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My goals

 Describe the future of self-
driving instruments: how
artificial intelligence/machine
learning can do science without s
human intervention

+ Review the background that ,
makes Self-drIVIng InStrumentS www.aarp.org/auto/trends-lifestyle/info-2018/self-driving-cars.html
necessary

 Describe past results
demonstrating feasibility
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The failure of Reductionism

- For many decades, e - b
biomedical research was SR "'#'/’"“"
. e . LSM6 e __HSH49
based on reductionism, the Lsw7 e 2
assumption that biological < g
LSMI RSP28B
components could be 7 G i
understood in isolation TN
) . LSM5 I SM: YLR269C
+ By the 80's it was becoming
clear that many, many A comprehensive analysis of
components interacted protein—protein interactions
- Cells, Organs, Organisms in Saccharomyces cerevisiae
are "CompIeX SyStemS" — Peter Uetz* 1, Loic Glot £, Gerard Cagney, Traci A. Mansfield:;, Richard S. Judson:, James R. Knight:, Daniel Lockshon’,
" . Vaibhav Narayani, Maithreyan Srinivasani, Pascale Pocharti, Alia Qureshi-Emili§, Ying Li:, Brian Godwin:, Diana Conovery§,
the Wh0|e IS greater than Theodore Kalbfleisch, Govindan Vijayadamodar?, Meijia Yang:, Mark Johnston{l, Stanley Fields s & Jonathan M. Rothberg:

the sum of the parts”
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Complexity = combinatorics

- Assuming n genes, one gene=one function and
reductionism, the number of experiments needed equals
the number of genes, about 10,000

— at (optimistically) one experiment per day, 28 years

- Given m average genes per function and n genes, the
number of experiments is n™~ 104m~ 1020

— at 10° experiments per day, 2 million centuries!
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The rise of systems biology

logical

* Instead of doing all s nsight
experiments build p— t
predictive models from a
smaller number of
experiments

- Emphasis on “validating”
models by testing
specific predictions

* But empirical models
cannot be proven!

othesis
eration

odel
struction

© University of Birmingham and Birmingham Metabolomics Training Centre
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Solution?

+ Use active machine learning

+ Choose experiments not to prove model but
to improve model - NATURE CHEMICAL BIOLOGY | VOL 7 | JUNE 2011 —

commentary

An active role for machine
learning in drug development

Robert F Murphy

Because of the complexity of biological systems, cutting-edge machine-learning methods will be critical
for future drug development. In particular, machine-vision methods to extract detailed information from
imaging assays and active-learning methods to guide experimentation will be required to overcome the
dimensionality problem in drug development.
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Typical drug development: consider each target separately

<€ Drugs =
T O— 00000 ® — @O protein1

€——— Targets

@000 Phenotypes
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But it is not just about finding hits...

Post-Marketing
Surveillance

Clinical Trials

5,.000-10.000

COMPOUNDS

ONE FDA-
APPROVED
DRUG

PHASE 1 ' PHASE 2

PRE-DISCOVERY

NUMBER OF VOLUNTEERS
20-100 100=500
6-7 YEARS

INDEFINITE

P IND SUBMITTED
D NDA SUBMITTED

Source: PhRMA'
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Where we'd like to be: measure all drugs for all targets

€——— Targets =——>
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But again, too many combinations

- Approximately 10,000 targets
- Approximately 1,000,000 potential drugs
- How would active learning help?



Goal: build a predictive model for all drugs and targets

Drugs =

OO ® O

|
e
O
|
°

Dempster et al (1977)

O Hill et al. (1995);

Lee & Seung (1999);

Buchanan & Fitzgibbon (2005);
Salakhutdinov & Mnih (2008);
Mitra (2010);

Gonen (2012); ...
_0]0]e; Phenotypes O Unobserved e
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Playing Battleship with Drugs and Cells

*ﬁ
e ~/
LN S

Source: Wikipedia
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Testing retrospectively (with existing data)

PubChem

BioAssay (2] Q Compound 2)
{5 | % | (G

Substance [2) |

Limits
Go Advanced

 Large database on effects of drugs on targets
- Very expensive to generate
- Would active learning have been able to save time and money?



Testing retrospectively (with existing data)

 "Hide"” the PubChem data (like in Battleship) and only reveal
the results when asked

— as if we were doing that experiment for the first time

- Use different methods to choose what experiments to do



Cc3

600

-

With only 2.5% of the 500
matrix covered, we can
identify 57% of the active L2
compounds! 2
£ 300
\_ g
Kangas, Naik, Murphy, BMC Bioinformatics 2014 5 oo
100
0
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Now try this prospectively for an even

harder problem

Use liquid handling robots and automated
microscope to execute experiments chosen
by an active learner

—— =\l




Cc3

of 96 drugs upon 96
GFP-tagged proteins,
without doing
experiments for all
drugs and proteins,

effects drugs might
\_have are unknown

fTry to learn the effects |

and where the kinds of

)
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Cc3

Computational
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Department
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Each small box is one
drug and one target

Green shows accurate
prediction, purple is
inaccurate, white shows
experiments done

| T T T T I I I ]
0 1152 2304 3456 4608 5760 6912 8064 9216
Experiments Performed
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10 1 1 |l T T

4 N
After doing 28% of possible .
experiments, model is 92%
accurate and 40% more )
accurate than would have | '
been obtained by random
choice of experiments 1

\ J Active Learning

Coverage based Model Fit

Accuracy

Naik, Kangas, Sullivan, Murphy, eLife 2016 021 Random
0.0 1 1 | | 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Experiment Space Coverage
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Automated science

* These results provide strong support for the idea of doing
“Automated Science” in which not only the execution of
experiments is done robotically but the choice of
experiments is done robotically

- “Self-driving instruments!”
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Automated science

- Additional precedent in the work of Ross King and
colleagues

Functional genomic hypothesls """""
generation and experimentation
by a robot scientist

Ross D. King', Kenneth E. Whelan', Ffion M. Jones', Philip G. K. Reiser’,

Christopher H. Bryant’, Stephen H. Muggleton’, Douglas B. Kell*
& Stephen G. Oliver’

' Department of Computer Science, University of Wales, Aberystwyth SY23 3DB,

UK e
2School of Computing, The Robert Gordon University, Aberdeen AB10 1FR, UK
*Department of Computing, Imperial College, London SW7 2AZ, UK
*Department of Chemistry, UMIST, P.O. Box 88, Manchester M60 1QD, UK
*School of Biological Sciences, University of Manchester, 2.205 Stopford Building,
Manchester M13 9PT, UK




- Embracing complexity in high dimensional models
combined with active machine learning to guide
experimentation in many areas of biomedical research

* Just like for self-driving cars, human role will be
deciding where to go, not how to get there

- Training needed for the Automated Science workforce
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@ Findus B3 msas-help@cbd.cmu.edu

MSAS

(jurnegivallonUni\.'o-rsil'\ Home  About v  People v  Curriculum  Admissions
“ M.S. in Automated Science

Carnegie Mellon University’'s New Automated Science Program

ct9, 2018 Recents New

Carnegie Mellon is pleased to announce the launch of a new graduate program: The Masters of
Science in Automated Science (MSAS). MSAS graduates will be the leaders in the emerging
paradigm of Automated Science - the combination of robotic scientific

instruments, Machine Learning, and Artificial Intelligence for iteratively interpreting data

and selecting experiments. S ResearChers for AI_

myScience

1S in biological experiments

entify and select experiments
+ Mellon University has created a two-
s needed to design, configure,
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* Hands on training with
automated equipment

- Experience creating predictive
models from experimental data

Self-driving Instruments

 Expertise in active machine
learning methods for using
predictive models to choose  aena - mwensic - avonatc
future experiments
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