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What we do 

•  Frame biomedical problems as 
computational problems, especially on 
“omic” scale  
– What approaches ‘scale up’? 

•  Use and develop appropriate 
computational methods 

•  Apply to real-world problems, especially 
cancer 



What we do 

•  Seek to minimize input in the form of 
“biological knowledge” – as much as 
possible tie everything to primary data 

•  Emphasize role for computational 
biology in questioning assumptions and 
frameworks for representation 

•  Seek to drive biomedical research 
through computation 



What we don’t 

•  Medical Informatics 
– Patient Records 

•  Entry, Storage, Retrieval, Privacy 

•  Biological Computation 



Faculty 

•  Core of Lane Center faculty with strong 
research programs related to 
computational biology  

•  Many affiliated faculty 



Particular Research Strengths 
•  Interaction network inference 

– Bar-Joseph, Xing, Kim, Kingsford, Lopez, 
Hinman, McManus, Roeder, Schwartz, Wu 

•  Bioimage informatics 
– Murphy, Rohde, Kovacevic, Yang 

•  Multiscale modeling 
– Schwartz, Langmead, Murphy 

•  Active learning 
– Carbonell, Murphy, Schneider 
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Intermediate Phenotype 

 
Genetic Basis of Complex Diseases 

Healthy 
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Clinical records 

Gene expression 
Association to intermediate 
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Yeast Genome Structure

Duan et al., 2010 

Experimental “3C” graph


Relating Genome 3D Structure to Its Function 
The eukaryotic genomes are huge collections of molecules packed 
into a small space. 

Q: Can we model the spatial structure from pairwise proximities measured from 
a population of cells? 

e.g. Duggal et al., WABI 2013, and Duggal et al., Alg. Mol. Biol. 2012  

“3C” experiments produce a graph where nodes are genome locations and 
edges give weights related to the # of times the locations were spatially close. 

Q: Can we develop efficient statistical tests to determine if a set of genomic 
positions are significantly close or not? e.g. Wang et al., BCB 2013 

Carl Kingsford 



Fast Genomic Sequence Analysis 

Huge amount of genomic sequence data available now (a single 
public database has > 1,587 terrabases of sequence) 

Q: How do you efficiently search for complex structures (e.g. spliced sequences, 
patterns of TF binding sites) when traditional sequence alignment is too slow? 

Q: How can you transmit large collections of sequences (between collaborators, 
from the sequencer, to the cloud)? 

Q: How can you compress sequence data so that you can still analyze it in its 
compressed form (“functional compression”)? 

Our tool, called Sailfish, can estimate gene 
expression from next-generation sequencing 
data 20 – 70 times faster than existing 
algorithms. 

Speed will be crucial for personal 
genomics.


Patro et al., arXiv:1308.3700 

Carl Kingsford 
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ACTIVE LEARNING FOR DRUG 
DISCOVERY 

Murphy, Schneider, Langmead 



Assumption/Framework 

•  Exhaustive experimentation will permit 
understanding of biological systems 
– We can always do whatever experiments/

measurements needed 
– Drug development can be done by 

focusing initially on specific target and then 
checking toxicity of chosen drugs 



Problem 

•  Drugs fail late in development because 
of unanticipated side effects 

•  Only real solution is to choose drugs 
with desired effect on target and no 
undesired effect 

•  This requires determining the effects of 
millions of potential drugs on tens of 
thousands of potential targets 



Solution 

•  Build model to predict full matrix from 
whatever data we have 

•  Use active learning to choose new 
experiments 

•  This and other relevant topics covered 
in Course 02-750 Automation of 
Biological Research 



Active Learning 
Optimized µ-QSAR 
Randomized Search 



Paradigm shift 

•  Exhaustive experimentation will permit 
understanding of biological systems 

•  Paradigm shift: Computer control over 
experiment choice – active learning 

•  New company, Quantitative Medicine, 
commercializing this technology 



IMAGE-DERIVED GENERATIVE 
MODELS OF SUBCELLULAR 
ORGANIZATION 

Murphy, Rohde 



Assumption/Framework 

•  Words are a good way of representing 
information about the spatial 
organization of cells and the subcellular 
localization of proteins 



How do we learn and 
represent 

•  the number, sizes, shapes, positions of 
subcellular structures 

•  the distribution of proteins across those 
structures 

•  how structures and distributions change  
between cell types, in 
presence of perturbagens, 
or over time? 



Subcellular Location Analysis 
Fluorescence Microscopy “Where” (in which 

type of organelle) is 
the protein of interest 
located? 
  Lysosome? 
  Mitochondria? 
  Golgi? 
  …… 



Descriptive vs. Generative Models 

•  If the task is to test which of two (or more) 
possibilities is true, can use descriptive 
features 
–  Is this an apple or orange? can be answered 

by measuring color or texture 
•  But if the task is to understand as much 

as possible, a generative model is better 
– What does an apple look like? requires a 

generative model 



Alternative: Generative Modeling 
•  Human cognition •  Generative model 

Learn 

examples 

Mental 
model 

Generated examples 

Training 
images 

Statistical 
generative 
model 

Generated 
image  

MODEL 

Write 
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Zhao & Murphy, Cytometry 2007 



 
Synthetic movie of cell/nuclear shape 

dynamics 

3D HeLa 



Synthetic movie of cell and 
nuclear shape changes during 

neuronal differentiation 



Big Future Issues 

•  Learning multiscale dynamics 
•  Learning deeper conditional structure 

(pattern causality) 
– Organelles on cell framework 
– Organelles on organelles 
– Proteins on organelles 
– Proteins on proteins 
– All of above on perturbagens 



Pattern Causality 

•  Need variations on existing methods 
(such as Granger Causality, Convergent 
cross mapping) appropriate for images/
spatial distributions 



Paradigm shift 

•  Words are a good way of representing 
information about the spatial 
organization of cells and the subcellular 
localization of proteins 

•  Paradigm change: Generative statistical 
models 



Summary 

•  Computational biology research 
requires investigators with deep 
knowledge of biology, computer 
science, math, statistics to develop 
rigorous approaches and reformulate 
paradigms for biomedical research 



Summary 

•  Opportunities for computer scientists to  
– help solve framed computational biology 

problems 
– help formalize solutions, e.g. 

•  prove convergence 
•  establish bounds 


