
Automating Biomedical Research 
Through Machine Learning 

Robert F Murphy 
Ray & Stephanie Lane Professor of Computational Biology and 

Professor of Biological Sciences, Biomedical Engineering and Machine Learning 
Affiliated Senior Fellow, Freiburg Institute for Advanced Studies  

Honorary Professor, Faculty of Biology, University of Freiburg, Germany 



Why Comp Bio? 
Personal Genomics Revolution 

 

http://www.eyeondna.com/2007/05/22/personal-genome-
company-23andme-receives-google-investment 

http://www.bizjournals.com/boston/blog/mass-high-tech/2012/01/
ion-torrent-claims-to-be-first-with-1k-genome.html 



Why Comp Bio? 
Cancer Diagnosis and Treatment 

http://www.genomeweb.com/arrays/agendia-gets-fda-
clearance-mammaprint-agilent-systems 



Why Comp Bio? 
Develop better drugs 
 

http://www.projectsmagazine.eu.com/opinion/ahead_in_the_cloud_computational_drug_discovery_reaches_for_the_next_level 



Why Comp Bio? 
Solve the energy crisis with microorganisms 



Get a great job: 
 

Why Comp Bio? 

http://www.greatnewsnetwork.org/index.php/news/article/
future_forecast_10_hot_job_markets_in_2012/ 

http://education-portal.com/articles/
Jobs_in_Computational_Biology_Career_Options_and_Requirements.html 



Examples of Computational 
Biology Problems 

•  Drug Development 
•  Cell Modeling 



Observation, Modeling and 
Computation 

•  Traditional Approach (Scientific Method): 
Make observations, construct model/
theory, make new predictions, test them 
– Good news 

•  Computers can help build models 

– Bad news 
•  Difficult/impossible to prove biological theories 

directly 
•  Lots of possible theories and predictions to test! 



Problem – Cell/Developmental 
Biology 

•  Tens of thousands of molecules within cells 
can change on time scales from below 
seconds to months during differentiation or 
disease processes 

•  Can undergo changes in expression, 
interaction, localization 

•  Too many combinations to measure all… 



Problem – Drug Development 
•  Drugs fail late in development because of 

unanticipated side effects – only real 
solution is to choose drugs with desired 
effect on target and no undesired effect 

•  This requires determining the effects of 
millions of potential drugs on tens of 
thousands of potential targets 

•  Exhaustive experimentation too costly… 



Solution? 

•  Represent problems as a matrix of 
possible experiments 

•  Build model to predict full matrix from 
whatever data we have 

•  Use active learning to choose new 
experiments and iteratively improve the 
model 

 



Nega%ve	   Posi%ve	   Measured	   Unmeasured	  

Traditional drug development 

Establish	  Assay	  for	  a	  Target	  

A controlled experiment that 
measures the effect of a 
compound on a target’s activity 

Typically, a protein whose 
activity is believed to 
cause a disease 



Screen	  ∼107	  Compounds	  

Nega%ve	   Posi%ve	  

Traditional drug development 

Compounds 

Chemicals that are potential drugs or 
might be modified to become drugs 



Two problems: 
(1) We don’t know effects on other targets 
 

Nega%ve	   Posi%ve	   Intermediate	  

Compounds 

Targets 



Two problems: 
(1) We don’t know effects on other targets 
 
Comprehensive screening for one target 
does not reveal side effects 

Nega%ve	   Posi%ve	   Intermediate	  

Compounds/perturbagens 

Targets/phenotypes 



Two problems: 
(1) We don’t know effects on other targets 
(2) We have learned nothing for the next 
target 

Nega%ve	   Posi%ve	   Intermediate	  

Compounds/perturbagens 

Targets/phenotypes 



but we cannot afford 
to exhaustively 
perform every 

experiment 

Nega%ve	   Posi%ve	   Intermediate	  

Much better if we could 
learn the entire matrix… 

Compounds/perturbagens 

Targets/phenotypes 
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Solution: just do some 
experiments… 

Nega%ve	   Posi%ve	   Intermediate	  

Compounds/perturbagens 

Targets/phenotypes 



X

X

X

X

X

Solution: just do some 
experiments… and 
predict the rest 

Nega%ve	   Posi%ve	   Intermediate	  

Compounds/perturbagens 

Targets/phenotypes 



Active Learning Pipeline 

Model 
Generation 

Experiment 
Selection 

Experiment 
Execution 

•  Efficiently learn accurate predictive model 

 
 

 

Pick 
experiments 
most likely 
to improve 
model 
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Active Learning Assessment 

Model 
Improvement 
using Active 
Learning with 
constrained 
budget 
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Savings from 
using active 
learning rather 
than some other 
method 

Active Learning Assessment 
 Active Learning 

Random 
A

cc
ur

ac
y 

or
 H

its
 (%

) 

Experimental Space Explored (%) 



Test with PubChem Data 
•  Assays: 177 

–  108 in vitro 
–  69 in vivo 
–  Sign of score modified to reflect type of assay 

(inhibition or activation) 
•  Unique Protein Targets: 133 
•  Compounds: 20,000 
•  Experiments: ~1,000,000 (30% coverage) 
•  Compare discovery rate across different 

methods 
–  Discovery: a drug-protein pair whose |rank score| > 80 

27 



Active Learning 
Optimized µ-QSAR 
Randomized Search 



Active Learning 
Optimized µ-QSAR 
Randomized Search 

With only 2.5% of the matrix covered,  
we can identify 57% of the active compounds! 



BUILDING CELL MODELS 
FROM IMAGES 



Cell Organization 
•  How do we learn and represent 

–  the sizes and shapes of different cell types 
–  the number, sizes, shapes, positions of 

subcellular structures 
–  the distribution of  

proteins across those 
structures? 

– how these change 
in the presence of 
perturbagens? 



Fluorescence microscopy 

•  Primary method used to 
determine the subcellular 
location of a protein is to 
“tag” it with a fluorescent 
probe 



Subcellular Location 



Subcellular Location 



Subcellular Location 



Subcellular Location 



Subcellular Location 



Subcellular Location 



Can recognition of subcellular 
location be automated? 

•  Problem is hard because different cells have 
different shapes, sizes, orientations 

•  Organelles not found in fixed locations 

39 



Supervised Machine Learning 
Approach 

•  Design features to describe subcellular 
patterns 

•  Use examples of images of different 
subcellular patterns to train classifier 
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Boland et al 1997; 
Murphy et al 2000; 
Boland & Murphy 
2001; Murphy et al 
2003; Huang & 
Murphy 2004 



ER 

Tubulin DNA TfR Actin 

Nucleolin Mito LAMP 

gpp130 giantin 

2D ���
Images 
of HeLa 
cells 

Subcellular Pattern 
Classification: 
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Nanni et al 2010 
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However… 

•  Assigning words not sufficient 
– Knowing that apples and oranges can be 

distinguished by their color does not allow 
you to understand how either are formed 



Solution: Generative Modeling 
•  Human cognition •  Generative model 

Learn 

examples 

Mental 
model 

Generated examples 

Training 
images 

Statistical 
generative 
model 

Generated 
image  

MODEL 

Write 



http://CellOrganizer.org 



Nuclear 
shape Cell shape 

Object pos. 
probability 

Object 
number 

Object 
appearance 

Microtubule 
distribution 

Object 
positions 

Object 
distribution 

CellOrganizer 

Training Synthesis 

Cell  
Images 

Synthetic 
Images 

Statistical Model 

Zhao & Murphy, Cytometry 2007 



What does CellOrganizer Do? 
•  Given a population of cells we can model 

– Distribution of nuclear and cell shapes 
– Distribution of vesicular patterns 

•  Number, shape, intensity, location of objects 
– Distribution of microtubules 

•  Number, stiffness, location of centrosome 

– Relationships between these models 
•  Given models we can 

– Synthesize new images 
– Model populations that change over time/condition 









Conclusions 

•  Active learning provides solution to 
infeasibility of performing all possible 
perturbation and differentiation 
experiments 

•  Tools beginning to be available to build 
image-derived generative models 
– Learn the underlying cell “model” from 

which individual cell images are drawn 



Active Learning 

            Josh Kangas   Armaghan Naik   
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