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An example
• A fundamental goal in cell and molecular 

biology is to learn the spatial relationships 
between all of the components of a cell

• Can think of this as learning the assembly 
instructions of a cell – a generative model



Spatial models

• This is like reverse 
engineering a model built 
with LEGO’s, K’nex, etc.

• The forward process is 
given in instructions that 
are hierarchical 



This illustrates 
the concept of 
spatial 
dependency: the 
location of the 
blue part 
depends on the 
location of the 
gray part



Bayesian network / graphical model
• A Lego model assembly is deterministic
• But “cell assembly” is probabilistic
• Can represent the hierarchical assembly process as a 

graphical model
– Nodes contain probabilistic spatial distributions of parts or 

previous assemblies
– Edges correspond to dependencies – parts required to 

produce/localize an assembly
– Node functions produce the spatial distributions of an assembly 

from the spatial distributions of the parts



Simple example



Simple example
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Binary image of the location of the gray part
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First generative models of cell organization
• Individual cell organelles dependent on cell and 

nuclear shape
– 2D: Zhao & Murphy (2007)
– 3D: Peng & Murphy (2011)

• Microtubules dependent on cell and nuclear 
shape
– 3D: Shariff, Murphy & Rohde (2010)



POINT PROCESS MODELS FOR 
ORGANELLE SPATIAL DEPENDENCIES

Greg JohnsonArmaghan NaikYing Li Tim Majarian



Learning higher levels of dependency

• Overall goal: learn which organelles the spatial 
distributions of other organelles depend on

• Use Human Protein Atlas images containing 
markers for nucleus, microtubules, 
endoplasmic reticulum and various punctate 
organelles



Example HPA Immunofluorescence Image

Red=tubulin
Blue=ER
Green=Sec23b



Images of 11 different
“vesicle” proteins from Human Protein Atlas

Johnson et al (2015)  PLoS Comp. Biol.
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Can we learn what their patterns depend on?



Point Process Models
• Model the probability of a punctate organelle 

occurring at a position X in a cell using 
functions of the distributions of other 
components of that cell (called factors, F)

p(X)= bϑ(X)=ϑ 1F1+ϑ 2F2...+ϑ NFN



Factors for point process models
• The factors are variables for which values are known at all 

positions in the cell

14

  Distance to nuclear boundary

0.
05

0.
15

0.
25

0.
35

  Distance to cell boundary

0.
05

0.
15

0.
25

  Kernel density of microtubules

0.
5

1
1.
5

2
2.
5

3

  Distance to microtubules

0.
02

0.
06

0.
1

  Kernel density of ER

1
2

3
4

  Distance to ER

0.
05

0.
15

0.
25

Li et al (2016) Cytometry



Learning dependencies on factors

• An important question is to learn on which
factors a particular pattern depends

• Can do this by cross-validation: for each fold, 
for each combination of factors
– Estimate parameters from training data
– Estimate likelihood of test data being generated by 

that model
– Average those likelihoods across all folds



Contributions of different factors
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nucleuscellmicrotubule

punctate 
organelle|microtubule

+ nucleus+cell

The resulting graph



How different are the 11 punctate 
patterns?

• Can also assess by cross-validation (only 2 
images available in HPA!)

• Train 11 models using 1 image of each protein
• Assign remaining test image of each protein to 

the model that it has the highest likelihood of it 
having been produced by



11 distinct punctate patterns using 
relationship to microtubules

U-251 MG COPI COPII Caveolae Coated Pits Early Endosomes Late Endosomes Lysosomes Peroxisomes RNP bodies Recycling Endosomes Retromer

COPI 1 0 0 0 0 0 0 0 0 0 0
COPII 0 1 0 0 0 0 0 0 0 0 0

Caveolae 0 0 1 0 0 0 0 0 0 0 0
Coated Pits 0 0 0 0.67 0 0 0 0 0 0 0.33

Early Endosomes 0 0 0 0 1 0 0 0 0 0 0
Late Endosomes 0 0 0 0 0 1 0 0 0 0 0

Lysosomes 0 0 0 0 0 0 1 0 0 0 0
Peroxisomes 0.08 0 0 0 0 0 0 0.77 0 0.08 0.08
RNP bodies 0 0 0 0 0 0 0 0 1 0 0

Recycling Endosomes
0 0 0 0 0 0 0 0 0 1 0

Retromer 0 0 0 0 0 0 0 0 0 0 1

Overall accuracy: 
A-431 0.73
U-2 OS 0.90
U-251 MG 0.86

average 0.83
19



But…
• Need to be able to construct 

these graphs eventually for all 
cell components

• But can’t do all components in 
a single image

• So also need to be able to infer 
how different graphs might be 
connected to each other

nucl.cellμtub

puncta|μtub+ 
nucl+cell



Example synthetic cell image with 11 
punctate organelles
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INFERRING INFLUENZA VIRUS RNA 
ASSEMBLY PATHWAYS

Seema Lakdawala
University of Pittsburgh

Tim Majarian



Concept
• Try to learn how to put together complex for 

which we can only image a subset of its 
components simultaneously

• Learn models of spatial dependency of different 
parts of a complex on each other

• Construct most likely what in which distribution 
of full complex could be assembled from parts  



Influenza virus 
assembly

• Flu virus consists of 
one of each of eight 
ribonucleoprotein
particles (RNPs)

• Mechanism of 
assembly unknown

Lakdawala SS, Wu Y, Wawrzusin P, Kabat J, Broadbent AJ, et al. (2014) Influenza A Virus Assembly Intermediates 
Fuse in the Cytoplasm. PLOS Pathogens 10(3): e1003971. https://doi.org/10.1371/journal.ppat.1003971
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003971

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003971


Data
• Previous study acquired fluorescence in situ 

hybridization (FISH) images for many sets of four 
probes for different RNPs



Approach Part 1

• Process each channel to identify position of RNPs 
• Learn point process 

models to predict the 
subcellular location of 
each RNP from one, two 
or three other RNPs

• Measure the 
likelihood of each model by 
cross-validation

Majarian et al (2018)  PLoS Comp. Biol., in 
press



Pairwise 
likelihoods

• Width of base 
shows strength 
of prediction

• Can combine 
these to predict 
likelihood of 
triples, quads, 
etc.



Test predictions 
• Predict likelihood for 

3 or 4 RNPs from 
likelihoods 
measured from pairs

• Compare to 
measured 
likelihoods

• Decent correlation 
except for outlier 
cluster (PB2-NA + 
PB1 and/or NS)



Approach Part 2

• Use dynamic programming to find the most likely 
path by which all eight RNPs can be assembled

A:B 0.6
A:C 0.3
B:A 0.8
B:C 0.2
C:A 0.5
C:B 0.4

AB:C 0.3
AC:B 0.2
BC:A 0.2

[A:B+B:A]/2*AB:C 0.21
[A:C+C:A]/2*AC:B 0.08
[B:C+C:B]/2*BC:A 0.06



Most likely tree
Majarian et al (2019)  PLoS Comp. Biol. 15:e1006199



Stability of solution 

The same 
tree is found!

Add noise up to 25% 
of the average 
likelihood



Summary
• Very consistent complexes predicted to be 

major assemblies 
–(HA,M,NS) +/- NA
–(NP,PB1,PB2) +/- PA

• Results indicate feasibility of inferring 
higher order complexes
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Concept
• Learn kinetics of cell organization changes 

from large collection of static images of 
different cells at different time points



Application to differentiation
• Took 3D images of different PC12 cells stained 

with a mitochondrial probe at various times 
after addition of Nerve Growth Factor to induce 
differentiation

• Can’t take movies due to photosensitivity of 
cells

• Developed approach to synthesize likely movies



Cell and nuclear shape modeling
• First need methodology to construct 

generative rather than discriminative model of 
cell and nuclear shape
– The representation used needs to be able to 

reconstruct shapes with high accuracy
– Evaluate existing methods



Target shapeStarting shape

0.01650 0.0191 0.0194 0.0195

Distance

Diffeomorphic modeling:
Morphing one shape into another



X1

X2

X3

X4

…

Xn

x1*

x2*

…

xm*

P(xi|Ɵ)

Images

Convolutional network

Synthesized
Images

Deep learning models (e.g., autoencoders, GANs)



Spherical harmonic methods
Use transform 

for 
representation

Map each mesh 
vertex to position on 

surface of sphere

Major point of 
failure for some 

implementations

Ruan & Murphy (2019)  Bioinformatics., in press



Ruan & Murphy (2019)  Bioinformatics., in press

Reconstruction Errors

dim datasets spharm-rpdm wspharm Diffeomorphic AE SRAE VAE O-AE
HeLa 8.38 20.4 14.8 16.2 16.9 16.2 40.9

7 SNL 3D 8.64 21.4 – 52.7 132 52.7 57.9
SNL NR2 12.7 24.6 – 80.1 143.8 80.2 73.1

HeLa 4.89 20.2 – 7.93 16.9 10.4 42.4
100 SNL 3D 4.02 16.3 – 7.45 147.3 28.4 56.5

SNL NR2 5.28 21.3 – 8.19 135 80.1 81.5



PC12 cells at different times after NGF
Ruan et al (2019)  Mol. Biol. Cell, submitted



Shape vs. size



Create synthetic trajectories
• Have over 100 cells for each time point
• Build single shape space for all cells at all time points
• Use weighted maximum bipartite matching method 

(Hungarian algorithm) to match cells at adjacenct time 
points that are the most likely to represent a single cell 
at two time points

• After matching, have a pseudo-trajectory for each 
initial cell.

• Interpolate to generate “movie”



Linked “trajectories”



Example synthetic movies
Ruan et al (2018)  PLoS Comp. Biol.., submitted



Conclusions: Cell Organization
• A number of approaches available for learning 

models of cell organization from images
• Important theme is inferring what we can’t 

measure
• All tools are available in open source 

CellOrganizer system
• http://CellOrganizer.org
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But…
• Can’t infer everything – need to choose 

combinations of components/proteins to image 
together to build the full model

• For projects like this we need active machine 
learning to decide which experiments to do and 
which are not needed

• For illustration, consider drug development
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But the task is not just finding hits…



Ta
rg

et
s

Drugs

Effect No effect

Typical drug development: consider each target 
separately



Ta
rg

et
s

Drugs

Effect No effect

Where we’d like to be: measure all drugs for all targets



But too many combinations

• Approximately 10,000 targets
• Approximately 1,000,000 potential drugs
• How would active learning help?



Playing Battleship with Drugs and Cells

Source: Wikipedia



Testing retrospectively (with existing data)

• Large database on effects of drugs on targets
• Very expensive to generate
• Would active learning have been able to save time and 

money?



Testing retrospectively (with existing data)

• “Hide” the PubChem data (like in Battleship) 
and only reveal the results when asked
– as if we were doing that experiment for the first 

time

• Use different methods to choose what 
experiments to do



Active Learning
Optimized µ-QSAR
Randomized Search

Kangas, Naik, Murphy, BMC Bioinformatics 2014

With only 2.5% of the 
matrix covered, we can 
identify 57% of the active 
compounds!



Try to learn the effects 
of 96 drugs upon 96 
GFP-tagged proteins, 
without doing 
experiments for all drugs 
and proteins,
and where the kinds of 
effects drugs might 
have are unknown

Now try this prospectively for an even harder problem



Automated Execution

Use liquid handling robots and automated microscope to execute 
experiments chosen by an active learner

Source: Beckman Coulter



• Each small box is one drug 
and one target

• Green shows accurate 
prediction, purple is 
inaccurate, white shows 
experiments done



Active Learning
Coverage based Model Fit
RandomNaik, Kangas, Sullivan, Murphy, eLife 2016

After doing 28% of possible 
experiments, model is 92% 
accurate and 40% more 
accurate than would have 
been obtained by random 
choice of experiments



Automated science
• Additional precedent in the work of Ross King 

and colleagues



Automated science
• These results provide strong support 

for the idea of doing “Automated 
Science” in which not only the 
execution of experiments is done 
robotically but the choice of 
experiments is done robotically

• “Self-driving instruments!”


