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Human Protein Atlas 

Courtesy www.proteinatlas.org (Uhlén, Pontén et al) 6 



Human Protein Atlas 

Courtesy www.proteinatlas.org (Uhlén, Pontén et al) 7 







Automated Interpretation 
  Traditional analysis of microscope 

images has occurred by visual 
inspection 

  Our group’s goal over the past fourteen 
years has to automating interpretation 
with the ultimate goal of fully automated 
learning of patterns from images 

  Much recent work from other groups 



Major approaches within 
Bioimage Informatics 
  Quantitation approaches 

  Expression and colocalization 
  Tracking of cells and structures 

  Atlas approaches 
  Registration and construction 
  Change over time 
  Changes in mutants 

  Pattern approaches 
  Focus of this introduction 





The Challenge 
  Comparison of cell images pixel-by-

pixel or region-by-region matching 
does not work for cell patterns 
because different cells have different 
shapes, sizes, orientations 

  Organelles/structures within cells are 
not found in fixed locations 

  Instead, describe each image 
numerically and operate on the 
descriptors (“SLF” - Subcellular 
Location Features) 
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classification using 
Morphological Features 

108 

83 

31 

# of objects 

Average size of objects 

Average distance to COF 

6 

232 

4 

Any of these 
features could be 

used to 
distinguish these 

two classes 

ER Nucleoli 



Feature levels and granularity 

Object 
features 

Single 
Object 

Single 
Cell 

Single 
Field 

Cell 
features 

Field 
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Cell Segmentation 



Single cell segmentation 
approaches 

  Voronoi 
  Watershed 
  Seeded Watershed 
  Active Contours and Level Set Methods 
  Graphical Models 
  Active Masks 



Voronoi diagram 

Seed 

Edge 

Vertex 

Given a set of seeds, 
draw vertices and 
edges such that each 
seed is enclosed in a 
single polygon where 
each edge is 
equidistant from the 
seeds on either side. 



Voronoi Segmentation 
Process 
•  Threshold DNA image (downsample?) 
•  Find the objects in the image 
•  Find the centers of the objects 
•  Use as seeds to generate Voronoi 

diagram 
•  Create a mask for each region in the 

Voronoi diagram 
•  Remove regions whose object that does 

not have intensity/size/shape of nucleus 



Original DNA image 



After thresholding and removing small objects 



After triangulation 



After removing edge cells and filtering 



Watershed Segmentation 
  Intensity of an image 

~ elevation in a 
landscape 
  Flood from minima 
  Prevent merging of 

“catchment basins” 
  Watershed borders 

built at contacts 
between basins 



Seeded Watershed 
Segmentation 

  Drawback is that the number of regions may not 
correspond to the number of cells 

  Seeded watershed allows water to rise only from 
predefined sources (seeds) 

  If parallel DNA image available, can use same 
approach to generate these seeds as for Voronoi 
segmentation 

  Can use seeds from DNA image but use total 
protein or membrane protein image for watershed 
segmentation 



Seeded Watershed 
Segmentation 

Original image Seeds and boundary 

Applied directly to protein image (no DNA image) 

Note non-linear boundaries 



Active masks 
  Srinivasa, Fickus, Guo, Linstedt, 

Kovacevic, IEEE Trans. Image Proc. 
2009 

  Marriage of multiple methods 
  Active contours 
  Multiresolution 
  Multiscale 
  Region growing 



AM segmentation 
Smoothing filter 

h 

Smoothing filter 
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Region-based 
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Feature Extraction 



Morphological Features -
Thresholding 

  Morphological features require some method 
for defining objects 

  Most common approach is global 
thresholding 

  Methods exist for automatically choosing a 
global threshold (e.g., Riddler-Calvard 
method) 
  Find threshold that is equidistant from the average 

intensity of pixels below and above it 



Ridler-Calvard Method 
Blue line 

shows 
histogram of 

intensities, 
green lines 

show average 
to left and 

right of red 
line, red line 

shows 
midpoint 

between them 
or the RC 
threshold 

Ridler-Calvard Illustration
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Object finding 
  After choice of threshold, define objects 

as sets of touching pixels that are 
above threshold 



2D Features 
Morphological Features 



2D Features 
DNA Features 

Description 
The average object distance from the COF of the DNA image 
The variance of object distances from the DNA COF 
The ratio of the largest to the smallest object to DNA COF distance 
The distance between the protein COF and the DNA COF 
The ratio of the area occupied by protein to that occupied by DNA 
The fraction of the protein fluorescence that co-localizes with DNA 

DNA features (objects relative to DNA reference) 



2D Features 
Skeleton Features 

Description 
The average length of the morphological skeleton of objects 

The ratio of object skeleton length to the area of the convex hull of the 
skeleton, averaged over all objects 
The fraction of object pixels contained within the skeleton 
The fraction of object fluorescence contained within the skeleton 
The ratio of the number of branch points in the skeleton to the length of 
skeleton 

Skeleton features (object shape) 



Illustration – Skeleton 



2D Features 
Edge Features 

Description 
The fraction of the non-zero pixels that are along an edge 
Measure of edge gradient intensity homogeneity 
Measure of edge direction homogeneity 1 
Measure of edge direction homogeneity 2 
Measure of edge direction difference 

Edge features 



2D Features 
Haralick Texture Features 

  Correlations of adjacent pixels in gray level images 
  Start by calculating gray level co-occurrence matrix P: 
    N by N matrix, N=number of gray level. 

 Element P(i,j) is the probability of a pixel with value i 
being adjacent to a pixel with value j 

  Four directions in which a pixel can be adjacent 
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Co-occurrence 
Matrices 

Example image with 4 gray levels 



Example Gray Level Co-occurrence Matrices for Various Textures 



Pixel Resolution and Gray Levels 

  Texture features are influenced by the 
number of gray levels and pixel 
resolution of the image 

  Optimization for each image dataset 
required 

  Alternatively, features can be calculated 
for many resolutions 



Threshold Adjacency Statistics 

For a 
specified 

range of gray 
level values, 

count how 
many 

neighbors 
each above 

threshold 
pixel has  

N A Hamilton,3 R S Pantelic, K Hanson, and R D Teasdale 
BMC Bioinformatics. 2007; 8: 110 



2D Classification Results  

Overall accuracy = 92% 

True  
Class 

Output of the Classifier 

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub 

DNA 99 1 0 0 0 0 0 0 0 0 
ER 0 97 0 0 0 2 0 0 0 1 
Gia 0 0 91 7 0 0 0 0 2 0 
Gpp 0 0 14 82 0 0 2 0 1 0 
Lam 0 0 1 0 88 1 0 0 10 0 
Mit 0 3 0 0 0 92 0 0 3 3 
Nuc 0 0 0 0 0 0 99 0 1 0 
Act 0 0 0 0 0 0 0 100 0 0 
TfR 0 1 0 0 12 2 0 1 81 2 
Tub 1 2 0 0 0 1 0 0 1 95

Murphy et al 2000; 
Boland & Murphy 2001; 
Huang & Murphy 2004 



Human Classification Results  

Overall accuracy = 83% 

True  
Class 

Output of the Classifier 

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub 

DNA 100 0 0 0 0 0 0 0 0 0 
ER 0 90 0 0 3 6 0 0 0 0 
Gia 0 0 56 36 3 3 0 0 0 0 
Gpp 0 0 54 33 0 0 0 0 3 0 
Lam 0 0 6 0 73 0 0 0 20 0 
Mit 0 3 0 0 0 96 0 0 0 3 
Nuc 0 0 0 0 0 0 100 0 0 0 
Act 0 0 0 0 0 0 0 100 0 0 
TfR 0 13 0 0 3 0 0 0 83 0 
Tub 0 3 0 0 0 0 0 3 0 93 

Murphy et al 2003 



ER 

Tubulin DNA TfR Actin 

Nucleolin Mito LAMP 

gpp130 giantin 

2D �
Images 
of HeLa 
cells 

40

50

60

70

80

90

100

40 50 60 70 80 90 100

Computer Accuracy

H
u

m
a
n

 A
cc

u
ra

cy

Subcellular Pattern 
Classification: 
Computer vs. 
Human 

Murphy et al 2000; 
Boland & Murphy 

2001; Murphy et al 
2003; Huang & 

Murphy 2004 

Even better results using multiresolution methods by Kovacevic group 

Even better results for 3D images 



3D HeLa cell images 
Giantin Nuclear ER Lysosomal gpp130 

Actin Mitoch. Nucleolar Tubulin Endosomal 

Images collected using facilities at the Center for 
Biologic Imaging courtesy of Simon Watkins 

Velliste & Murphy 2002 



3D Classification Results  

Overall accuracy = 98% 

True  
Clas
s 

Output of the Classifier 

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub 

DNA 98 2 0 0 0 0 0 0 0 0 
ER 0 100 0 0 0 0 0 0 0 0 
Gia 0 0 100 0 0 0 0 0 0 0 
Gpp 0 0 0 96 4 0 0 0 0 0 
Lam 0 0 0 4 95 0 0 0 0 2 
Mit 0 0 2 0 0 96 0 2 0 0 
Nuc 0 0 0 0 0 0 100 0 0 0 
Act 0 0 0 0 0 0 0 100 0 0 
TfR 0 0 0 0 2 0 0 0 96 2 
Tub 0 2 0 0 0 0 0 0 0 98

Velliste & Murphy 2002;  
Chen & Murphy 2004 



Results for large collections 

Collection Number of 
classes 

Overall 
accuracy 

Recall for 
high 
precision 

Precision for 
that recall 

Yeast GFP 20 81% 80% 95% 

HPA tissue 8 81% 50% 97% 



Cell, nuclear and organelle 
shape modeling 



Nuclear Shape - Medial Axis Model 

Rotate 

Medial axis Represented by two curves 

the medial axis width along the 
medial axis 

width 



Synthetic Nuclear Shapes 



Diffeomorphic analysis of nuclear 
shape 
  Can use distance between shapes 

to characterize shape space 
instead of parameters of model 

  First application of morphing methods to 
nuclei: S. Yang, D. Köhler, K. Teller, T, 
Cremer, P. Le Baccon, E. Heard, R. 
Eils, and K. Rohr, LNCS 4190, pp. 907–
914, 2006 

52 Gustavo Rohde 



  Goal: Find a function g(x,t) which 
smoothly transforms an image In into an 
image Im as t goes from 0 to T 

  Choose g(x,t) to minimize sum of 
  Total deformation in g from 0 to T 
  Distance between Im and In(g(x,T)) 

53 

LDDMM – Large deformation 
diffeomorphic metric mapping: 
Miller and colleagues 
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Mapping two shapes to each 
other 



 0.0165 0  0.0191 0.0194 0.0195 

Target shape

Starting shape

Distance
55 



Diffeomorphic analysis of cell 
shape 

56 



Eigenshapes 
  Orient objects to align (e.g., major axis) 
  Find fixed number of coordinates of 

sampled/interpolated points on outline 
of object (nucleus, cell) 

  Represent variation in these 
coordinates using principal components 



Conditional Cell Shape 
Description: Distance Ratio 

d1 

d2 2

21

d
ddr +

=

Represent single 
shape as vector of 
ratios for n angles 
and represent 
variation using PCA 



Characterizing shape space 
  Find deformation fields from each image 

to every other image 
  Calculate distance between each pair of 

images as total deformation required 
between them 

  Use multidimensional scaling (MDS) to 
find variables (principal components) 
that compactly represent variation 

59 
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First 2 
components 
from MDS 
directly on 
perimeter 
coordinates 

First 2 
components 
from MDS on 
distance matrix 
from LDDMM 



Generative Models for 
Subcellular Location Patterns 



Generative models for 
communicating patterns 
  How do we communicate results 

learned about subcellular patterns? 
  Proposal: Use generative models 

learned from images to capture pattern 
and variation in pattern 



Generative Model 
Components 

Medial axis 

width 
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Nucleus 

Cell 
membrane 

Protein 
objects 

Model 
parameters 

Zhao & 
Murphy 
2007 



Models for protein-containing 
objects 

  Mixture of Gaussian 
objects 

  Learn distributions for 
number of objects 
and object size 

  Learn probability 
density function for 
objects relative to 
nucleus and cell 

r: normalized distance, a: angle to major axis 



Synthesized Images 

Lysosomes Endosomes 

  Have XML design for capturing model parameters 
  Have portable tool for generating images from model 

SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao 



Model Distribution 
  Generative models provide better way of distributing 

what is known about “subcellular location families” (or 
other imaging results, such as illustrating change due 
to drug addition) 

  Have initial XML design for capturing the models for 
distribution 

  Have portable tool for generating images from the 
model 



Generation Process 

Protein 
Cell Shape 

Nuclear Model 

XML 



Combining Models for Cell 
Simulations 

Protein 1 
Cell Shape 

Nuclear Model 

Protein 2 
Cell Shape 

Nuclear Model 

Protein 3 
Cell Shape 

Nuclear Model 

XML 

Simulation 

Shared 
Nuclear 
and Cell 

Shape 



Example combination 

Red = nuclear membrane, plasma membrane 
Blue = Golgi 
Green = Lysosomes 
Cyan = Endosomes 



Some tools 
  http://murphylab.web.cmu.edu/software 
  http://www.openmicroscopy.org 
  http://www.farsight-toolkit.org 
  http://www.cbi-tmhs.org/Dcelliq 
  http://icluster.imb.uq.edu.au 
  http://www.cellprofiler.org 



Conclusions 
  Computers better than people at recognizing 

complex subcellular patterns 
  Automated analysis of subcellular patterns in 

cells and tissues demonstrated – useful for 
potential biomarker discovery 

  Generative models can be built directly from 
data to summarize results and make 
predictions – useful for cell simulations 

  Many challenges remain! 
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Our mission: 

To realize the potential of 
machine learning for 
understanding complex 
biological systems 

To advance cancer 
diagnosis and treatment 
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