Machine Learning Approaches to Biological Research: Bioimage Informatics and Beyond

Robert F. Murphy
External Senior Fellow, Freiburg Institute for Advanced Studies
Ray and Stephanie Lane Professor of Computational Biology, Carnegie
Mellon University

September 29-October 1, 2009

Outline

- Basic principles and paradigms of supervised and unsupervised machine learning
- Concepts of automated image analysis
- Approaches for creating predictive models from images
- Active learning paradigms for closed loop systems of cycles of experimentation, model refinement and model testing

The Discipline of Machine Learning

Tom M. Mitchell July 2006 CMU-ML-06-108

School of Computer Science Carnegie Mellon University

Abstract

Does the poor 150 years the only of Mochanic Learning has goon from the efforts of a hundred of compares of the poor of the po

 $www.cs.cmu.edu/^{\sim}tom/pubs/\textbf{MachineLearning.pdf}$

What is Machine Learning?

- Fundamental Question of Computer Science: How can we build machines that solve problems, and which problems are inherently tractable/intractable?
- Fundamental Question of Statistics: What can be inferred from data plus a set of modeling assumptions, with what reliability?

Tom Mitchell white paper

Fundamental Question of Machine Learning

- How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?
 - Tom Mitchell

Tom Mitchell white paper

Why Machine Learning?

- Learn relationships from large sets of complex data: Data mining
 - Predict clinical outcome from tests
 - Decide whether someone is a good credit risk
- Do tasks too complex to program by hand
 - Autonomous driving
- Customize programs to user needs
 - Recommend book/movie based on previous likes

Tom Mitchell white paper

•			
•			
•			
•			
•			
•			
•			

Why Machine Learning?

- Economically efficient
- Can consider larger data spaces and hypothesis spaces than people can
- Can formalize learning problem to explicitly identify/describe goals and criteria

Successful Machine Learning Applications

- Speech recognition
 - Telephone menu navigation
- Computer vision
 - Mail sorting
- Bio-surveillance
 - Identifying disease outbreaks
- · Robot control
 - Autonomous driving
- · Empirical science

Tom Mitchell white paper

Machine Learning Paradigms

- Supervised Learning
 - Classification
 - Regression
- · Unsupervised Learning
 - Clustering
- Semi-supervised Learning
 - Cotraining
 - Active learning

_			
-			
_			
-			
-			
-			
_			
_			
_			
_			
_			
_			
-			
-			
-			
_			
_			
_			

Supervised Learning

- Approaches
 - Classification (discrete predictions)
 - Regression (continuous predictions)
- Common considerations
 - Representation (Features)
 - Feature Selection
 - Functional form
 - Evaluation of predictive power

Classification vs. Regression

- If I want to predict whether a patient will die from a disease within six months, that is classification
- If I want to predict how long the patient will live, that is regression

Representation

- Definition of thing or things to be predicted
 - Classification: classes
 - $\ {\sf Regression:} \ \textit{regression variable}$
- Definition of things (*instances*) to make predictions for
 - Individuals
 - Families
 - Neighborhoods, etc.
- Choice of descriptors (features) to describe different aspects of instances

•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

Formal description

- Defining X as a set of *instances x* described by *features*
- Given training examples D from X
- Given a *target function c* that maps *X*->{0,1}
- Given a hypothesis space H
- Determine an hypothesis h in H such that h(x)=c(x) for all x in D

Courtesy Tom Mitchell

Inductive learning hypothesis

 Any hypothesis found to approximate the target function well over a sufficiently large set of training example will also approximate the target function over other unobserved example

Courtesy Tom Mitchell

Hypothesis space

- The hypothesis space determines the functional form
- It defines what are allowable rules/functions for classification
- Each classification method uses a different hypothesis space

Simple two class problem	
+	
???	
Describe each image by features Train classifier	
k-Nearest Neighbor (kNN)	
In feature space, training examples are	
Feature #2 (e.g, roundness) +	
+ +	
+ .	
Feature #1 (e.g, 'area')	

k-Nearest Neighbor (kNN)

• Find k nearest neighbors and vote

Feature #2 (e.g.., roundness)

nearest neighbors are

Feature #1 (e.g.., 'area')

Linear Discriminants

- Fit multivariate Gaussian to each class
- Measure distance from ? to each Gaussian

bright.

area

Decision trees

• Again we want to label '?'

Feature #2 (e.g.., roundness)

Feature #1 (e.g.., 'area')

Decision trees

• so we build a decision tree:

Feature #1 (e.g.., 'area')

Slide courtesy of Christos Faloutsos

Decision trees

• so we build a decision tree:

Slide courtesy of Christos Faloutsos

Decision trees

• Goal: split address space in (almost) homogeneous regions

Support vector machines

• Again we want to label '?'

Feature #2 (e.g.., roundness)

Feature #1 (e.g.., 'area')

Slide courtesy of Christos Faloutsos

Support Vector Machines (SVMs)

• Use single linear separator??

round.

area

Slide courtesy of Christos Faloutsos

Support Vector Machines (SVMs)

• Use single linear separator??

round.

area

Support Vector Machines (SVMs)

• Use single linear separator??

round.

area

Slide courtesy of Christos Faloutsos

Support Vector Machines (SVMs)

• Use single linear separator??

round.

area

Slide courtesy of Christos Faloutsos

Support Vector Machines (SVMs)

• Use single linear separator??

round.

Support Vector Machines (SVMs)

- we want to label '?' linear separator??
- A: the one with the widest corridor!

Support Vector Machines (SVMs)

- What if the points for each class are not readily separated by a straight line?
- Use the "kernel trick" project the points into a higher dimensional space in which we hope that straight lines will separate the classes
- "kernel" refers to the function used for this projection

Support Vector Machines (SVMs)

- Definition of SVMs explicitly considers only two classes
- What if we have more than two classes?
- Train multiple SVMs
- Two basic approaches
 - One against all (one SVM for each class)
 - Pairwise SVMs (one for each pair of classes)
 - Various ways of implementing this

Questions

- What are the hypothesis spaces for
 - kNN classifier
 - Linear discriminants
 - Decision trees
 - Support Vector Machines

Cross-Validation

- If we train a classifier to minimize error on a set of data, have no ability to estimate (generalize) error that will be seen on new dataset
- To calculate generalizable accuracy, we use n-fold cross-validation
- Divide images into *n* sets, train using *n*-1 of them and test on the remaining set
- Repeat until each set is used as test set and average results across all trials
- Variation on this is called *leave-one-out*

Describing classifier errors

- For binary classifiers (positive or negative), define
 - TP = true positives, FP = false positives
 - TN = true negatives, FN = false negatives
 - Recall = TP / (TP + FN)
 - Precision = TP / (TP + FP)
 - F-measure= 2*Recall*Precision/(Recall + Precision)

Confusion matrix - binary True \ Predicted | Positive | Negative | Positive | True Positive | False Negative | Negative | False Positive | True Negative | True \ Negative |

Describing classifier errors

- For multi-class classifiers, typically report
 - Accuracy = # test images correctly classified # test images
 - Confusion matrix = table showing all possible combinations of true class and predicted class

Confusion matrix – multi-class

True				Outp	out of th	ne Clas	sifier			
Class	DNA	ER	Gia	Gpp	Lam	Mit	Nuc	Act	TfR	Tub
DNA	98	2	0	0	0	0	0	0	0	0
ER	0	100	0	0	0	0	0	0	0	0
Gia	0	0	100	0	0	0	0	0	0	0
Gpp	0	0	0	96	4	0	0	0	0	0
Lam	0	0	0	4	95	0	0	0	0	2
Mit	0	0	2	0	0	96	0	2	0	0
Nuc	0	0	0	0	0	0	100	0	0	0
Act	0	0	0	0	0	0	0	100	0	0
TfR	0	0	0	0	2	0	0	0	96	2
Tub	0	2	0	0	0	0	0	0	0	98

Overall accuracy = 98%

Ground truth

- What is the source and confidence of a class label?
- Most common: Human assignment, unknown confidence
- Preferred: Assignment by experimental design, confidence ~100%

Feature selection

- Having too many features can confuse a classifier
- Can use comparison of feature distributions between classes to choose a subset of features that gets rid of uninformative or redundant features

Journal of Machine Learning Research 3 (2003) 1157-1182

An Introduction to Variable and Feature Selection

Isabelle Guyon
Isabelle Guyon
Isabelle Guyon
Isabelle Guyon
Isabelle Guyon
Isabelle @CLOPINET.COM
Clopinet
955 Creston Road
Berkeley, CA 94708-1501, USA
André Elisseeff
ANDRE @TUEBINGEN MPG.DE
Empirical Inference for Machine Learning and Perception Department
Max Planck Institute for Biological Cybernetics
Spenumstrasse 38
72076 Tubingen, Germany

Feature Selection Methods

- Principal Components Analysis
- Non-Linear Principal Components Analysis
- Independent Components Analysis
- Information Gain
- Stepwise Discriminant Analysis
- Genetic Algorithms

Regression

4	-
	-

Cluster analysis

- Supervised learning (Classification) assumes classes are known
- Unsupervised learning (Cluster analysis) seeks to discover the classes

Formal description

- Given *X* as a set of *instances* described by *features*
- Given an objective function g
- Given a partition space H
- Determine a partition h in H such that h(X) maximizes/minimizes g(h(X))

Formal description

- *objective function g* often stated in terms of minimizing a *distance function d*
- Example: Euclidean distance

Hierarchical vs. k-means clustering

- Two most popular clustering algorithms
- Hierarchical builds tree sequentially from the closest pair of points (wells/cells/probes/ conditions)
- k-means starts with k randomly chosen seed points, assigns each remaining point to the nearest seed, and repeats this until no point moves

•	
•	
•	
•	
•	
•	

Choosing the number of Clusters

- A difficult problem
- Most common approach is to try to find the solution that minimizes the Bayesian Information Criterion

$$BIC = -2 \ln L + k \ln(n)$$

$$L = \text{the likelihood function for the estimated model}$$

$$K = \# \text{ of parameters}$$

Microarray raw data

- Label mRNA from one sample with a red fluorescence probe (Cy5) and mRNA from another sample with a green fluorescence probe (Cy3)
- Hybridize to a chip with specific DNAs fixed to each well
- Measure amounts of green and red fluorescence

Flash animations:

PCR http://www.maxanim.com/genetics/PCR/PCR.htm Microarray http://www.bio.davidson.edu/Courses/genomics/chip/chip.html

Example microarray image

Data extraction

- Adjust fluorescent intensities using standards (as necessary)
- Calculate ratio of red to green fluorescence
- Convert to \log_2 and round to integer
- Display saturated green=-3 to black = 0 to saturated red = +3

Distances High dimensionality Based on vector geometry – how close are two data points? Array 2 Gene 1 Array 2 Gene 1 Array 2 Gene 1 Array 1 Array 2 Gene 1 Array 1 Array 2 Gene 1 Array 1 Array 1 Array 1 Array 2 Gene 1

Distances Array 1 Array 2 • High dimensionality • Based on vector Gene 2 **geometry** – how close are two data points? Array2 Gene 1 — Gene 2 Array 1

Distances

- · High dimensionality
- Based on vector **geometry** – how close are two data points?
- · Use distances to

determine clusters

General Multivariate Dataset

- We are given values of p variables for n independent observations
- Construct an $n \times p$ matrix **M** consisting of vectors $\mathbf{X_1}$ through $\mathbf{X_n}$ each of length p

Multivariate Sample Mean

• Define mean vector I of length p

Multivariate Variance

• Define variance vector σ^2 of length p

$$\sigma^{2}(j) = \frac{\sum_{i=1}^{n} (\mathbf{M}(i,j) - \mathbf{I}(j))^{2}}{n-1}$$
matrix notation

Multivariate Variance

• or

$$\sigma^2 = \frac{\sum_{i=1}^{n} (\mathbf{X}_i - \mathbf{I})^2}{n-1}$$

vector notation

Covariance Matrix

Define a p x p matrix cov (called the covariance matrix) analogous to σ²

matrix) analogous to
$$\sigma^2$$

$$\sum_{i=1}^{n} (\mathbf{M}(i,j) - \mathbf{I}(j)) (\mathbf{M}(i,k) - \mathbf{I}(k))$$

$$\mathbf{cov}(j,k) = \frac{\sum_{i=1}^{n} (\mathbf{M}(i,j) - \mathbf{I}(j)) (\mathbf{M}(i,k) - \mathbf{I}(k))}{n-1}$$

Covariance Matrix

• Note that the covariance of a variable with itself is simply the variance of that variable

$$\mathbf{cov}(j,j) = \sigma^2(j)$$

Univariate Distance

• The simple distance between the values of a single variable *j* for two observations *i* and *l* is

$$\mathbf{M}(i,j) - \mathbf{M}(l,j)$$

Univariate z-score Distance

 To measure distance in units of standard deviation between the values of a single variable j for two observations i and I we define the z-score distance

$$\frac{\mathbf{M}(i,j) - \mathbf{M}(l,j)}{\sigma(j)}$$

Bivariate Euclidean Distance

 The most commonly used measure of distance between two observations i and l on two variables j and k is the Euclidean distance

$$\sqrt{\left(\mathbf{M}(i,j) - \mathbf{M}(l,j)\right)^{2} + \left(\mathbf{M}(i,k) - \mathbf{M}(l,k)\right)^{2}}$$
j variable

M(*l,j*)

M(*l,k*)

M(*l,k*)

M(*l,k*)

A variable

Multivariate Euclidean Distance

• This can be extended to more than two variables

$$\sqrt{\sum_{i=1}^{p} (\mathbf{M}(i,j) - \mathbf{M}(l,j))^2}$$

Effects of variance and covariance on Euclidean distance

Points A and B have similar Euclidean distances from the mean, but point B is clearly

more different" from the population than point A.

The ellipse shows

Mahalanobis Distance

• To account for differences in variance between the variables, and to account for correlations between variables, we use the Mahalanobis distance

$$D^{2} = (\mathbf{X}_{i} - \mathbf{X}_{l})\mathbf{cov}^{-1}(\mathbf{X}_{i} - \mathbf{X}_{l})^{\mathrm{T}}$$

Other distance functions

- We can use other distance functions, including ones in which the weights on each variable are learned
- Cluster analysis tools for microarray data most commonly use Pearson correlation coefficient

31

Input data for clustering

• Genes in rows, conditions in columns

VODE	NAME	CWEIGHT	,	Sall acrala Alaba		accele Ales
YORF	NAME	GWEIGHT	(Cell-cycle Alph Ce	eli-cycle Alpr Celi	-cycle Alph
EWEIGHT				1	1	1
YHR051W	YHR051W	CC	1	0.03	0.3	0.37
YKL181W	YKL181W	PR	1	0.33	-0.2	-0.12
YHR124W	YHR124W	NE	1	0.36	0.08	0.06
YHL020C	YHL020C	OP!	1	-0.01	-0.03	0.21
YGR072W	YGR072W	UF	1	0.2	-0.43	-0.22
YGR145W	YGR145W		1	0.11	-1.15	-1.03
YGR218W	YGR218W	CF	1	0.24	-0.23	0.12
YGL041C	YGL041C		1	0.06	0.23	0.2
YOR202W	YOR202W	HI	1	0.1	0.48	0.86
YCR005C	YCR005C	CIT	1	0.34	1.46	1.23
YER187W	YER187W		1	0.71	0.03	0.11
YBR026C	YBR026C	MR	1	-0.22	0.14	0.14
YMR244W	YMR244W		1	0.16	-0.18	-0.38
YAR047C	YAR047C		1	-0.43	-0.56	-0.14
YMR317W	YMR317W		1	-0.43	-0.03	0.21

Clustering genes and conditions

 Rows and columns can be clustered independently hierarchical is preferred for visualizing this

Stating Goals vs. Approaches

- Temptation when first considering using a machine learning approach to a biological problem is to describe the problem as automating the approach that you would solve the problem
- "I need a program to predict how much a gene is expressed by measuring how well its promoter matches a template"

Stating Goals vs. Approaches

- "I need a program that given a gene sequence predicts how much that gene is expressed by measuring how well its promoter matches a template"
- "I need a program that given a gene sequence predicts how much that gene is expressed by learning from sequences of genes whose expression is known"

Resources

- Association for the Advancement of Artificial
 - http://www.aaai.org/AlTopics/pmwiki/pmwiki.php/ AlTopics/MachineLearning
- Machine Learning Mitchell, Carnegie Mellon
 - http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
- Practical Machine Learning Jordan, UC Berkeley
- http://www.cs.berkeley.edu/~asimma/294-fall06/
- Learning and Empirical Inference Rish, Tesauro, Jebara, Vadpnik – Columbia

 – http://www1.cs.columbia.edu/~jebara/6998/

·		
·		
,		
,		
•		
•		
•		
,		
•		
,		