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Why Comp Bio?
Personal Genomics Revolution

Personal Genome Company 23andMe Receives Google

Investment I T lai b fi
by Dr. Hsien-Hsien Lei on Torrent claims to be first
Posted May 22, 2007 in DNA Products, DNA in General Wlth $1K genome Sequencer
Email this » Stumble It! - Digg This! (10 Diggs, 1 comment) « Discuss on Lori valigra
Newsvine _
Ion Torrent Systems Inc. of Guilford, Conn.,
showed off its new DNA sequencing Jonathan Rothberg, founder, Ion
Other matches for N : : : Torrent Systems
. I - machine and chip that it claims can map a Y
vk . GOOg]e has mvest.ed $3'9 million in ’ human genome in 24 hours for a cost of $1,000 at the J.P. Morgan
: }_5 i! ‘Aig o 23andMe along with Genentech and two More Search Resuits Healthcare Conference in San Francisco Tuesday, according a news release
3 ] A1) . . i i
/ ‘,'; ‘: ‘3 (}‘ f} 2“ venture capltal ﬂrms, New Enterprlse from parent company Life Technologies Corp.
H . % : : o ‘t‘ ) ‘) Associates and Mohr Davido Ventures. The same day, Illumina Inc. of San Diego also announced a 24-day sequencer, but at a much
R b owa h higher initial machine price tag of $740,000. The price to sequence a genome was not disclosed.
43 WAt b Y 23andMe is a personal genome company
Jj-i i ! f!) .:!‘ P ;'\ ﬁ that wants to he|p consumers get intune Ion Torrent last summer wrote in a Nature paper that it had developed a DNA sequencing technique
- d - < ‘ " - i X to target the $1,000 genome industry goal. At the time the paper was published, Ion Torrent
P e s s with their genes. Check out the blurb onthe  cgg and founder Jonathan Rothberg, told Mass High Tech, “Sequencing on an ion semiconductor chip
iE ;é jf'z 78 .} }: newly revamped front page: makes the $1,000 genome both inevitable and predictable. Extrapolating from our current progress
s u “ ’ - L] we will break the $1,000 genome barrier in 2013.” The company appears to be ahead of schedule.
v @ P ot Even though your body contains
http://www.eyeondna.com/2007/05/22/personal-genome- http://www.bizjournals.com/boston/blog/mass-high-tech/2012/01/
company-23andme-receives-google-investment ion-torrent-claims-to-be-first-with-1k-genome.html
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Cancer Diagnosis and Treatment

Agendia Gets FDA Clearance for MammaPrint on Agilent

Systems
February 23, 2011
I Like ¥ Tweet /4 +1 |/ 0 Share | 0
aA Type size: %+ = © o U RSS-Feeds About us Advisory Board Sponsorship and Donatic

By a GenomeWeb staff reporter T (Q) Inscjences

- org janisation
NEW YORK (GenomeWeb News) — Agendia has received 5:;}2:’"9“‘“3’
another clearance for the firm's MammaPrint breast cancer
recurrence assay. Rospesd Home  Science News Events Groups Jobs Videos Forum
The new clearance is for running the test on two additional Agilent microarray scanners

—
and two Agilent Bioanalyzers. Agendia said the additional clearance will expand = S | &l More
laboratory capacity to handle the increasing number of MammaPrint, TargetPrint, and Cotenrios: © ol . ) - .
ategories: Cancer Stem Cells Computational Biology Computer Simulations Oncology

BluePrint test results.

Previously, the MammaPrint test was only allowed to be performed at Agendia's lab in
Irvine, Calif. The new clearance enables the test to be run in a central laboratory and
allows Agendia to also perform the test at its lab in Amsterdam, where the firm is basec

MammaPrint was the first in vitro diagnostic multivariate index assay device approved
by the FDA in early 2007.

http://www.genomeweb.com/arrays/agendia-gets-fda-
clearance-mammaprint-agilent-systems

Computer Simulations Reveal How Tumour Growth is Controlled

Computational scientists and oncologists working for the University of
Amsterdam (UvA) have discovered that cancer stem cells control how
tumours grow. The researchers also determined the underlying
mechanism. The study, which used computer simulations and laboratory

experiments, may help improve the treatment of cancer patients. The
results were published earlier this month in Cancer Research, a leading journal published by the American
Association for Cancer Research.

Professor of Computational Science Peter Sloot, of the Faculty of Science, and Louis Vermeulen, a PhD student
in the field of Experimental Oncology at the UvA's Academic Medical Centre, headed up a multidisciplinary
group of researchers. The discovery that cancer stem cells control invasive growth and the identification of the
underlying mechanism are particularly significant because that growth is one of the first stages in the
manifestation of local metastases.
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Develop better drugs

Subscribe  Enews Aler

P Science, Technology and Innovation f

m MAGAZINES | R&D PROJECTS | FEATURES m NEWS | EVENTS | WORLD CITIES SU

Ahead in the cloud - computational drug discovery reaches

Agriculture/Food & for the next level
Biology/Medicine 3
Cloud computing offers the promise of a flexible
Energy B ) )
computing platform for drug discovery
Environment/Climate B researchers, enabling access to technologies
previously unavailable, unaffordable or at a scale
IcT & previously unobtainable.
Industry/Technology B
Cloud computing — the general term used for
Society/Economy B delivering computational services over the internet —
Transport/Construction (3 resembles in some respects the longer established
grid computing paradigm. Grid computing divides a
task into many smaller tasks which are distributed
Ewikker among a large number of, usually, low power
computers (for a life sciences example see the
ProjectsZine: New plant extracts could Screensaver Lifesaver project). However, setting up a
haln in tha finht anainct #nhacitue arid eomniitinn infractriicture renniiree cinnificant

http://www.projectsmagazine.eu.com/opinion/ahead_in_the_cloud_computational_drug_discovery_reaches_for_the_next_level
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Solve the energy crisis with microorganisms

WSJ BLOGS

Environmental Capital

Daily analysis of the business of the environment by The Wall Street Journal.

JULY 14, 2009, 11:14 AMET

Biofuels Bonanza: Exxon, Venter to Team up
on Algae

Article Comments (15)
B4| Email & | Print ELke &) Send |:| + More - | Text |+

By Keith Johnson

Exxon's $600 million deal with Synthetic Genomics to brew fuel from algae could mark a
coming of age for alternative fuels.

"4 As human genome mapper Craig Venter, now the
5 chief executive of SGI said, turning algae into

4 biofuel simply won't happen without Big Oil's deep

| pockets. He said it was the biggest program he

% knows of worldwide to produce biofuels.

& At the same time, both Exxon and SGI were at
pains to stress that the “collaborative research
project” is in its early phases. “There's no

‘ T < A )
Nstional Institute of Environmental Studies guarantee of success,” said Exxon's

Put some of this pond scum in your tank. vice-president for R&D, Emil Jacobs. “We're giving

a new reality to the timelines™ of algae biofuel
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Get a great job:

Future Forecast: 10 Hot Job Markets in 2012

In our information-rich society there is an
B cver increasing demand for workers in the
fields of computers, health care, science
and space technology—much of it driven by
the demands of the retiring baby boomers.
If you like to plan ahead, here is sampling
of some of the jobs that will be hot in the
next several years and beyond.

By 2010, organic food and beverage will represent about 10 percent of the total market — a tenfold
increase from 1998. Bob Scowcroft, executive director of the Organic Farming Research Foundation
says the industry will soon need more organic food producers, certification experts, retailers and
scientists as organic becomes mainstream.

Qualifications: Organic food expertise in farming, business or science.
Salary range: $50,000 to $80,000
2) Computational Biology

There is a growing need to combine computer science, biology and math to make sense of research
data in massive quantities, says Leroy Hood, co-founder of the Institute for Systems Biology. This
field may eventually allow physicians to test for a patient’s unique genetic markers and tailor the
best treatments and medicine for that patient.

Qualifications: A bachelor’s dearee or higher in bioinformatics, computer science, mathematics,

Jobs in Computational Biology: Career Options and
Requirements

The study of biology using computer software and mathematics is called computational biology. Jobs in the field
typically require a high level of integrated education in biology, mathematics and computer science. A variety of
organizations employ people in this application-oriented field.

Career Options

This multidisciplinary specialty has a number of practical and
research applications. Computational biologists analyze large
volumes of information and devise computer modeling simulations for academic research and health

fa=> SHOW ME SCHOOLS

applications for businesses such as biotechnology and pharmaceutical companies, as well as for government
health and research institutions.

Career Options in Academia

Computational biologists in academia can work with other theoretical and applied researchers to devise
models, simulations and predictions for molecular biological systems and interactions. They can also analyze
large quantities of data related to genetics and genomics. Academic researchers typically teach courses in
their field and supervise student research projects in addition to conducting their own research.

Academic Career Requirements

Careers in academia commonly require a graduate degree in computational biology. To obtain a faculty
position at a university, a Ph.D. is recommended, though a master's degree is typically sufficient to teach ata
2-year college. In addition, working in a postdoctoral position for several years after graduation is usually
necessary before a permanent faculty or research position can be obtained.

Career Options in Commercial Industries

Pharmaceutical companies, scientific software companies and biotechnology companies all employ
computational biologists in research and development. Modeling drug interactions, developing analytical
software for use by biologists and analyzing large data sets for biotech companies that provide genetic

http://www.greatnewsnetwork.org/index.php/news/article/ http://education-portal.com/articles/
future_forecast 10_hot_job_markets_in_2012/ Jobs_in_Computational_Biology Career_Options_and_Requirements.html
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Examples of Computational
Biology Problems

* Drug Development
* Cell Modeling
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Observation, Modeling and

Computation

 Traditional Approach (Scientific Met
Make observations, construct mode
theory, make new predictions, test t

— Good news
« Computers can help build models

— Bad news

nod):
/

Nem

« Difficult/impossible to prove biological theories

directly

 Lots of possible theories and predictions to test!
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Problem — Cell/Developmental
Biology

* Tens of thousands of molecules within cells
can change on time scales from below
seconds to months during differentiation or
disease processes

« Can undergo changes in expression,
interaction, localization

 Too many combinations to measure all...



Problem — Drug Development

* Drugs fail late in development because of
unanticipated side effects — only real
solution is to choose drugs with desired
effect on target and no undesired effect

* This requires determining the effects of
millions of potential drugs on tens of
thousands of potential targets

* Exhaustive experimentation too costly...



Solution?

* Represent problems as a matrix of
possible experiments

* Build model to predict full matrix from
whatever data we have

» Use active learning to choose new
experiments and iteratively improve the
model



Traditional drug development

A controlled experiment that
measures the effect of a
compound on a target’s activity

' O Establish Assay for a Target

Typically, a protein whose
activity is believed to
cause a disease

O Negative ' Positive O Measured Unmeasured



Traditional drug development
2 Chemicals that are potential drugs or

might be modified to become drugs
Compounds —

O O ' O O O O ' O Screen ~107 Compounds

O Negative ' Positive



Compounds —

Two problems:
(1) We don’t know effects on other targets

sjeblie|

O—000000—@0

ﬂ



Compounds/perturbagens ——)

Two problems:
(1) We don’t know effects on other targets

Comprehensive screening for one target
% does not reveal side effects
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Compounds/perturbagens ——)

Two problems:

(1) We don’t know effects on other targets
(2) We have learned nothing for the next
target
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Compounds/perturbagens ——)
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O Negative ' Positive

@ O Much better if we could
' Q learn the entire matrix...

@O
but we cannot afford
@O

to exhaustively
@O perform every

@O experiment
@O
@O

@O

O Intermediate



Compounds/perturbagens ——)
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Solution: just do some
experiments...



Compounds/perturbagens ——)
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Solution: just do some
experiments... and
predict the rest
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Active Learning Pipeline

 Efficiently learn accurate predictive model

Model
Generation

/ \

Experiment Experiment
Execution Selection

&-—’
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Active Learning Assessment
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Active Learning Assessment
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Active Learning Assessment
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Test with PubChem Data

* Assays: 177
— 108 in vitro
— 69 in vivo

— Sign of score modified to reflect type of assay
(inhibition or activation)

* Unique Protein Targets: 133
« Compounds: 20,000
« Experiments: ~1,000,000 (30% coverage)

« Compare discovery rate across different
methods
— Discovery: a drug-protein pair whose [rank score| > 80

27
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BUILDING CELL MODELS
FROM IMAGES



Cell Organization

 How do we learn and represent
— the sizes and shapes of different cell types

— the number, sizes, shapes, positions of
subcellular structures

— the distribution of
proteins across those
structures?

— how these change
In the presence of
perturbagens?




I
Fluorescence microscopy

* Primary method used to
determine the subcellular
location of a protein is to
“‘tag” it with a fluorescent
probe
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Subcellular Location
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Can recognition of subcellular

location be automated?

 Problem is hard because different cells have
different shapes, sizes, orientations

* Organelles not found in fixed locations




Supervised Machine Learning
Approach

* Design features to describe subcellular
patterns

« Use examples of images of different
subcellular patterns to train classifier
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However...

» Assigning words not sufficient

— Knowing that apples and oranges can be
distinguished by their color does not allow
you to understand how either are formed
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Solution: Generative Modeling

« Human cognition + Generative model

Training
images

Statistical
generative
model

Generated
image

Generated examples



http://CellOrganizer.org

CellOrganizer

Carnegie

RAY AND STEPHANIE LANE -

Mellon

Center for Computational Biology University Genter for Bioimagﬂ Igfnlrma‘t’lr::

Images « Models

Home

e ions  May 17, 2013: Version 1.9.0 released!

Downloads  New: Now allows synthesis of cell and nuclear shape instances for Hela cells using a diffeomorphic model.

Synthesized Cell Images
(click to view)

The CellOr ganizer project provides tools for
« |learning generative models of cell organization directly from images
o storing and retrieving those models in XML files
« synthesizing cell images (or other representations) from one or more models

Model learning captures variation among cells in a collection of images. Images used for model learning and instances synthesized from models can be

two- or three-dimensional static images or movies. 2D Hela
(endosomes)
. 3D Hela
CellOr ganizZer can learn models of microtubules

el
« cell shape (mitochondria)
e nuclear shape
o chromatin texture g
« vesicular organelle size, shape and position
« microtubule distribution. 3D HelLa movie

", . . . e . 3D protoplast
These models can be conditional upon each other. For example, for a given synthesized cell instance, organelle position is dependent upon the cell and (chioroplasts)

nuclear shape of that instance.

Cell types for which generative models for at least some organelles have been built include human HelLa cells, mouse NIH 3T3 cells, and Arabidopsis
protoplasts. Planned projects include mouse T lymphocytes and rat PC12 cells.

Support for CellOr ganizer has been provided by grants GM075205 and GM090033 from the National Institute of General Medical Sciences, grants MCB1121919 and MCB1121793
from the U.S. National Science Foundation, by a Forschungspreis from the Alexander von Humboldt Foundation, and by the School of Life Sciences of the Freiburg Institute for Advanced
Studies.
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A % UNIVERSITAT FREIBURG FOR ADVANCED STUDIES

Alexander von Humboldt
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What does CellOrganizer Do?

» Given a population of cells we can model
— Distribution of nuclear and cell shapes

— Distribution of vesicular patterns
 Number, shape, intensity, location of objects

— Distribution of microtubules
 Number, stiffness, location of centrosome

— Relationships between these models

« Given models we can
— Synthesize new images
— Model populations that change over time/condition
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Conclusions

* Active learning provides solution to
infeasibility of performing all possible
perturbation and differentiation
experiments

* Tools beginning to be available to build
Image-derived generative models

— Learn the underlying cell “model” from
which individual cell images are drawn



Active Learning

Chris Langmead
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