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Automated Interpretation

B Traditional analysis of fluorescence
microscope 1mages has occurred by visual
Inspection

B My group’s goal over the past tourteen
years has to been automate the
Interpretation, to yield better

Objectivity
Sensitivity
Reproducibility




Focus on subcellular location
analysis

B We will focus on analysis of subcellular
location, but most of the methods we will
discuss are equally applicable to other levels

Or organization/resolution




But first a word about acquisition

B Carefully consider

What resolution/dimension images to you need
for your task?

How many images/cells do you need per
condition?
B Keep conditions (especially microscopy
settings) constant!




Initial Goal: Supervised Learning
.

This is a micro-
tubule pattern
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Assign proteins to major subcellular structures using fluorescent microscopy




The Challenge

B Pixel-by-pixel or region-by-region
matching will not work for cell patterns
because different cells have different

shapes, sizes, orientations

B Organelles/structures within cells are not
found in fixed locations

B Instead, describe each image
numerically and compare the
descriptors




Feature-based, Supervised
learning approach

l.

Create sets of 1images showing the location of
many different proteins (each set defines one class
of pattern)

. Reduce each image to a set of numerical values

(“features”) that are insensitive to position and
rotation of the cell

. Use machine learning methods to “learn” how to

distinguish each class using the features




Example of
classification using
Morphological Features

# of objects
Average size of objects

Average distance to COF

Any of these
features could be
used to
distinguish these
two classes




The goal: Learn to recognize all major
subcellular patterns
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Feature levels and granularity

Object Cell Field
features features features

«—— Aggregate/average operator

Granularity: 2D, 3D, 2Dt, 3Dt




Cell Segmentation




Single cell segmentation
approaches

B Voronoi

B Watershed

B Sceded Watershed
L]

[]




Vorono1 diagram

Given a set of seeds,
draw vertices and
edges such that each
seed is enclosed In a
single polygon where
each edge Is
equidistant from the
seeds on either side.




Vorono1l Segmentation Process

Threshold DNA 1mage (downsample?)

Find the objects 1n the 1image

Find the centers of the objects

Use as seeds to generate Voronol diagram
Create a mask for each region in the Voronoi
diagram

Remove regions whose object that does not
have intensity/size/shape of nucleus




Thresholding

Gray-leveliimage > Binary image

B Thresholding refers to the division of the

pixels of an 1image into two classes: those
below a certain value (the threshold) and
those at or above 1t. The two classes are
often shown in white and black,
respectively.

B Thresholding serves as a means to consider
only a subser of the pixels of an 1mages.




Ridler-Calvard Method

B Find threshold that 1s equidistant from the

average intensity of pixels below and above
it

B Ridler, T.W. and Calvard, S. (1978) Picture
thresholding using an iterative selection
method. IEEE Transactions on Systems,

Man, and Cybernetics 8:630-632.




Ridler-Calvard Method

Blue line Ridler-Calvard Illustration
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Ridler-Calvard Method

original thresholded




Thresholding
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Original DNA image




After thresholding and removing small objects




After triangulation




After removing edge cells and filtering




Final regions masked onto original image
1




Watershed Segmentation

B [ntensity of an image
~ elevation 1n a
landscape

Flood from minima

Prevent merging of
“catchment basins™

Watershed borders http://www.ctic.purdue.edu/KYW/glossary/whatisaws.html|

built at contacts
between basins




Seeded Watershed Segmentation

Drawback 1s that the number of regions may not
correspond to the number of cells

Seeded watershed allows water to rise only from
predefined sources (seeds)

If DNA 1image available, can use same approach to
generate these seeds as for Voronoi segmentation

Can use seeds from DNA 1mage but use total protein

Image or plasma membrane protein image for watershed
segmentation




Seeded Watershed Segmentation

j‘>,

Original image Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries




Feature Extraction




2D Subcellular LLocation Features

Morphological (based on objects after thresholding)
Object number
Object size
Object shape (including skeleton features)
Object position
Object overlap with marker (DNA)

Edge (amount, preferred orientation)

Moments (Zernike)

Texture (Haralick)

Transform
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Haralick Texture Features

B Correlations of adjacent pixels in gray level
Images

B Start by calculating co-occurrence matrix P:
N by N matrix, N=number of gray level.

Element P(1,)) 1s the probability of pixels with
value 1 being adjacent with pixels with value |

B Four directions in which a pixel can be adjacent
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Pixel Resolution and Gray Levels

B Texture features are influenced by the
number of gray levels and pixel resolution

of the 1image

B Optimization for each image dataset
required

B Alternatively, features can be calculated for
many resolutions




Transform features

B Can apply an 1mage transform and then
calculate features

Fourier transform

Wavelet transforms




Feature selection

B Having too many features can confuse a classifier

B Can use comparison of feature distributions
between classes to choose a subset of features that
gets rid of uninformative or redundant features

B Some methods
Principal Components Analysis
Non-Linear Principal Components Analysis
Independent Components Analysis
Information Gain

Stepwise Discriminant Analysis




Simple two class problem

Describe each image by features
Train classifier




Classification 1llustration




[Linear Discriminants

B Fit multivariate Gaussian to each class
B Measure distance from ? to each Gaussian




Decision trees

B Again we want to label “?°

Slide courtesy of Christos Faloutsos




Decision trees

B so we build a decision tree:

Slide courtesy of Christos Faloutsos




Decision trees

B so we build a decision tree:

Slide courtesy of Christos Faloutsos




Decision trees

B Goal: split address space in (almost)
homogeneous regions

"/

area<50

round. <40

R

Slide courtesy of Christos Faloutsos




Support vector machines

B Again we want to label “?°

Feature #2
(e.g.., roundness)

Feature #1 (e.g.., ‘area’)

Slide courtesy of Christos Faloutsos




Support Vector Machines (SVMs)

B Use single linear separator??

Slide courtesy of Christos Faloutsos




Support Vector Machines
(SVMs)

B Use single linear separator??

Slide courtesy of Christos Faloutsos




Support Vector Machines
(SVMs)

B Use single linear separator??

Slide courtesy of Christos Faloutsos




Support Vector Machines
(SVMs)

B Use single linear separator??

Slide courtesy of Christos Faloutsos




Support Vector Machines
(SVMs)

B Use single linear separator??

Slide courtesy of Christos Faloutsos




Support Vector Machines
(SVMs)

B we want to label °?° - linear separator??

B A: the one with the widest corridor!

Slide courtesy of Christos Faloutsos




Support Vector Machines
(SVMs)

B What it the points for each class are not
readily separated by a straight line?

B Use the “kernel trick” — project the points

into a higher dimensional space in which we
hope that straight lines will separate the
classes

B “‘kernel” refers to the function used for this
projection




Support Vector Machines
(SVMs)

B Definition of SVMs explicitly considers
only two classes

B What if we have more than two classes?

B Train multiple SVMs

B Two basic approaches
One against all (one SVM {for each class)
Pairwise SVMs (one for each pair of classes)

e Various ways of implementing this




Cross-Validation

B If we train a classifier to minimize error on a set of
data, have no ability to estimate (generalize) error
that W111 be seen on new dataset

To calculate generalizable accuracy, we use n-
fold cross-validation

m Divide images into # sets, train using n-1 of them
and test on the remaining set

B Repeat until each set 1s used as test set and average
results across all trials

B Variation on this i1s called leave-one-out




2D Classification Results
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Human Classification Results

True Output of the Classifier
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giantin

Nucleolin

Tubtlin

Subcellular Pattern
Classification:
Computer vs. Human

Even better results using multiresolution methods

Even better results for 3D images

Human Accuracy

60 70 80

Computer Accuracy




3D Hel.a cell images

Nuclear ER Giantin epp130 Lysosomal

2 = ®

Mitoch. Nucleolar Actin Endosomal Tubulin
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Images collected using facilities at the Center for
Biologic Imaging courtesy of Simon Watkins




3D Classification Results

True Output of the Classifier
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Overall accuracy = 98%




High content screening/analysis

B Commercially available systems for
automated microscopy, coupled with
systems for analyzing images

B Typically involve segmentation, feature
calculation, classification

B Typically involve hand-tuned feature sets
and classifiers

B Mainly used for drug screening




Unsupervised Learning to
Identity High-Resolution Protein

Patterns




Images of
CD-tagged
3T3 cells




Chen et al 2003;
Chen and Murphy 2005
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Decomposing (unmixing)
complex patterns




Decomposing
mixture patterns

B Clustering or classitying whole cell patterns
will consider each combination of two or
more “‘basic” patterns as a unique new
pattern

B Desirable to have a way to decompose
mixtures instead

B One approach would be to assume that each
basic pattern has a recognizable
combination of different rypes of objects




Object type determination

B Rather than specifying object types, we can
choose to learn them from the data

B Use subset of SLLFs to describe objects

B Perform k-means clustering for £ from 2 to
40

m Evaluate goodness of clustering using
Akaike Information Criterion

B Choose £ that gives lowest AIC




Cluster Number Selection
B Akaike Information Criterion (AIC) = 2k — 2In(L)

B k=number of clusters
B | =likelihood of model

given data

15 20 25 30 35 40
number of clusters




Example of Object Types

Type A

) | Y, SCOG B2 § aPne
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Unmixing: L.earning strategy

B Once object types are known, each cell in
the training (pure) set can be represented as
a vector of the amount of fluorescence for
each object type

B [_earn probability model for these vectors
for each class

B Mixed images can then be represented using
mixture {ractions times the probability
distribution of objects for each class




Amt fluor.

Pure Lysosomal Pattern

Golgi class
2 Lysosomal class

Nuclear class
Object type /

0.5

0.4 I
0.3
Amt fluor.
0.2
0.1
1

Pure Golgi Pattern

0

Golgi class
2 Lysosomal class
4 s

Nuclear class
Object type

0.25

50 % mix of each
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0.15
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Nuclear class
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Object type




Two-stage Strategy for unmixing
unknown 1mage

B Find objects in unknown (test) image,
classify each object into one of the object
types using learned object type classifier built
with all objects from training images

B For each test image, make list of how often
each object type 1s found

B Find the fractions of each class that give
“best” match to this list




Test samples

B How do we test a subcellular pattern
unmixing algorithm?

B Need images of known mixtures of pure
patterns — difficult to obtain “naturally™

B Created test set by mixing different
proportions of two probes that localize to
different cell parts (lysosomes and
mitochondria)




Tao Peng, Ghislain Bonamy, Estelle
Glory, Sumit ®handa, Dan Rines
Genome Research.Insjitute of
Novartis Foundation)










Pattern unmixing results

Predicted pattem fractions Linear unmixing

hultinomial unmixng Fluorescence fraction unmixing



Generative models of subcellular
patterns




LLAMP?2 pattern

Cell membrane

Nucleus

Protein




Nuclear Shape - Medial Axis Model

. > D

width

Represented by two curves Medial axis

width along

the medial axis : :
medial axis




Synthetic Nuclear Shapes

geodeo




With added nuclear texture




Cell Shape
Description: Distance Ratio

Capture variation as a
principal components
model




Generation




Modeling Vesicular Organelles

Original Filtered Fitted Gaussians

(a) (b) (C)




Object Positions




Models for protein-containing
objects

©) B Mixture of Gaussian
2™  objects
M [ carn distributions for

number of objects and

r: normalized distance, a: angle to 3 ‘
° object size

najor axis

B [_earn probability
density function for
objects relative to
nucleus and cell




Synthesized Images

Lysosomes Endosome
= SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao

= Have portable tool for generating images frorfiimodel




Model Distribution

B Generative models provide better way of
distributing what 1s known about “subcellular
location families™ (or other imaging results,
such as 1llustrating change due to drug
addition)

B Have initial XML design for capturing the
models for distribution

B Have portable tool for generating
images from the model




Generation Process

Protein

Cell Shape
Nuclear Model

XML




Generating Multiple
Distributions for Simulations

Simulation 1

Protein
Cell Shape

Nuclear Model Simulation 2 Conclusions

XML

Simulation 3




Combining Models for Cell
Simulations

Protein 1

Cell Shape
Nuclear Model

Protein 2

Cell Shape + Simulation
Nuclear Model

Protein3 - ——p +

Cell Shape

Shared Nuclear Model
Nuclear

and Cell XML
Shape




Example combination

Red = nuclear membrane, plasma membrane
Blue = Golgi

Green = Lysosomes

Cyan = Endosomes




Conclusions

B Computers better than people at recognizing
complex subcellular patterns

B Automated analysis of subcellular patterns in
tissues demonstrated — useful for potential
biomarker discovery

B Complex patterns can be unmixed — useful for
monitoring transitions between patterns (e.g.,
translocations)

B Generative models can be built directly or
indirectly from data to summarize results and
make predictions — usetul for cell simulations




Software availability

http://murphylab.web.cmu.edu/software

http://www.cellprofiler.org

http://www.openmicroscopy.org

http://www.cbi-tmhs.org/Dcellig/




