

Carnegie Mellon University School of Computer Science

12

13

14

Self-driving instruments: Active Machine Learning for Biological Discovery

Robert F. Murphy

@murphy2537

Ray & Stephanie Lane Professor of Computational Biology and Professor of Biological Sciences, Biomedical Engineering and Machine Learning Head, Computational Biology Department, School of Computer Science

AAAS Annual Meeting 2019

My goals

- Describe the future of selfdriving instruments: how artificial intelligence/machine learning can do science without human intervention
- Review the background that makes self-driving instruments, necessary

www.aarp.org/auto/trends-lifestyle/info-2018/self-driving-cars.html

 Describe past results demonstrating feasibility

Computational Biology Department

The failure of Reductionism

- For many decades, biomedical research was based on *reductionism*, the assumption that biological components could be understood in isolation
- By the 80's it was becoming clear that many, many components interacted
- Cells, Organs, Organisms are "complex systems" — "the whole is greater than the sum of the parts"

Carnegie Mellon University School of Computer Science

A comprehensive analysis of protein–protein interactions in *Saccharomyces cerevisiae*

Peter Uetz*†, Loic Giot*‡, Gerard Cagney†, Traci A. Mansfield‡, Richard S. Judson‡, James R. Knight‡, Daniel Lockshon†, Valbhav Narayan‡, Maithreyan Srinivasan‡, Pascale Pochart‡, Alia Qureshi-Emili†§, Ying Li‡, Brian Godwin‡, Diana Conover†§, Theodore Kalbfleisch‡, Govindan Vijayadamodar‡, Meijia Yang‡, Mark Johnston†||, Stanley Fields†§ & Jonathan M. Rothberg‡

Complexity = combinatorics

- Assuming *n* genes, one gene=one function and reductionism, the number of experiments needed equals the number of genes, about 10,000
 - at (optimistically) one experiment per day, 28 years
- Given *m* average genes per function and *n* genes, the number of experiments is $n^m \sim 10^{4m} \sim 10^{20}$
 - at 10⁹ experiments per day, 2 million centuries!

The rise of systems biology

- Instead of doing all experiments build predictive models from a smaller number of experiments
- Emphasis on "validating" models by testing specific predictions
- But empirical models cannot be proven!

© University of Birmingham and Birmingham Metabolomics Training Centre

Solution?

- Use *active* machine learning
- Choose experiments not to *prove* model but to *improve* model
 NATURE CHEMICAL

NATURE CHEMICAL BIOLOGY | VOL 7 | JUNE 2011

commentary

An active role for machine learning in drug development

Robert F Murphy

Because of the complexity of biological systems, cutting-edge machine-learning methods will be critical for future drug development. In particular, machine-vision methods to extract detailed information from imaging assays and active-learning methods to guide experimentation will be required to overcome the dimensionality problem in drug development.

Typical drug development: consider each target separately

But it is not just about finding hits...

Source: PhRMA⁴

Where we'd like to be: measure all drugs for all targets

But again, too many combinations

- Approximately 10,000 targets
- Approximately 1,000,000 potential drugs
- How would active learning help?

Goal: build a predictive model for all drugs and targets

Dempster et al (1977) Hill et al. (1995); Lee & Seung (1999); Buchanan & Fitzgibbon (2005); Salakhutdinov & Mnih (2008); Mitra (2010); Gönen (2012); ...

School of Computer Science

Playing Battleship with Drugs and Cells

Source: Wikipedia

Testing retrospectively (with existing data)

Go Limits	BioAssay 2	Substance 2		
Advan			Go	Limits

- Large database on effects of drugs on targets
- Very expensive to generate
- Would active learning have been able to save time and money?

Computational Biology Department Carnegie Mellon University School of Computer S School of Computer Science

Testing retrospectively (with existing data)

- "Hide" the PubChem data (like in Battleship) and only reveal the results when asked
 - as if we were doing that experiment for the first time
- Use different methods to choose what experiments to do

With only **2.5%** of the matrix covered, we can identify **57%** of the active compounds!

Kangas, Naik, Murphy, BMC Bioinformatics 2014

Now try this *prospectively* for an even harder problem

Use liquid handling robots and automated microscope to execute experiments chosen by an active learner

C MENT

Try to learn the effects of 96 drugs upon 96 GFP-tagged proteins, *without doing experiments for all drugs and proteins,* and where the *kinds* of effects drugs might have are unknown

- Each small box is one drug and one target
- Green shows accurate prediction, purple is inaccurate, white shows experiments done

After doing 28% of possible experiments, model is 92% accurate and 40% more accurate than would have been obtained by random choice of experiments

Naik, Kangas, Sullivan, Murphy, eLife 2016

Automated science

- These results provide strong support for the idea of doing "Automated Science" in which not only the *execution* of experiments is done robotically but the *choice* of experiments is done robotically
- "Self-driving instruments!"

Automated science

Additional precedent in the work of Ross King and colleagues

Functional genomic hypothesis generation and experimentation by a robot scientist

Ross D. King¹, Kenneth E. Whelan¹, Ffion M. Jones¹, Philip G. K. Reiser¹, Christopher H. Bryant², Stephen H. Muggleton³, Douglas B. Kell⁴ & Stephen G. Oliver⁵

¹Department of Computer Science, University of Wales, Aberystwyth SY23 3DB, UK

²School of Computing, The Robert Gordon University, Aberdeen AB10 1FR, UK ³Department of Computing, Imperial College, London SW7 2AZ, UK

⁴Department of Chemistry, UMIST, P.O. Box 88, Manchester M60 1QD, UK ⁵School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Manchester M13 9PT, UK

The future

- Embracing complexity in high dimensional models combined with active machine learning to guide experimentation in many areas of biomedical research
- Just like for self-driving cars, human role will be deciding where to go, not how to get there
- Training needed for the Automated Science workforce

Carnegie Mellon University M.S. in Automated Science

Home About ~ People ~ Curriculum Admissions

eing

Carnegie Mellon University's New Automated Science Program

Oct 9, 2018 | Recents News

Carnegie Mellon is pleased to announce the launch of a new graduate program: The Masters of Science in Automated Science (MSAS). MSAS graduates will be the leaders in the emerging paradigm of Automated Science – the combination of robotic scientific instruments, Machine Learning, and Artificial Intelligence for iteratively interpreting data and selecting experiments.

s Researchers for Al-

is in biological experiments

entify and select experiments Mellon University has created a twos needed to design, configure,

M.S. in Automated Science Curricular Goals

- Hands on training with automated equipment
- Experience creating predictive models from experimental data
- Expertise in active machine learning methods for using predictive models to choose future experiments

Acknowledgments

- Armaghan Naik
- Joshua Kangas
- Christopher Langmead
- Aarti Singh
- Nina Balcan
- Jeff Schneider
- Jaime Carbonell
- Andrew Moore

@murphy2537

