex hull 
SLF1.16 The eccentricity of the convex hull 

Convex hull (geometrical) features 

2D Features 
Zernike Moment Features 
(SLF 3.17-3.65) 

left: Zernike polynomials 
A: Z(2,0) 
B: Z(4,4) 
C: Z(10,6) 

right: lamp2 image 

•  Shape similarity of protein image  
   to Zernike polynomials Z(n,l) 
•  49 polynomials and 49 features   
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2D Features 
Haralick Texture Features 
  Correlations of adjacent pixels in gray level images 
  Start by calculating co-occurrence matrix P: 
    N by N matrix, N=number of gray level. 
 Element P(i,j) is the probability of a pixel with value 

i being adjacent to a pixel with value j 
  Four directions in which a pixel can be adjacent 
  Each direction considered separately and then 

features averaged across all directions �

3 1 2 

2 3 4 1 4 
3 0 4 0 3 
4 4 0 3 2 
1 0 3 0 1 
4 3 2 1 

2 1 3 3 4 
1 4 3 0 3 
3 3 4 1 2 
3 0 1 0 1 
4 3 2 1 

4 2 4 1 4 
2 6 3 0 3 
4 3 6 1 2 
1 0 1 2 1 
4 3 2 1 

2 2 3 2 4 
2 2 4 1 3 
4 4 4 2 2 

0 1 
4 3 2 1 

4 2 2 2 4
1 2 4 1 1
3 4 4 4 2
2 2 3 3 2
3 3 3 2 4

Co-occurrence 
Matrices 

Example image with 4 gray levels 
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Pixel Resolution and Gray Levels 

  Texture features are influenced by the 
number of gray levels and pixel 
resolution of the image 

  Optimization for each image dataset 
required 

  Alternatively, features can be calculated 
for many resolutions 

Wavelet Transformation - 1D 

A: approximation (low frequency) 

D: detail (high frequency) 

X=A3+D3+D2+D1 
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2D Wavelets - intuition 
  Apply some filter to detect edges 

(horizontal; vertical; diagonal) 

After Christos Faloutsos 

2D Wavelets - intuition 
  Recurse 

Slide courtesy of Christos Faloutsos 
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2D Wavelets - intuition 
  Many wavelet basis functions (filters): 

  Haar 
  Daubechies (-4, -6, -20) 

  http://www331.jpl.nasa.gov/public/
wave.html 

Slide courtesy of Christos Faloutsos 

Daubechies D4 decomposition 

Original image Wavelet Transformation 
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2D Features 
Wavelet Feature Calculation 
  Preprocessing 

  Background subtraction and thresholding 
  Translation and rotation 

  Wavelet transformation 
  The Daubechies 4 wavelet 
  10 level decomposition 
  Use the average energy of the three high-

frequency components at each level as features 

Gabor Function 

Can extend the function to generate Gabor filters by 
rotating and dilating 
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2D Features 
Gabor Feature Calculation 
  Preprocessing same as Wavelet 
  30 Gabor filters were generated using five 

different scales and six different orientations 
  Convolve an input image with a Gabor filter 
  Take the mean and standard deviation of the 

convolved image 
  60 Gabor texture features  

Object level features (SOF) 
  Subset of SLFs calculated on single 

objects 
Index Feature Description 
SOF1.1 Number of pixels in object 
SOF1.2 Distance between object Center of Fluorescence (COF) and DNA COF  
SOF1.3 Fraction of object pixels overlapping with DNA  
SOF1.4 A measure of eccentricity of the object 
SOF1.5 Euler number of the object  
SOF1.6 A measure of roundness of the object  
SOF1.7 The length of the object’s skeleton 
SOF1.8 The ratio of skeleton length to the area of the convex hull of the skeleton  
SOF1.9 The fraction of object pixels contained within the skeleton  
SOF1.10 The fraction of object fluorescence contained within the skeleton  
SOF1.11 The ratio of the number of branch points in skeleton to length of skeleton  
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Field level features (SLF21) 
  Subset of SLFs that do not require 

segmentation into single cells 
  Average object features 
  Texture features (on whole field) 
  Edge features (on whole field) 

2Dt or 3Dt Features 
Temporal Texture Features 
  Haralick texture features describe the 

correlation in intensity of pixels that are next 
to each other in space.  
  These have been valuable for classifying static 

patterns. 
  Temporal texture features describe the 

correlation in intensity of pixels in the same 
position in images next to each other over 
time. 



HCS - Image Analysis 

2008 SBS Short Course: R.F. Murphy 29 

Temporal Textures 
based on Co-occurrence Matrix 

  Temporal co-occurrence matrix P: 
    Nlevel by Nlevel matrix, Element P[i, j] is 

the probability that a pixel with value i 
has value j in the next image (time 
point). 

  Thirteen statistics calculated on P are 
used as features 

4 2 2 2 4
1 2 4 1 1
3 4 4 4 2
2 2 3 3 2
3 3 3 2 4

4 2 2 2 4
1 2 4 1 1
3 4 4 4 2
2 2 3 3 2
3 3 3 2 4

Temporal  
co-occurrence 
matrix (for 
image that does 
not change) 7 0 0 0 4 

0 6 0 0 3 
0 0 9 0 2 
0 0 0 3 1 
4 3 2 1 

Image at t0 Image at t1 
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4 2 2 2 4
1 2 4 1 1
3 4 4 4 2
2 2 3 3 2
3 3 3 2 4
Temporal  
co-occurrence 
matrix (for 
image that 
changes) 1 3 3 0 4 

1 0 5 0 3 
5 1 1 2 2 
0 2 0 1 1 
4 3 2 1 

2 1 4 4 3
1 4 2 3 3
2 3 3 2 2
4 4 2 2 3
2 4 2 1 4

Image at t0 Image at t1 

Implementation of 
Temporal Texture Features 
  Compare image pairs with different time 

interval ,compute 13 temporal texture 
features for each pair. 

  Use the average and variance of features in 
each kind of time interval, yields 13*5*2=130 
features 

T=     0s           45s         90s      135s      180s       225s      270s      315s     360s      405s   … 
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Feature Selection and 
Classification 

Robert F. Murphy 
Departments of Biological Sciences, Biomedical 

Engineering, and Machine  Learning 

 Human Trained Classifiers 
  Traditional approach to development of 

screening assays is to pick one or more 
features to discriminate between “positive” 
and “negative” 

  Often use hand-developed rules as part of the 
feature definition and/or the classification 
process 
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 Machine Classifiers 
  An alternative is to calculate a large set of 

features and then use machine learning 
methods to 
  choose important features and 
  rules to use them to discriminate positives and 

negatives 

Feature selection 
  Having too many features can confuse a 

classifier 
  Can use comparison of feature distributions 

between classes to choose a subset of 
features that gets rid of uninformative or 
redundant features 
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Feature Selection Methods 
  Principal Components Analysis 
  Non-Linear Principal Components 

Analysis 
  Independent Components Analysis 
  Information Gain 
  Stepwise Discriminant Analysis 
  Genetic Algorithms 

Nucleolar Mitoch. Actin 

Tubulin Endosomal ??? 

Basic classification problem 
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- + 

??? 

Simple two class problem 

Decision trees 
  Pictorially, we have 

num. attr#1 (e.g.., ‘area’) 

num. attr#2 
(e.g.., brightness) 

+ 

- + 
+ + 

+ 
+ 

+ 

- 

- 
- 

- - 

Slide courtesy of Christos Faloutsos 
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Decision trees 
  and we want to label ‘?’ 

num. attr#1 (e.g.., ‘area’) 

num. attr#2 
(e.g.., brightness) 

+ 

- + 
+ + 

+ 
+ 

+ 

- 

- 
- 

- - 

?�

Slide courtesy of Christos Faloutsos 

Decision trees 
  so we build a decision tree: 

num. attr#1 (e.g.., ‘area’) 

num. attr#2 
(e.g.., brightness) 

+ 

- + 
+ + 

+ 
+ 

+ 

- 

- 
- 

- - 

?�

50�

40�

Slide courtesy of Christos Faloutsos 



HCS - Image Analysis 

2008 SBS Short Course: R.F. Murphy 36 

Decision trees 
  so we build a decision tree: 

area<50 

Y 

+ bright. <40 

N 

- ... 

Y N 

‘area’ 

bright. 

+ 

- + + + 

+ 
+ 

+ 

- 

- - - - 

? 

50 

40 

Slide courtesy of Christos Faloutsos 

Decision trees 
  Goal: split address space in (almost) 

homogeneous regions 
area<50 

Y 

+ bright. <40 

N 

- ... 

Y N 

‘area’ 

bright. 

+ 

- + + + 

+ 
+ 

+ 

- 

- - - - 

? 

50 

40 

Slide courtesy of Christos Faloutsos 
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Problem: Classification 
  we want to label ‘?’ 

num. attr#1 (e.g.., area) 

num. attr#2 
(e.g.., bright.) 

+ 

- + 
+ + 

+ 
+ 

+ 

- 

- 
- 

- - 

? 

Slide courtesy of Christos Faloutsos 

Support Vector Machines 
(SVMs) 
  we want to label ‘?’ - linear separator?? 

area 

bright. 

+ 

- 
+ 

+ 
+ 

+ 

- 

- 
- 

- 
- 

? 

Slide courtesy of Christos Faloutsos 
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Support Vector Machines 
(SVMs) 
  we want to label ‘?’ - linear separator?? 

area 

bright. 

+ 

- 
+ 

+ 
+ 

+ 

- 

- 
- 

- 
- 

? 

Slide courtesy of Christos Faloutsos 

Support Vector Machines 
(SVMs) 
  we want to label ‘?’ - linear separator?? 

area 

bright. 

+ 

- 
+ 

+ 
+ 

+ 

- 

- 
- 

- 
- 

? 

Slide courtesy of Christos Faloutsos 
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Support Vector Machines 
(SVMs) 
  we want to label ‘?’ - linear separator?? 

+ 

- 
+ 

+ 
+ 

+ 

- 

- 
- 

- 
- 

? 

area 

bright. 

Slide courtesy of Christos Faloutsos 

Support Vector Machines 
(SVMs) 
  we want to label ‘?’ - linear separator?? 

+ 

- 
+ 

+ 
+ 

+ 

- 

- 
- 

- 
- 

? 

area 

bright. 

Slide courtesy of Christos Faloutsos 
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Support Vector Machines 
(SVMs) 
  we want to label ‘?’ - linear separator?? 
  A: the one with the widest corridor! 

area 

bright. 

+ 

- 
+ 

+ 
+ 

+ 

- 

- 
- 

- - 

? 

Slide courtesy of Christos Faloutsos 

Support Vector Machines 
(SVMs) 
  we want to label ‘?’ - linear separator?? 
  A: the one with the widest corridor! 

area 

bright. 

+ 

- 
+ 

+ 
+ 

+ 

- 

- 
- 

- - 

? 

‘support vectors’ 

Slide courtesy of Christos Faloutsos 
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Evaluating Classifiers 

  Divide ~100 images for each class into training set 
and test set 

  Use the training set to determine rules for the 
classes 

  Use the test set to evaluate performance 
  Repeat with different division into training and test 
  Evaluate different sets of features chosen as most 

discriminative by feature selection methods 
  Evaluate different classifiers (NN, SVM, MOE) 

Flexible assay design 
  Same master feature set, same feature 

selection method, same classification engine 
can be used for many different assays using 
supervised learning instead of hand-tuning 
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2D Classification 
Results  

Overall accuracy = 92% 

True  
Clas
s 

Output of the Classifier 

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub 

DNA 99 1 0 0 0 0 0 0 0 0 
ER 0 97 0 0 0 2 0 0 0 1 
Gia 0 0 91 7 0 0 0 0 2 0 
Gpp 0 0 14 82 0 0 2 0 1 0 
Lam 0 0 1 0 88 1 0 0 10 0 
Mit 0 3 0 0 0 92 0 0 3 3 
Nuc 0 0 0 0 0 0 99 0 1 0 
Act 0 0 0 0 0 0 0 100 0 0 
TfR 0 1 0 0 12 2 0 1 81 2 
Tub 1 2 0 0 0 1 0 0 1 95

Human Classification Results  

Overall accuracy = 83% (92% for major patterns) 

True  
Clas
s 

Output of the Classifier 

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub 

DNA 100 0 0 0 0 0 0 0 0 0 
ER 0 90 0 0 3 6 0 0 0 0 
Gia 0 0 56 36 3 3 0 0 0 0 
Gpp 0 0 54 33 0 0 0 0 3 0 
Lam 0 0 6 0 73 0 0 0 20 0 
Mit 0 3 0 0 0 96 0 0 0 3 
Nuc 0 0 0 0 0 0 100 0 0 0 
Act 0 0 0 0 0 0 0 100 0 0 
TfR 0 13 0 0 3 0 0 0 83 0 
Tub 0 3 0 0 0 0 0 3 0 93 



HCS - Image Analysis 

2008 SBS Short Course: R.F. Murphy 43 

Computer vs. Human 
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3D Classification 
Results  

Overall accuracy = 98% 

True  
Clas
s 

Output of the Classifier 

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub 

DNA 98 2 0 0 0 0 0 0 0 0 
ER 0 100 0 0 0 0 0 0 0 0 
Gia 0 0 100 0 0 0 0 0 0 0 
Gpp 0 0 0 96 4 0 0 0 0 0 
Lam 0 0 0 4 95 0 0 0 0 2 
Mit 0 0 2 0 0 96 0 2 0 0 
Nuc 0 0 0 0 0 0 100 0 0 0 
Act 0 0 0 0 0 0 0 100 0 0 
TfR 0 0 0 0 2 0 0 0 96 2 
Tub 0 2 0 0 0 0 0 0 0 98
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Cluster analysis 
  Supervised learning (Classification) 

assumes classes are known 
  Unsupervised learning (Cluster 

analysis) seeks to discover the classes 

Hierarchical vs. k-means 
clustering 
  Two most popular clustering algorithms 
  Hierarchical builds tree sequentially 

from the closest pair of points (wells/
cells/probes/conditions) 

  k-means starts with k randomly chosen 
seed points, assigns each remaining 
point to the nearest seed, and repeats 
this until no point moves 
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Hierarchical Clustering 
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Courtesy of Elvira Garcia Osuna 

Hierarchical Clustering 
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F 
E 

A 

B 

C 

Courtesy of Elvira Garcia Osuna 
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K-means 

Courtesy of Elvira Garcia Osuna 

K-means 

1 

2 

Courtesy of Elvira Garcia Osuna 
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K-means 

Courtesy of Elvira Garcia Osuna 

K-means 

Courtesy of Elvira Garcia Osuna 
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K-means 

Courtesy of Elvira Garcia Osuna 

K-means 

Courtesy of Elvira Garcia Osuna 
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K-means 

Courtesy of Elvira Garcia Osuna 

K-means Questions 
  What is it trying to optimize? 
  Are we sure it will terminate? 
  Are we sure it will find an optimal 

clustering? 
  How should we start it? 
  How could we automatically choose the 

number of centers? 
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http://www.autonlab.org/tutorials/kmeans11.pdf 

http://www.autonlab.org/tutorials/kmeans11.pdf 
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Choosing the number of 
Centers 
  A difficult problem 
  Most common approach is to try to find the 

solution that minimizes the Bayesian 
Information Criterion 

L = the likelihood 
function for the 

estimated model K = # of parameters 

n = # of samples 

2ln ln( )BIC L k n= − +

Group proteins by pattern 
automatically 

Chen et al 2003; 
Chen and Murphy 2005 

Nucleolar 
proteins 

Uniform 
punctate 
proteins 

Punctate 
nuclear 

proteins 
Vesicular 
proteins 

Uniform 
proteins Nuclear w/ 

punctate 
cytoplasm 
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Graphical Models for 
Subcellular Pattern Analysis 

Robert F. Murphy 
Departments of Biological Sciences, Biomedical 

Engineering, and Machine  Learning 

Graphical Models 
for Improving Pattern Recognition 

  Since cells with same location pattern are 
often clustered together, considering multiple 
cells may improve the discrimination of similar 
location patterns. 

  We developed a novel graphical model to 
describe the relationship between multiple 
cells in a field. 

  The classification of a cell is influenced by the 
classification results of neighboring cells. 
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Multiple Cells in an Image 
1. Segmentation 

3. Cell Classification 
2. Feature Extraction 

0.071855 
0.047583 
0.051316  
0.015094  

0.091835 
0.039019 
0.048193  
0.013216  

0.089381 
0.049841 
0.058387  
0.018215  

0.073814 
0.058718 
0.052951  
0.014918  

0.078173 
0.039143 
0.061873  
0.021942  

0.073813 
0.041834 
0.053829  
0.019183  

 Individually 
 Dependently 

o  Majority Voting 
Homogeneous Field 

 accuracy: 98% 
 (Boland and Murphy, 2001) 

o  Local Dependence  
Heterogenous Field 

Actin ER 

ER 

ER 

ER 

Golgi ER 

ER 

Golgi 

ER 

Bayes Decision Theory 

x:   features 
wj: jth class 

Bayes Rule 

)(
)()|(

)|(
xp
wpwxp

xwp jj
j =

evidence
priorlikelihoodposterior ×

=
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Bayes Decision Theory 

Training 

)(
)()|(

)|(
xp
wpwxp

xwp jj
j =

Train a classifier given training images of each class 

x:   features 
wj: jth class 

Assign x to the class with max posterior probability 

Bayes Decision Theory 

Testing 

)(
)()|(

)|(
xp
wpwxp

xwp jj
j =

x:   features 
wj: jth class 
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)(
)()|(

)|(
xp
wpwxp

xwp jj
j =

Bayes Decision Theory 

Testing 

Normally, prior distribution assumed or determined ahead 
of time (prior!). Our idea: adjust priors to reflect the 
neighbors of a cell (iteratively). 
> The posterior probability changes to reflect neighbors 

x:   features 
wj: jth class 

Graphical Cell Model 

1 

2 

5 

6 
3 4 

7 

Consider multiple cells in a field 
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Graphical Cell Model 

Connect cells if they are close enough  
(either in physical space or feature space) 

1 

2 

5 

6 
3 4 

7 

Links are decided by dcutoff 

Graphical Cell Model 

1 

2 

5 

6 
3 4 

Class1 

Class2 

0.81 

0.62 0.16 

0.55 

0.76 

0.53 

7 

Assign each cell a label and a confidence measure 

Class3 

0.76 
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Graphical Cell Model 

1 

2 

5 

6 
3 4 

Class1 

Class2 

0.81 

0.62 0.16 

0.55 

0.76 

0.53 

7 

Class3 

0.76 

Consider 4 Influenced by  
5 

6 
3 not by  7 

Assign each cell a label and a confidence measure 

Graphical Cell Model 

1 

2 

5 

6 
3 4 

Class1 

Class2 

0.81 

0.62 0.16 

0.55 

0.76 

0.53 

7 

Class3 

0.76 

Initial Priors(Uniform)      0.33           0.33          0.33 

Class1 Class2 Class3 

New Priors 

Consider 4 Influenced by  
5 

6 
3 not by  7 

Assign each cell a label and a confidence measure 
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Graphical Cell Model 

1 

2 

5 

6 
3 4 

Class1 

Class2 

0.81 

0.62 0.16 

0.55 

0.76 

0.53 

7 

Class3 

0.76 

Initial Priors(Uniform)      0.33           0.33          0.33 

Class1 Class2 Class3 

Consider 4 Influenced by  
5 

6 
3 not by  7 

Assign each cell a label and a confidence measure 

New Priors       0.40           0.58          0.02 

New Priors       0.40           0.58          0.02 

Graphical Cell Model 

1 

2 

5 

6 
3 

Class1 

Class2 

0.81 

0.62 

0.55 

0.76 

0.53 

7 

Class3 

0.76 

Class1 Class2 Class3 

Classify the cell with the new priors 

4 
0.16 0 
4 



HCS - Image Analysis 

2008 SBS Short Course: R.F. Murphy 59 

Graphical Cell Model 

1 

2 

5 

6 
3 

Class1 

Class2 

0.81 

0.62 

0.55 

0.76 

0.53 

7 

Class3 

0.76 
4 
0.16 0 
4 

Iterate until no label changes 

After Class1 

Class2 

1 

4 

Class3 7 

2 

5 

3 

6 

Before Class1 

Class2 

1 

Class3 7 

2 

5 

3 

6 

4 

Evaluating Prior 
Updating Scheme 

  Use the 10 class 2D 
HeLa data set to create 
synthetic multi-cell 
images where the class 
of each individual cell is 
known 

  Compare performance 
to base (single cell) 
classifier (SVM) 
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Classification accuracies for 
multicell images from two classes 

Chen & Murphy, 2006 

No. 
training 
images 

Without  
updating 
(%) 

With 
updating 
(%) 

Improvem
ent (%) 

50 90.1 95.6 5.5 
40 89.2 95.1 5.9 
30 88.1 94.6 6.5 
20 86.4 93.8 7.4 
10 82.9 90.3 7.4 

Improvement is greater for weaker base classifier 
(more room to improve) 

Prior updating much 
faster than previous methods 

Loopy Belief Propagation 

Prior updating 

Exact 
inference Note log scale! 
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Prior Updating Conclusions 
  Graphical models can be used to improve accuracy 

of classification of heterogeneous images 
  Each individual cell is still classified, and minor or 

unusual cells are not “lost” 
  Appropriate for cell array experiments (e.g., RNAi) 

where heterogeneity expected 
  Appropriate for tissue images 

References on Automated 
Interpretation of Subcellular 
Patterns 
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