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Subcellular Location

Proteins can be
found in many
places within cells

Task is to learn
what places
(patterns) are
possible and which
proteins are in
which
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Approaches to subcellular location

 Prediction
e Determination

— Deterministic

e Classification
e Clustering

— Probabilistic
* Pattern unmixing

 Generative models



Tagging methods

 Antibodies
— Monoclonal

— Monospecific polyclonal
 Human Protein Atlas project

* cDNA tagging
— UCSF yeast project
— Heidelberg project
— GNF project

* Genomic tagging
— Randtag project



Microscopy

 Manual
— UCSF project (widefield)
— HPA cell line project (confocal)
— Randtag project

e Automated

* Widefield low magnification
— Up to 40x air, most commercial systems
— HPA main project
— Randtag project
* Widefield high magnification
— Allow water or oil objectives
— Heidelberg project

e Confocal
— GNF project

* Variations: SPIM, FCM



Acquisition Protocol

* What samples should be imaged?
— Tissues or cell lines
— Live or fixed

 What should be recorded?
— Magnification
— 2D or 3D
e 7 spacing?
— Time series
— Number of images



Acquisition Protocol

 What images should be collected beyond that
of the tagged protein?

— Transmitted light (Phase, DIC)

— Markers
* nucleus/DNA
* plasma membrane
* total protein
* microtubules
* ER
* Small molecule probes (lysotracker...)



Classification

\

This 1s a micro-
tubule pattern

Assign proteins to major subcellular structures



Automated Analysis of Subcellular
Location

B Problem is hard because different cells have
different shapes, sizes, orientations

B Organelles not found in fixed locations
B Use numerical features to describe patterns




Feature-Based, Supervised Learning
Approach

. Create sets of images showing the location of many

different proteins (each set defines one class of
pattern)

. Reduce each image to a set of numerical values
(“features”) that are insensitive to position and
rotation of the cell

. Use statistical classification methods to “learn” how
to distinguish each class using the features



Preprocessing

Correction for/Removal of camera defects
Background correction

Autofluorescence correction

lllumination correction

Deconvolution

Registration
— Not critical if only using DNA or membrane references

Intensity scaling (constant scale or contrast stretched
for each cell)



Feature levels and granularity

Y e -l e A

Object @ Cell @ Field
—_— —
features features features

—Aggregate/average operator

Granularity: 2D, 3D, 2Dt, 3Dt



Segmentation of Images into Single
Cell Regions

 \oronoi
 Watershed
e Seeded Watershed



Voronoi diagram

Given a set of seeds,
draw vertices and
edges such that each
seed is enclosed Iin a
single polygon where %7
each edge is 05
equidistant from the
seeds on either side.

o

o




Voronoi Segmentation Process

e Threshold DNA image (downsample?)

e Find the objects in the image

e Find the centers of the objects

e Use as seeds to generate Voronoi diagram

e (Create a mask for each region in the Voronoi
diagram

e Remove regions whose object that does not
have intensity/size/shape of nucleus




Original DNA image




After thresholding and removing small objects




After triangulation




After removing edge cells and filtering
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Final regions masked onto original image




Seeded Watershed Segmentation

Original image Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries



Subcellular Location Features
(SLFs)

Morphological

* Protein only

* Relative to reference
Edge

Zernike moment
Texture



Thresholding

 Morphological features require some method for
defining objects
* Most common approach is global thresholding

 Methods exist for automatically choosing a global
threshold (e.g., Riddler-Calvard method)



Ridler-Calvard Method

* Find threshold that is equidistant from the
average intensity of pixels below and above
it

e Ridler, TW. and Calvard, S. (1978) Picture
thresholding using an iterative selection
method. IEEE Transactions on Systemes,
Man, and Cybernetics 8:630-632.



Ridler-Calvard Method

Blue line shows Ridler-Calvard Illustration
'histogl.*a'm of 0.95
intensities, green
lines show
average to left 0.2 4
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Ridler-Calvard Method

original

original thresholded



Otsu Method

 Find threshold to minimize the variances of
the pixels below and above it

e Otsu, N., (1979) A Threshold Selection
Method from Gray-Level Histograms, IEEE
Transactions on Systems, Man, and
Cybernetics, 9:62-66.



Adaptive Thresholding

* Various approaches available

* Basic principle 1s use automated methods
over small regions and then interpolate to
form a smooth surface



Object finding

» After choice of threshold, define objects as
sets of touching pixels that are above
threshold



2D Morphological Features

Number of objects

Size and shape of objects
— Average number of pixels
— Holes, Ellipse parameters, Skeletons

Position of objects relative to reference
— Center of protein fluorescence
— Center of DNA fluorescence

Overlap of objects relative to reference
— Overlap with DNA fluorescence



2D Morphological Features

Nucleoli

108 # of objects
83 Average size of objects

31 Average distance to COF




2D Skeleton Features

Features
average length of the skeleton

average ratio of skeleton
length to area of the convex
hull of the skeleton

fraction of object pixels
contained within the skeleton

fraction of object fluorescence
contained within the skeleton

ratio of the number of branch
points in the skeleton to the
length of skeleton




Suitability of Morphological Features
for Classification

* Images for some subcellular patterns, such
as those for cytoskeletal proteins, are not
well-segmented by automated thresholding

* When combined with non-morphological
features, classifiers can learn to “ignore”
morphological features for those classes



* Fraction of pixels

* Measures of edg

actin filaments

microtubules




2D Zernike Moment Features

e Shape similarity of protein image
to Zernike polynomials Z(n,l)
* 49 polynomials and 49 features

left: Zernike polynomials
A: 7Z(2,0)

B: 7Z(4,4)

C: Z(10,6)

right: lamp2 image



2D Haralick Texture Features

Correlations of adjacent pixels in gray level images
Start by calculating co-occurrence matrix P:
N by N matrix, N=number of gray level.

Element P(i,j) is the probability of a pixel with value i being
adjacent to a pixel with value j

Four directions in which a pixel can be adjacent

Each direction considered separately and then features
averaged across all directions



Example image with 4 gray levels
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Pixel Resolution and Gray Levels

* Texture features are influenced by the number
of gray levels and pixel resolution of the image

* Optimization for each image dataset required

* Alternatively, features can be calculated for
many resolutions



Other categories

e Other moments
e Wavelets
e Gabor



3D Features

* Morphological

— straightforward extension

— equivalence between voxel dimensions?
* Edge

— 3D edges expensive

— use stack of 2D edges
* Texture

— straightforward extension
— voxel dimensions isotropic?



Object level features (SOF)

* Subset of SLFs calculated on single objects

Index Feature Description

SOF1.1  Number of pixels in object

SOF1.2  Distance between object Center of Fluorescence (COF) and DNA COF
SOF1.3  Fraction of object pixels overlapping with DNA

SOF1.4 A measure of eccentricity of the object

SOF1.5  Euler number of the object

SOF1.6 A measure of roundness of the object

SOF1.7  The length of the object’s skeleton

SOF1.8  The ratio of skeleton length to the area of the convex hull of the skeleton
SOF1.9  The fraction of object pixels contained within the skeleton

SOF1.10 The fraction of object fluorescence contained within the skeleton
SOF1.11 The ratio of the number of branch points in skeleton to length of skeleton




Field level features

* Subset of SLFs that do not require
segmentation into single cells
— Average object features
— Texture features (on whole field)
— Edge features (on whole field)



2Dt or 3Dt Features
Temporal Texture Features

* Haralick texture features describe the correlation
in intensity of pixels that are next to each other in

space.
— These have been valuable for classifying static patterns.

* Temporal texture features describe the
correlation in intensity of pixels in the same

position in images next to each other over time.



Feature selection

* Having too many features can confuse a classifier

e Can use comparison of feature distributions between
classes to choose a subset of features that gets rid of
uninformative or redundant features



Basic principle of feature selection
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Need to consider multivariate distance
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Bad and Good Covariance
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Feature Selection Methods

Principal Components Analysis

Non-Linear Principal Components Analysis
Independent Components Analysis
Information Gain

Stepwise Discriminant Analysis

Genetic Algorithms

Max-Relevance, Min-Redundancy



Classification: Simple two class
problem

+ -
1
.

Describe each image by features
Train classifier

?7?




k-Nearest Neighbor (kNN)

* |n feature space, training examples are

Feature #2
(e.g.., roundness) +

Feature #1 (e.g.., ‘aread’)



k-Nearest Neighbor (kNN)

e We want to label “?’

Feature #2
(e.g.., roundness) +

Feature #1 (e.g.., ‘aread’)



k-Nearest Neighbor (kNN)

* Find k nearest neighbors and vote

Feature #2
(e.g.., roundness)

So we label it + for k=3,

+ nearest

+ + neighbors
are
N ] ,
+
+
+

Feature #1 (e.g.., ‘aread’)



Linear Discriminants

 Fit multivariate Gaussian to each class
* Measure distance from ? to each Gaussian

bright. ?

+

dareaq



Decision trees

* Again we want to label ¥’

Feature #2
(e.g.., roundness) +

Feature #1 (e.g.., ‘aread’)

Slide courtesy of Christos Faloutsos



Decision trees

e so we build a decision tree:

Feature #2 ?
(e.g.., roundness) +
+ +
40
+ .
+
+
+
50

Feature #1 (e.g.., ‘aread’)

Slide courtesy of Christos Faloutsos



Decision trees

e so we build a decision tree:

area<50
? Y / N
round. ' + -
s0-1 T
_ round. <40
+ 7 +

‘area’

++ S Y \N
50

Slide courtesy of Christos Faloutsos



Decision trees

* Goal: split address space in (almost)
homogeneous regions

area<50
? Y / N
round. ' + -
s0-1 T
_ round. <40
+ *t- +

‘area’

++ S Y \N
50

Slide courtesy of Christos Faloutsos



Support vector machines

* Again we want to label ¥’

Feature #2
(e.g.., roundness) +

Feature #1 (e.g.., ‘aread’)

Slide courtesy of Christos Faloutsos



Support Vector Machines (SVMs)

* Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos



Support Vector Machines (SVMs)

* Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos



Support Vector Machines (SVMs)

* Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos



Support Vector Machines (SVMs)

* Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos



Support Vector Machines (SVMs)

* Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos



Support Vector Machines (SVMs)

 we want to label ?’ - linear separator??
* A:the one with the widest corridor!

round.

area

Slide courtesy of Christos Faloutsos



Support Vector Machines (SVMs)

 What if the points for each class are not
readily separated by a straight line?

* Use the “kernel trick” — project the points into
a higher dimensional space in which we hope
that straight lines will separate the classes

* “kernel” refers to the function used for this
projection



Support Vector Machines (SVMs)

Definition of SVMs explicitly considers only
two classes

What if we have more than two classes?
Train multiple SVMs

Two basic approaches
— One against all (one SVM for each class)
— Pairwise SVMs (one for each pair of classes)

— Various ways of implementing this



Cross-Validation

If we train a classifier to minimize error on a set of
data, have no ability to estimate (generalize) error
that will be seen on new dataset

To calculate generalizable accuracy, we use n-fold
cross-validation

Divide images into n sets, train using n-1 of them and
test on the remaining set

Repeat until each set is used as test set and average
results across all trials

Variation on this is called leave-one-out



Describing classifier errors

* For multiclass classifiers, define
— Recall = #correct /#samples

— Precision = #correct/#predictions
* if prediction not made for all samples

— F-measure= 2*Recall*Precision/(Recall + Precision)



Precision

Precision-recall analysis

Ideal
Tm - performance
N Vary classifier
095} el \ parameter to “loosen”
some performance
estimate: i.e.,
confidence
0.9r
0.85 ! . 1 |
0 0.2 0.4 0.6 0.8

Recall



Goal: Learn to recognize all major
subcellular patterns

2D
Nucleolin Images Of

& Hel.a
cells

Tubulin




Kai Huang

2D Classification Results

True Output of the Classifier
Class DNA | ER Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA 99 1 0 0 0 0 0 0 0
ER 0 97 0 0 0 2 0 0 0 1
Gia 0 0 91 0 0 0 0 2 0
Gpp | O 0 14 82 0 0 2 0 1 0
Lam 0 0 1 0 88 1 0 0 10 0
Mit 0 3 0 0 92 0 0 3 3
Nuc 0 0 0 0 0 99 0 0
Act 0 0 0 0 0 0 100 0 0
TfR 0 1 0 0 12 2 0 1 81 2
Tub 1 2 0 0 0 1 0 0 1 95

Overall accuracy =92%




Human Classification
Resu Its 4 ;1 3 i P

Greg Porreca & Meel Velliste

True Output of the Classifier

Class 'oNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 100 | O 0 0 0 0 0 0 0 0
ER | 0 | 90 0 0 3 6 0 0 0 0
Ga | 0 0 56 | 36 | 3 3 0 0 0 0
Gpp | O 0 54 | 33 | O 0 0 0 3 0
Lam | 0 0 6 0 73 0 0 0 | 20 | 0
Mit | 0 3 0 0 0 96 0 0 0 3
Nuc | O 0 0 0 0 0 | 100 | o0 0 0
Act | O 0 0 0 0 0 0 | 100 | 0O 0
TR | O 13 0 0 3 0 0 0o | 83 | 0
Tub | O 3 0 0 0 0 0 3 0 | 93

Overall accuracy = 83%




Classification Results: Computer vs.
Human

100

90 -

80 -

@ Lysosomes

Human Accuracy

70 -
60 - Giantin (Golgi)
50 -
Gpp130 (Golgij)
40 | | | ’ |
40 50 60 70 80 90 100

Computer Accuracy

Notes: Even better results using MR methods by Kovacevic group

Even better results for 3D images



yeastgfp.ucsf.edu

YEAST GFP FUSION LOCALIZATION DATABASE

Welcome to yeastgfp.ucsf.edu

The database of our global analysis of protein localization studies
in the budding yeast, S. cerevisiae.

> quick case-insensitive searches of the database may be performed on
yeast orf names (yal001c) or gene names (TFC3)

> separate multiple orfs/genes with a space (e.g. yal001c zwfl bud2 etc.)

> more advanced searching and downloading can be done in Advanced Query
> GFP-tagged strains can be obtained from Invitrogen.

> TAP-tagged strains can be obtained from Open Biosystems.

> more details available in >>info >>fag >> help

This web site supports Huh, et 3/., Nature 425, 686-651 (2003).| <pdf>

The guantitation data presented here is published in Ghaemmaghami, et al., Nature 425, 737-741 (2003).| <pdf=
Detailed collection construction methods can be found in Howson et al., Comp Funct Genom 6, 2-16 (2005). <pdf=

This research is the work of the laboratories of Erin O'Shea and Jonathan Weissman at the University of California San Franci

Please direct comments, concerns, and questions to <jan.ihmels@gmail.com>

© Copyright 2001 - 2006 University of California Regents. All rights reserved.




Yeast GFP Fusion Localization Database

* Contains images of 4156 proteins (out of 6234 ORFs in all 16
yeast chromosomes).

* GFP tagged immediately before the stop codon of each ORF to
minimize perturbation of protein expression.

* Annotations were done manually by two scorers and co-
localization experiments were done for some cases using
mRFP.

* Each protein is assigned one or more of 22 location
categories.



Content in the Yeast GFP Database

GFP image

Example ORF

Name: YBR282W
Location: mitochondrion




Classification of Yeast Subcellular

Patterns

* Selected only those assigned to single unambiguous location
class (21 classes)

* Trained classifier to recognize those classes
* 81% agreement with human classification

* 94.5% agreement for high confidence assignments (without
using colocalization!)

 Examination of proteins for
which methods disagree
suggests machine classifier
is correct in at least some
cases

Shann-Ching (Sam) Chen & Geoff Gordon



Example of Potentially Incorrect Label

ORF Name
YGR130C

UCSF Location
punctate _composite

Automated Prediction
cell_periphery (60.67%)




Tissue Microarrays

. . 82
Courtesy www.microarraystation.com



Lo h (] a the project

Human Protein Atlas

protein atlas dictionary disclaimer submission of antibodies

: Prostate [CASP8]

Cell Type T I Localization

cytoplasmic and/or membranous

Glandular cells

Male, age 51 | Male, age 64 | Male, age 60
Brown color Indicates presence of protein, bine color shows celi nuclel. Image Usage Policy
| Vulva/Anal skin| Lung cancer lestis cancer ]’l'cstis |

JMalignant carcinoid , \
_IMalignant glioma Urothelial cancer

- Courtesy www.proteinatlas.org (Uhlén, Pontén et al)
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Immunocytochemistry Signal

together

e Each stain contains multiple color sour®
.=n;R+n,G+n3B :
— DAB=n;R+n,G+n3B

e Use linear unmixing to find w’s
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Test Dataset from Human Protein Atlas

» Selected 16 proteins from the Atlas
 Two each from all major organelles (class)
e ~45 tissue types for each class (e.g. liver, skin)

e Goal: Train classifier to recognize each subcellular
pattern across all tissue types

BN e e WEN I
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[ 4 g. 4. ; e
] R AR Il

Justin Newberg



Subcellular Pattern Classification over 45

tissues
| Prediction
ER Cyto Endo Golgi Lyso Mito Nucleolus Nucleus
('Z?) 100 0 O 0 0 0 0 0
((723’1“)’ 48 762 O 0 143 4.8 0 0
E(”Zd)o. 0o o0 10 0 0 0 0 0
((agg?' 11 0 0 989 0 0O 0 0
'?5’;‘)’ 0 19 0 0 962 O 1.9 0
'(\giff)’ 0o 0 0 0 0 984 16 0
N“?éi‘;'us 0 0 0 21 21 11 947 0
N12(7:I8e)us 0 0 0 0 0 0 0 100



Supervised vs. Unsupervised Learning

e Feasibility of using classification methods to
assign all proteins to known major classes
well demonstrated

* Do we know all locations? Are assighments
to major classes enough?

* Need approach to discover classes — cluster
proteins into subcellular location families



Hierarchical vs. k-means clustering

* Two most popular clustering algorithms

* Hierarchical builds tree sequentially from the
closest pair of points (wells/cells/probes/
conditions)

* k-means starts with k randomly chosen seed
points, assigns each remaining point to the
nearest seed, and repeats this until no point
moves



Hierarchical Clustering
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Slide courtesy of Elvira Garcia Osuna



Hierarchical Clustering

Slide courtesy of Elvira Garcia Osuna



K-means

Slide courtesy of Elvira Garcia Osuna



K-means
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Slide courtesy of Elvira Garcia Osuna



K-means

Slide courtesy of Elvira Garcia Osuna



K-means
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K-means
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Slide courtesy of Elvira Garcia Osuna



K-means

Slide courtesy of Elvira Garcia Osuna



K-means
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Slide courtesy of Elvira Garcia Osuna



Choosing the number of Clusters

e A difficult problem

 Most common approach is to try to find the
solution that minimizes the Bayesian
Information Criterion

BIC =-2In L + k1In(n)

n = # of samples

L = the likelihood function

for the estimated model

K = # of parameters




Location Proteomics:
Randtag project

Tag many proteins
— use CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in €
Isolate separate clones, each of which produces express one tagged
protein
Use RT-PCR to identify tagged gene in each clone

Collect many live cell images for each clone using spinning disk
confocal fluorescence microscopy

100



CD-Tagging Principle (CD=central dogma)

Genomic DNA +
CD-cassette

e B
CD cassette







o)
o]
=
'.:Ii
U8 OV
162 o)

asmtw nucleus
Soszlmm
nown— cvto
las
cytoplasm
cyto
iform
uni

Unknown-—4 uniform
%mma
asm
mma o mo
c
smmmeSH orm
465 m
o«ﬂo Wm eton
WOHB

cyto Wmm3+s nucleus
cvto
cyto
asm
" _m 7
C mma W unitform
wm uniform
oo uni
unifrom

H= THOTT o000

Nuc )
Mito+Rib+Unl
Mito
Nuc+Unk
WWU+O top+U
i 1
u c ommemﬁoz cytos mw%ﬂoa
EEE— Un cytoplasm
— Las cytoplasm ;
— wmw cvtoplasmt+nucleus Rib+Unk
— % 10301D06Rik-1 ¢ mowwm Bﬁ e mo%mmwgﬂ
e cytogkeleton cytogskeletor
— & =
m e cleus
P cleus
H e cleus
v E
U
. e
sk e
e cleus
U
s FobT
nown-— c asm
U Wsoszlmm zmommowﬁoww+memEmBU
Unknown-— cytoplasm
Unknown-— cvtoplasm
Unknown-— sfh cvto art+w_nucl
M known-21 cleus
U
L
A
nucleus
unknown
nucleus
nucleus
Unknow
ErEngeR

] ]
n < o

e}si( ueapl|ong palods-z7




Pattern unmixing

 Some proteins may be found in more than one
organelle

* Clustering sees each combination of
organelles as a hew pattern

 Can we “unmix” such mixed patterns?



Unmixing approach

* Assume that each fundamental subcellular
pattern can be represented by some
combination of distinct object types (10%

small round objects and 90% long skinny
objects)

* Assume that a mixed pattern is formed by
adding together the objects from two or more
fundamental patterns and that no new object
types are created



Zhao et al 2005

Learning object types

* Find all objects in all images of fundamental
types

* Describe each object by features such as size,
ellipticity, distance from nucleus

* Cluster objects to find types

* Represent each fundamental pattern as
probabilities of observing each object type



Amt fluor.

Golgi class

Nuclear class

Lysosomal class

Pure Lysosomal Pattern

Object type 7 8

0.5 \

0.4 \

0.3

Amt fluor.

0.2 \

0.1
0 Golgi class

1 i 3 Lysosomal class
: > 6 Nuclear class
Object type 7

Pure Golgi Pattern

50% mix of each

Amt fluor.

0.25

0.2

0.15
0.1
0.05
All
Golgi class
2

Lysosomal class

Nuclear class
Object type




Test samples

* How do we test a subcellular pattern unmixing
algorithm?

* Need images of known mixtures of pure
patterns — difficult to obtain “naturally”

* Created test set by mixing different
proportions of two probes that localize to
different cell parts (lysosomes and
mitochondria)
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Pattern unmixing results

Predicted pattem fractions Linear unmixing
Multinomial unmixing Fluorescence fraction unmixing

113



Communicating patterns

 How do we communicate results learned
about subcellular patterns?

* Proposal: Use generative models learned
from images to capture pattern and
variation in pattern



Generative Model Components
width

Nucleus

Medial axis
Cell dl + d2 . Model
membrane d parameters
2
Filtered Fitted
Protein (b),'
objects ? Zhao &
Murphy

2007



Nuclear shape models

* Modified medial axis model

e Diffeomorphic model

— S. Yang, D. Kohler, K. Teller, T, Cremer, P. Le
Baccon, E. Heard, R. Eils, and K. Rohr, MICCAI
2006, LNCS 4190, pp. 907-914, 2006



Nuclear Shape - Medial Axis Model

Threshold Rotate Extract medial axis

& D D D

40 300

250

Fit splines to
| two curves :

200

11 parameters

: Width g'lsong
the medial axis

Medial axis



Shape generation

11 parameters for each object
— 5 parameters for each curve
— the length of the medial axis

Learn the distribution of parameters over many
nuclei
— Assume multivariate normal

Randomly sample parameters from distribution

Construct nuclear shape using the sampled
parameters



Synthesized nuclear shapes



Diffeomorphic analysis of nuclear shape

* Can use distance between shapes to
characterize shape space instead of
parameters of model — Gustavo Rohde



Concept: measure distances between
all examples as means of
characterizing shape space




Finding deformation field

= Goal: Find a function g(x,t) which smoothly
transforms an image | into animage | ast
goesfromOtoT

= Choose g(x,t) to minimize sum of
= Total deformationingfromOto T
= Distance between |_and | _(g(x,T))



Mapping two shapes to each other




Target shape

Starting shape

0 0.0165 0.0191 0.0194 0.0195

Distance



Characterizing shape space

* Find deformation fields from each image to
every other image

e Calculate distance between each pair of
Images as total deformation required between

them

* Use multidimensional scaling (MDS) to find
variables (principal components) that
compactly represent variation
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coordinates
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Cell shape models

 Conditional radial distance ratio model
* Diffeomorphic model (in progress)



Cell Shape
Description: Distance Ratio

d, +d,
d2

; =

Represent single shape as
vector of ratios for n
angles and represent
variation using PCA




Diffeomorphic analysis of cell shape




Models for protein-containing objects

* Object library

* Gaussian objects

— Mixture of Gaussians with number of objects
determined from number of local minima

— Learn distributions for number of objects and
object size

— Learn probability density function for object
position relative to nucleus and cell shape



Modeling Vesicular Organelles




Position Model

r: normalized distance, a: angle to major axis

r=d1/(d1+d2)




Synthesized Images

Lysosomes Endosomes

= SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao
= Have portable tool for generating images from model



Framework for conditional subcellular
location models

* SLML: slots for different parts of cell model
— Nucleus
— Plasma membrane
— Specific protein

* Each slot can hold one of multiple types of
models, each of which is probabilistic

e Each slot’s model can be conditional
(dependent) on another



Shared
Nuclear
and Cell
Shape

Combining Models for Cell Simulations

Protein 1

Cell Shape

Nuclear Model

Protein 2

Cell Shape
Nuclear Model

Simulation for

multiple
proteins

Protein 3

Cell Shape

Nuclear Model

\/_
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PSLID Browser

Image Set Identifier

Xsize: 279 Ysize: 306

Virtual Cell-PSLID interface

Physiology:

GFP-UCESD2stop
GFP-UCESD2wE

giantin
app130
LaMP2

Lysophosphatidic acid receptor

Lysosome
Mitochondria

ein () Compartment

Al

Applications

-k "circle r3 in square d10" {Mon Oct 2

(copied from cpt)

# math
Initialized at steady
Bleach trial
15 scan Copy of Bleach trial
9 scan Copy of Bleach trial
36 scan Copy of Bleach trial
Copy of Bleach trial
Copy of Copy of Bleach trial
Copy of Copy of Copy of Bleach tric

Create New Field Data De

[ From File... ] [ From Simulation Data... ]

| PSLID Experimental | [ PSLID Generated Model | ' Cony,Func

’_| Field Data Info
[=)~__] Hela_giantin_523
@ Size( 279,306, 1)
# Origin{0.0,0.0,0.0)
# Extent(64.17 , 70.38000000000001 , 1.0)
~o-# Times({ 1) Beg=0.0 End=0.0
(=] Variables
-# (Vol) compartment_Hela_giantin_523
L W('/ol) protein_Hela_giantin_523




Summary

* Automated analysis of subcellular patterns in cells
and tissues demonstrated - computers better than
people

 Complex patterns can be unmixed — useful for
monitoring transitions between patterns (e.g.,
translocations)

* Generative models can be built directly from data to
summarize results and make predictions — useful for
cell simulations



The problem of subcellular location
analysis

Condition
(Order 102)

Cell Type
(Order 102)

Protein (Order 104)

l %#ﬂ;‘mm' T

Plus: Time scale from subsecond to
years



Towards an ultimate understanding
of subcellular location

e Learn probabilistic models of subcellular
location for different cell types

— What do these models look like for different
types of proteins and different organisms?

* |dentify variables that affect the parameters
of the models across cell types

e Construct “general model”
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