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yeastgfp.ucsf.edu

YEAST GFP FUSION LOCALIZATION DATABASE

Welcome to yeastgfp.ucsf.edu

The database of our global analysis of protein localization studies
in the budding yeast, S. cerevisiae.

> quick case-insensitive searches of the database may be performed on
yeast orf names (yal001c) or gene names (TFC3)

> separate multiple orfs/genes vith a space (e.g. yal001c zwfl bud2 etc.)

> more advanced searching and downloading can be done in Advanced Query
> GFP-tagged strains can be obtained from Invitrogen.

> TAP-tagged strains can be obtained from Open Biosystems.

> more details available in >>info >>faqg >> help

This web site supports Huh, et 3/., Naturs 425, 686-651 (2003).| <pdf>

The guantitation data presented here is published in Ghaemmaghami, et a/., Nature 425, 737-741 (2003).| <pdf=
Detailed collection construction methods can be found in Hovson et al., Comp Funct Genoem 6, 2-16 (20035). <pdf=>

This research is the work of the laboratories of Erin O'Shea and Jonathan Weissman at the University of Californi
Please direct comments, concerns, and questions to <jan.ihmels@gmazil.com=>

@ Copyright 2001 - 2006 University of California Regents. All rights reserved.
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+ |63 http:/ /www.dkfz.de/LIFEdb/(rze40cvcqowayfud4rtthp55)/LIFEdb.aspx ¢ | (Qr lifedb

Database for Localization, Interaction, Functional assays and Expression of Proteins

home@mga 3
home@dkfz

home@smp-cell.org

LIFEdb description

credits

I Simple Query ID Query Localization Query Assay Query Complex Query Table Help

Configure output:
SGene R Enter identifier, keyword, subcellular compartment or chromosomal location

™ Chromosomal Location
[JlInsert size (bp)
[ Orf size (aa) (‘search DB ) ( Reset )

JIEP
[ Mol. wt.

identifiers

™ Localization

[(1S-Phase data

[T Electronic Northen

[T Pred. localization

(") Motifs and Domains

[ Best BlastP hit(s) swissprot
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+ |@ http://www.proteinatlas.org/ ¢ | (Qr human protein atlas

© A new version (5.0) has been
The human protein atlas shows expression and localization of proteins in a : released including antibodies

large variety of normal human tissues, cancer cells and cell lines with the aid s . .
! : : - target ot oducts fr
/ | —— A-k - of immunohistochemistry (IHC) images and immunofiuorescence (IF) confocal : la/;gof'?hgephrunf:‘npprm:h_sco;:‘g )
“i microscopy images. © | genes. Tutorizl on how touse
] :  the Human Protein Atlas have

} R :
' ! BB .} also been added.
;‘ 5 )¢ Enter search: P

i : The Human Protein Atlas now
Advanced search : . contains subcellular localization
: : data (IF) for 3541 genes.

1
\‘\ ‘ Select a chromosome: See v:elease history for further
1 5 9 13mmme (7eme 2]me ; details.
\ 2 6 10 14 cmme 1S eme 22w ;
. 4 8 12 s— 20 - -
OTHER &=

Or a protein class:
Enzymes | GPCRs excl offactory receptors | Kinases | Peptidases | Transcription
factors | Transporters | More...

Filter search to show genes with tissue profiles [ ]

Version: 5.0 Atlas updated: 2009-06-16 (rclease history)
Atlas content: 8832 antibodies and 7,334,244 images.

Tt ok Fle The HPR project is funded by the Knut & Alice Wzllenberg
- 70 . foundation. The atlas is part of the HUPO Human Antibody
‘o)
Wallenberys- Initistive (HA).
flelse

Send questions, comments or suggestions to: contact@hpr.se. | FAQ / Help

Carnegie Mellon




Human Protein Atlas
-
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Gall bladder
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Fallopian tube
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Renal cancer Bk
| Liver cancer \,\
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| Vulva/Anal skin|

|Malignant glioma Urothelial cancer

R

Carnegie Melion Courtesy www.proteinatlas.org (Uhlén, Pontén et al)



Human Protein Atlas

the project protein atlas dictionary disclaimer submission of antibodies

Localization
cytoplasmic and/or membranous

Male, age 51 Male, age 64 Male, age 60
Brown color indicates presence of protein, biue color shows celf nucliel. Image Usage Policy

Carnegie Mellon Courtesy www.proteinatlas.org (Uhlén, Pontén et dl)




P EMSIIMATE BRI F A

} [ =+ IOhttp://www.proteinatlas.org/cell_if_unit.php?antibody_id=114l&mainannotation_id=200000025 = & ] [ Qr human protein atlas

disclaimer submission of antibodies help

‘00 the project protein atias  dictionary

U-2 OS - [A4GALT]

negative undetermined
Validation
7 - No staining.

Validation Summary
(1r ] [E [PA] we]

cytoskeleton [ nucleus | cytoskeleton

. i
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BMIC Cell Biology siomted e

Research

Automatic image analysis for gene expression patterns of fly
embryos

Hanchuan Peng*!, Fuhui Long!, Jie Zhou?, Garmay Leung3,

Michael B Eisen3#4 and Eugene W Myers!

Address: 'Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA, 2Department of Computer Science,
Northern Illinois University, DeKalb, IL. 60115, USA, 3Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,
USA and *Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Image features and applications:
* GMM-Blob: pattern extraction, comparison and retrieval

Gene Image pattern |, Eigen-profile: pattern clustering
* Wavelet-profile: pattern annotation/classification

Segmented embryo| GMM-blob-profile Wavelet-profile

Extracted pattern Eigen-profile

ﬂ;mented embryo| GMM-blob-profile

Bub3

CG10489

Eigen-profile

Extracted pattern

CarnegieM L W — ,




‘ Automated Interpretation

= [raditional analysis of microscope
Images has occurred by visual
inspection

= Our group’s goal over the past fourteen
years has to automating interpretation

with the ultimate goal of fully automated
learning of patterns from images

= Much recent work from other groups

Carnegie Mellon



Major approaches within

‘ Bioimage Informatics

= Quantitation approaches
= Expression and colocalization
= Tracking of cells and structures

= Atlas approaches
= Registration and construction
= Change over time
= Changes in mutants

= Pattern approaches
CarnegieMellon® FOcus of this introduction




Carnegie Mellon

Hold the date!

Bioimage Iniormatics 2010

September 17-21, 2010

Carnegie Mellon University
Pittsburgh, Pennsylvania/U.S.A.

Organizers:
Gaudenz Danuser, Harvard Medical School
Michael Hawrylycz, Allen Institute for Brain Science

Robert F. Murphy, Carnegie Mellon University

Hosted by

L
W RAY AND STEPHANIE LANE
Center for Computational Biology

Center for Bioimage Informatics
irsge Lo bnowledsy Carnegie Mellon

Local Organizers:

Jelena Kovacevi¢, Gustavo Rohde, Ge Yang

http://www.cbi.cmu.edu



The Challenge

m Comparison of cell images pixel-by-
pixel or region-by-region matching
does not work for cell patterns
because different cells have different
shapes, sizes, orientations

= Organelles/structures within cells are
not found in fixed locations

m Instead, describe each image
numerically and operate on the
descriptors (“SLF” - Subcellular
Location Features)

Carnegie Mellon




Example of
classification using
Morphological Features

108 # of objects 6 <+~ e —
83 Average size of objects 232 +— features could be

: used to
31 Average distance to COF 4

distinguish these
two classes

Carnegie Mellon




‘ Feature levels and granularity

_

Single /
Object /

/ Cell /

/ singie |

Object
features

~R—

Carnegie Mellon

Cell
features

R

Field
features

— Aggregate/average

operator

Granularity: 2D, 3D, 2Dt, 3Dt



! Cell Segmentation

Carnegie Mellon



Single cell segmentation

v‘ approaches

= \Voronoi

= \Watershed

= Seeded Watershed

s Active Contours and Level Set Methods
s Graphical Models

= Active Masks

Carnegie Mellon




‘ Voronol diagram

Given a set of seeds,
draw vertices and

edges such that each
seed is enclosed in a
single polygon where %y
each edge is 05
equidistant from the
seeds on either side. o3}

o

Carnegie Mellon




Voronoi Segmentation

Carnegie Mellon

i Process

Threshold DNA image (downsample?)
Find the objects in the image
Find the centers of the objects

Use as seeds to generate Voronoi
diagram

Create a mask for each region in the
Voronoi diagram

Remove regions whose object that does
not have intensity/size/shape of nucleus




®

Original DNA image



|-

After thresholding and removing small objects




|-

After triangulation




|-

After remo

ving edge cells and filtering



Watershed Segmentation

L

‘W/”// T i el i et sl

= Intensity of an image .,
~ elevation in a
landscape
= Flood from minima 7 S :
= Prevent merging of s ,,'i;ig'g\'.;,'i‘:f*'l\:"}‘»‘ii‘l‘“‘.'*"’A‘
“‘catchment basins” -

- Watershed borders http://www.ctic.purdue.edu/KYW/glossary/whatisaws.html
built at contacts
between basins

Y e

Carnegie Mellon




Seeded Watershed

‘ Segmentation

= Drawback is that the number of regions may not
correspond to the number of cells

= Seeded watershed allows water to rise only from
predefined sources (seeds)

= If parallel DNA image available, can use same
approach to generate these seeds as for Voronoi
segmentation

= Can use seeds from DNA image but use total
protein or membrane protein image for watershed
segmentation

Carnegie Mellon




Seeded Watershed
Segmentation

"-".

Original image Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries

Carnegie Mellon




Active masks

= Srinivasa, Fickus, Guo, Linstedt,
Kovacevic, IEEE Trans. Image Proc.
2009

= Marriage of multiple methods
= Active contours
= Multiresolution
= Multiscale
= Region growing

Carnegie Mellon



AM segmentation: Bis:lotgop

MS: Increase scale j

Smoothing filter
h

A

A 4

Region-based > Voting-based
distributing function H distributing function \
7Y 7Y

o d

Smoothing filter
g MR: Increase resolution k

Image based Geometry based




! Feature Extraction

Carnegie Mellon



Morphological Features -

‘ Thresholding

= Morphological features require some method
for defining objects

= Most common approach is global
thresholding

= Methods exist for automatically choosing a
global threshold (e.g., Riddler-Calvard
method)

= Find threshold that is equidistant from the average
intensity of pixels below and above it

Carnegie Mellon




Ridler-Calvard Method

Blue line Ridler-Calvard Illustration

shows
histogram of
intensities,
green lines 0.2 -
show average
to left and
right of red
line, red line
shows
midpoint
between them 0.05
or the RC
threshold

0.25

Frequency
o
| —
ul

©
|
|

Pixel Value

Carnegie Mellon




‘ Object finding

= After choice of threshold, define objects
as sets of touching pixels that are
above threshold

Carnegie Mellon



2D Features
Morphological Features

Description

The number of fluorescent objects in the image

The Euler number of the image

The average number of above-threshold pixels per object

The variance of the number of above-threshold pixels per
object

The ratio of the size of the largest object to the smallest

The average object distance to the cellular center of
fluorescence(COF)

The variance of object distances from the COF

The ratio of the largest to the smallest object to COF distance

Carnegie Mellon




2D Features

i NA Features

DNA features (objects relative to DNA reference)

Description

The average object distance from the COF of the DNA image

The variance of object distances from the DNA COF

The ratio of the largest to the smallest object to DNA COF distance

The distance between the protein COF and the DNA COF

The ratio of the area occupied by protein to that occupied by DNA

The fraction of the protein fluorescence that co-localizes with DNA

Carnegie Mellon




2D Features
Skeleton Features

Skeleton features (object shape)

Description

The average length of the morphological skeleton of objects

The ratio of object skeleton length to the area of the convex hull of the
skeleton, averaged over all objects

The fraction of object pixels contained within the skeleton

The fraction of object fluorescence contained within the skeleton

The ratio of the number of branch points in the skeleton to the length of
skeleton

Carnegie Mellon



lllustration — Skeleton

Carnegie Mellon




2D Features
Edge Features

Edge features

Description

The fraction of the non-zero pixels that are along an edge

Measure of edge gradient intensity homogeneity

Measure of edge direction homogeneity 1

Measure of edge direction homogeneity 2

Measure of edge direction difference

Carnegie Mellon




2D Features

‘ Haralick Texture Features

= Correlations of adjacent pixels in gray level images
= Start by calculating gray level co-occurrence matrix P:
N by N matrix, N=number of gray level.

Element P(i,j) is the probability of a pixel with value |
being adjacent to a pixel with value |

= Four directions in which a pixel can be adjacent

Carnegie Mellon




Example image with 4 gray levels

5 1 1 1 3
01 3 0 0
2 3 3 3 1

1 1 2 2 1
2 2 2 1 3

Co-occurrence

Matrices

1 1 1 1 1
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Example Gray Level Co-occurrence Matrices for Various Textures

Solid+Noise Vertical NegativeDiagonal Horizontal PositiveDiagonal

|
-

Random Vertical NegativeDiagonal Horizontal PositiveDiagonal

Vertical NegativeDiagonal Horizontal PositiveDiagonal

Carnegie Mellon




i Pixel Resolution and Gray Levels

m [exture features are influenced by the
number of gray levels and pixel
resolution of the image

= Optimization for each image dataset
required

m Alternatively, features can be calculated
for many resolutions

Carnegie Mellon



$ Threshold Adjacency Statistics

For a
specified
range of gray
level values,
count how
many
neighbors
each above

threshold EEE =-. [ [ =- =. =- N B

| | u
pixel has Iy NN HEN NN
© 1 & © @4 6 6 F) @

N A Hamilton,® R S Pantelic, K Hanson, and R D Teasdale

Cal‘negieMellon BMC Bioinformatics. 2007; 8: 110




Murphy et al 2000;
Boland & Murphy 2001;
Huang & Murphy 2004

2D Classification Results

Output of the Classifier
Class'pNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA 99 1 0 0 0 0 0 0 0
ER 0 97 0 0 2 0 0 0 1
Gia 0 0 91 0 0 0 0 2 0
Gpp | O 0 14 82 0 0 2 0 1 0
Lam 0 0 1 0 88 1 0 0 10 0
Mit 0 3 0 0 92 0 0 3 3
Nuc 0 0 0 0 0 99 0 0
Act 0 0 0 0 0 0 100 0 0
TfR 0 1 0 0 12 2 0 1 81 2
Tub 1 2 0 0 0 1 0 0 1 95

CarnegieMellon Overall accuracy = 92%




Murphy et al 2003

Human Classification Results

True Output of the Classifier

Class'bNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA| 100 o | o | o | o | o o o] o] o
ER | 0 | 20| 0 | o | 3 | 6 | 0o | o ol o
Ga| 0 | o | 56 | 36| 3| 3| o/ o] o] o
Gop| 0 | 0 | 54 | 33| 0o | o | o] ol 3| o
lam| 0 | 0 | 6 | 0o | 73] 0o | o | o | 20 | o
Mt | o | 3 | o | o | o |9 | o ol ol 3
Ne| o0 | o | o | o] o] o [10] o [ o | o
Ac| o | o | ol ol o ol o l10] o] o
TR | o | 13 ] o | o | 3 | o | o | o | 8 | o
Tub| 0 | 3] 0o o o] o] o] 3] o] o3

Carnegie Mellon

Overall accuracy = 83%




giantin Murphy et al 2000;
_ Boland & Murphy
| 2001; Murphy et al

2003; Huang &
= Images Murphy 2004

Nucleolin
of HelLa

cells
DNA

»
L
Subcellular Pattern %
Classification: o
Computer vs.
Human |

Even better results using multiresolution methods by Kovacevic group

Carnegie Mellon Even better results for 3D images




Velliste & Murphy 2002

3D Hel.a cell images
lear ER Giantin opp130 Lysosomal

Mitoch. Nucleolar Actin Endosomal Tubulin

Images collected using facilities at the Center for
Carnegie Mellon Biologic Imaging courtesy of Simon Watkins




Velliste & Murphy 2002;
Chen & Murphy 2004

3D Classification Results

Output of the Classifier

DNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 98 2 0 0 0 0 0 0 0
ER 0 100 0 0 0 0 0 0 0
Gia 0 0 100 0 0 0 0 0 0
Gpp 0 0 0 96 4 0 0 0 0 0
Lam 0 0 0 4 95 0 0 0 0 2
Mit 0 0 2 0 0 96 0 2 0 0
Nuc 0 0 0 0 0 0 100 0 0 0
Act 0 0 0 0 0 0 0 100 0 0
TR 0 0 0 0 2 0 0 0 96 2
Tub 0 2 0 0 0 0 0 0 0 98

Carnegie Mellon

Overall accuracy = 98%




Collection

Yeast GFP

HPA tissue

Carnegie Mellon

Results for large collections

Number of Overall Recall for Precision for

classes accuracy high that recall
precision

20 81% 80% 95%

8 81% 50% 97%



Cell, nuclear and organelle

! shape modeling

Carnegie Mellon



264

the medial axis

80

04 0.6
nnnnn

width alonég the

medial axis |

Carnegie Mellon

Nuclear Shape - Medial Axis Model

Rotate > .

Represented by two curves

width

Medial axis



‘ Synthetic Nuclear Shapes

Carnegie Mellon




Diffeomorphic analysis of nuclear

‘shape

= Can use distance between shapes
to characterize shape space
iInstead of parameters of model

= First application of morphing methods to
nuclei: S. Yang, D. Kohler, K. Teller, T,
Cremer, P. Le Baccon, E. Heard, R.

Eils, and K. Rohr, LNCS 4190, pp. 9075
914, 2006

Carnegie Mellon Gustavo Rohde




LDDMM - Large deformation
diffeomorphic metric mapping:

‘ Miller and colleagues

= Goal: Find a function g(x,t) which
smoothly transforms an image |, into an
image | ,astgoesfromOto T

= Choose g(x,t) to minimize sum of
= [otal deformationingfromOto T
= Distance between | and | (g(x,T))

Carnegie Mellon >3




Mapping two shapes to each

5 other

54

Carnegie Mellon




i Target shape

Starting shape

0 0.0165 0.0191 0.0194 0.0195

1

Distance

Carnegie Mellon 55




Diffeomorphic analysis of cell

‘_shape

Carnegie Mellon 56




‘ Eigenshapes

= Orient objects to align (e.g., major axis)

= Find fixed number of coordinates of
sampled/interpolated points on outline
of object (nucleus, cell)

= Represent variation in these
coordinates using principal components

Carnegie Mellon



Conditional Cell Shape
Description: Distance Ratio

d, +d,
d2

Represent single
shape as vector of
ratios for n angles
and represent
variation using PCA

Carnegie Mellon




‘ Characterizing shape space

= Find deformation fields from each image
to every other image

= Calculate distance between each pair of
images as total deformation required
between them

= Use multidimensional scaling (MDS) to
find variables (principal components)
that compactly represent variation

59

Carnegie Mellon



Carnegie Mellon

o o H
L O
o |
|
m°
.

0 0 10 20 2
Lo 7 o
%o g o Booo

| B°’|m Bg - [

1 1 1 1 1 1 1
-0.01 -0.005 0 0.005 0.01 U.UX 0.02 0.025

First 2
components
from MDS
directly on
perimeter
coordinates

First 2
components
from MDS on
distance matrix
from LDDMM

60



Generative Models for

! Subcellular Location Patterns

Carnegie Mellon



Generative models for

‘ communicating patterns

= How do we communicate results
learned about subcellular patterns?

= Proposal: Use generative models
learned from images to capture pattern
and variation in pattern

Carnegie Mellon



Generative Model
Components C width

>

Nucleus

Medial axis
Cell dl v d2 . Model
membrane d parameters
2

Fitted

Protein

objects Zhao &
Murphy

Carnegie Mellon 2007




Models for protein-containing

‘ objects

s Mixture of Gaussian
objects

= Learn distributions for
number of objects
and object size

= Learn probability
density function for
objects relative to
nucleus and cell

r: normalized distance, a: angle to major axis

Carnegie Mellon




Synthesized Images

Lysosomes Endosomes

= SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao
= navepQrtable tool for generating images from model




Model Distribution

= Generative models provide better way of distributing
what is known about “subcellular location families” (or
other imaging results, such as illustrating change due
to drug addition)

= Have initial XML design for capturing the models for
distribution

= Have portable tool for generating images from the
model

Carnegie Mellon




‘ Generation Process

Protein

Cell Shape
Nuclear Model

\_/_

Carnegie Mellon



Combining Models for Cell
Simulations

Protein 1

Cell Shape
Nuclear Model

Protein 2
Cell Shape

—| Simulation

Nuclear Model

Protein 3

—— Cell Shape
Shared Nuclear Model

Nuclear

and Cell -
Shape -

Carnegie Mellon




Example combination

Red = nuclear membrane, plasma membrane
Blue = Golgi
Green = Lysosomes

Carnegie Mellon Cyan = Endosomes




‘ Some tools

nttp://murphylab.web.cmu.edu/software
= http://www.openmicroscopy.org

= http://www.farsight-toolkit.org

= http://www.cbi-tmhs.org/Dcellig

= http://icluster.imb.uqg.edu.au

= http://www.cellprofiler.org

Carnegie Mellon



i Conclusions

= Computers better than people at recognizing
complex subcellular patterns

= Automated analysis of subcellular patterns in
cells and tissues demonstrated — useful for
potential biomarker discovery

= Generative models can be built directly from
data to summarize results and make
predictions — useful for cell simulations

= Many challenges remain!

Carnegie Mellon
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RAY AND STEPHANIE LANE
Center for Computational Biology

Carnegie Mellon

Our mission:;

To realize the potential of
machine learning for
understanding complex
biological systems

To advance cancer
diagnosis and treatment




LANE FELLOWS IN
COMPUTATIONAL
BIOLOGY

Rec ze and support scientists of outstanding intellect dedicated to a career
at the interface of computational and biological sciences so that they can
pursue postdoctoral research in the rich computational environment at
Carnegie Mellon

Candidates

= must be nominated by their thesis advisor or another faculty member from
their Ph.D. granting institution by October 15, 2009

= must have received their doctoral degree after August 1, 2008 or be
expected to receive their degree by August 1, 2010.

Fellows receive

= Stipend of $56,000 per year for up to three years

= Full fringe benefits including medical, dental, vision, life insurance
= Professional support allocation of $6,000

CarnegieMellon See http://lane.compbio.cmu.edu




Peter Huggins Arvind Rao

Univ California, Univ Michigan (NCIBI) University of Sydney
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