Machine Learning Approaches to
Biological Research: Bioimage
Informatics and Beyond

Lecture 2: Concepts of automated
image analysis
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This is a micro-
tubule pattern

Assign proteins to major subcellular structures using fluorescent microscopy

The Challenge

* Problem is hard because different cells
have different shapes, sizes, orientations

* Organelles/structures within cells are not
found in fixed locations

* Therefore, describe each image
numerically and use the descriptors

Feature-Based, Supervised Learning
Approach

1. Create sets of images showing the location of many
different proteins (each set defines one class of
pattern)

2. Reduce each image to a set of numerical values
(“features”) that are insensitive to position and
rotation of the cell

3. Use statistical classification methods to “learn” how
to distinguish each class using the features

Acquisition considerations

* For automated acquisition
— Optimize autofocus parameters
— Maintain constant camera gain, exposure time,
number of slices
— Select interphase cells or ensure sampling of cell
cycle

Acquisition considerations

¢ Collect sufficient images per condition
— For classifier training or set comparison, more than
number of features
— For classification or clustering, base on confidence
level desired
* Collect reference images if possible (DNA,
membrane)




Annotation considerations

* Maintain adequate records of all experimental
settings

* Organize images by cell type/probe/condition
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Preprocessing

« Correction for/Removal of camera defects
* Background correction

* Autofluorescence correction

¢ lllumination correction

¢ Deconvolution

Preprocessing (continued)

¢ Registration
— Not critical if only using DNA or membrane
references

* Intensity scaling (constant scale or contrast
stretched for each cell)
* Single cell segmentation
— Manual, semi-automated, automated
* Region finding
— Nucleus
— Cytoplasmic annulus
— Cell boundary

Segmentation of Images into
Single Cell Regions

Approaches

* Voronoi
¢ Watershed
* Seeded Watershed

Voronoi diagram

Given a set of seeds,
draw vertices and
edges such that each
seed is enclosed in a
single polygon where
each edge is Vertex
equidistant from the
seeds on either side.




Voronoi Segmentation Process

¢ Threshold DNA image (downsample?)

e  Find the objects in the image

¢ Find the centers of the objects

e Use as seeds to generate Voronoi diagram

e  Create a mask for each region in the Voronoi
diagram

e Remove regions whose object that does not
have intensity/size/shape of nucleus
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Original DNA image

After thresholding and removing small objects

After triangulation

o

After removing edge cells and filtering
' \ | / 1

Final regions masked onto original image




Watershed Segmentation

* Intensity of an image
elevationin a
landscape

— Flood from minima
— Prevent merging of
“catchment basins” y
— Watershed borders hitp:/fwww.ctic.purdue.edu/KYWi/glossary/whatisaws.htm
built at contacts
between basins
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Watershed Segmentation

« |If starting image has intensity centered on the cells (e.g.,
DNA) that you want to segment, invert image so that
bright objects are the sources

 |f starting image has intensity centered on the boundary
between the cells (e.g., plasma membrane protein),
don’t invert so that boundary runs along high intensity

Seeded Watershed Segmentation

* Drawback is that the number of regions may not
correspond to the number of cells

* Seeded watershed allows water to rise only from
predefined sources (seeds)

« |f DNA image available, can use same approach to
generate these seeds as for Voronoi segmentation

* Can use seeds from DNA image but use total protein
image for watershed segmentation

Seeded Watershed Segmentation

Original image

Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries

Feature Extraction for Subcellular
Pattern Analysis

Subcellular Location Features (SLF)

* Combinations of features of different types that
describe different aspects of patterns in
fluorescence microscope images have been
created

* Motivated in part by descriptions used by
biologists (e.g., punctate, perinuclear)

* To ensure that the specific features used for a
given experiment can be identified, they are
referred to as Subcellular Location Features (SLF)
and defined in sets (e.g., SLF1)
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Feature levels and granularity
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Granularity: 2D, 3D, 2Dt, 3Dt

Thresholding

* First type of feature is morphological

* Morphological features require some method for
defining objects

* Most common approach is global thresholding

¢ Methods exist for automatically choosing a global
threshold (e.g., Riddler-Calvard method)

Ridler-Calvard Method

* Find threshold that is equidistant from the
average intensity of pixels below and above
it

* Ridler, TW. and Calvard, S. (1978) Picture
thresholding using an iterative selection
method. IEEE Transactions on Systems,
Man, and Cybernetics 8:630-632.

Ridler-Calvard Method

Ridler-Calvard Illustration

Blue line shows
histogram of
intensities, green
lines show
average to left 0.2

and right of red
line, red line
shows midpoint
between them or
the RC threshold . ‘ ‘

Frequency

0 20 40
Pixel Value

Ridler-Calvard Method

original

original thresholded

Otsu Method

* Find threshold to minimize the variances of
the pixels below and above it

* Otsu, N., (1979) A Threshold Selection
Method from Gray-Level Histograms, IEEE
Transactions on Systems, Man, and
Cybernetics, 9:62-66.
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Adaptive Thresholding

* Various approaches available

* Basic principle is use automated methods
over small regions and then interpolate to
form a smooth surface

Suitability of Automated Thresholding
for Classification

* For the task of subcellular pattern analysis,
automated thresholding methods perform
quite well in most cases, especially for
patterns with well-separated objects

* They do not work well for images with very
low signal-noise ratio

* Can tolerate poor behavior on a fraction of
images for a given pattern while still
achieving good classification accuracies

Object finding

 After choice of threshold, define objects as
sets of touching pixels that are above
threshold

2D Features
Morphological Features

SLF No. Description

SLF1.1 The number of fluorescent objects in the image

SLF1.2 The Euler number of the image

SLF1.3 The average number of above-threshold pixels per
object

SLF1.4 The variance of the number of above-threshold pixels
per object

SLF1.5 The ratio of the size of the largest object to the smallest

SLF1.6 The average object distance to the cellular center of
fluorescence(COF)

SLF1.7 The variance of object distances from the COF

SLF1.8 The ratio of the largest to the smallest object to COF
distance

2D Features
Morphological Features

Nucleoli

108 # of objects
83 Average size of objects

31 Average distance to COF

Suitability of Morphological Features
for Classification

* Images for some subcellular patterns, such
as those for cytoskeletal proteins, are not
well-segmented by automated thresholding

* When combined with non-morphological

features, classifiers can learn to “ignore”
morphological features for those classes
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2D Features
DNA Features

DNA features (objects relative to DNA reference)

2D Features
Skeleton Features

Skeleton features

SLF No. Description

SLF2.17 The average object distance from the COF of the DNA image
SLF2.18 The variance of object distances from the DNA COF

SLF2.19 The ratio of the largest to the smallest object to DNA COF distance
SLF2.20 The distance between the protein COF and the DNA COF
SLF2.21 The ratio of the area occupied by protein to that occupied by DNA
SLF2.22 The fraction of the protein fluorescence that co-localizes with DNA

SLF No. Description

SLF7.80 The average length of the morphological skeleton of objects

SLF7.81 The ratio of object skeleton length to the area of the convex hull of the
skeleton, averaged over all objects

SLF7.82 The fraction of object pixels contained within the skeleton

SLF7.83 The fraction of object fluorescence contained within the skeleton

SLF7.84 The ratio of the number of branch points in the skeleton to the length of
skeleton

[llustration — Skeleton

2D Features
Edge Features

Edge features

SLF No. Description

SLF1.9 The fraction of the non-zero pixels that are along an edge
SLF1.10 Measure of edge gradient intensity homogeneity

SLF1.11 Measure of edge direction homogeneity 1

SLF1.12 Measure of edge direction homogeneity 2

SLF1.13 Measure of edge direction difference

2D Features
Zernike Moment Features
* Shape similarity of protein image
to Zernike polynomials Z(n,l)
* 49 polynomials and 49 features

left: Zernike polynomials
A:Z(2,0)

B: Z(4,4)

C:Z(10,6)

right: lamp2 image

2D Features

Haralick Texture Features
* Correlations of adjacent pixels in gray level images
« Start by calculating co-occurrence matrix P:
N by N matrix, N=number of gray level.
Element P(i,j) is the probability of a pixel with value i being
adjacent to a pixel with value j
* Four directions in which a pixel can be adjacent

* Each direction considered separately and then features
averaged across all directions




Example image with 4 gray levels
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Solid plus some noise

42224

12411

34442
Co-occurrence 22332
Matrices 33324
! - Vs N
1(2(3]4 1(2(34 1(2(3|4 1(2(3|4a
1/0]2|1|3]| [1]|2|1|o|1]| [1|o|1]0|3]| |[1]|0|3|0|1
2|2|4l4l4a| |2|1]|6|3|4| |2]1|4|3|3]| |2|3]0|4|4a
3|1(4(2(2| |3|0|3|6|2| |3|0|3|4|1]| |3|0]4|0|3
al2|3|2(2| |a|1|a|2|a]| |4|3[3|1|2]| |4|1]|4|3]|2

Random

Checkerboard

Pixel Resolution and Gray Levels

» Texture features are influenced by the number
of gray levels and pixel resolution of the image

¢ Optimization for each image dataset required

« Alternatively, features can be calculated for
many resolutions

Wavelet Transformation - 1D

\ X

[ Al | | D1

PN

A: approximation (low frequency)
D: detail (high frequency)
X=A3+D3+D2+D1




2D Wavelets - intuition

* Apply some filter to detect edges (horizontal;
vertical; diagonal)

@ O
QO

After Christos Faloutsos

2D Wavelets - intuition

* Many wavelet basis functions (filters):
— Haar

— Daubechies (-4, -6, -20)
* http://www331.jpl.nasa.gov/public/wave.html

Slide courtesy of Christos Faloutsos

2D Features

Wavelet Feature Calculation
* Preprocessing
— Background subtraction and thresholding
— Translation and rotation
* Wavelet transformation
— The Daubechies 4 wavelet
— 10 level decomposition

— Use the average energy of the three high-frequency
components at each level as features
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2D Wavelets - intuition

* Recurse

Q
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Slide courtesy of Christos Faloutsos

Daubechies D4 decomposition

Original image Wavelet Transformation

3D Features
Morphological

» 28 features, 14 from protein objects and 14

from their relationship to corresponding DNA
images

— Based on number of objects, object size, object
distance to COF

* Corresponding DNA image required




3D set

* 14 SLF-9 features that do not require DNA images
* 2 Edge features

— Ratio of above threshold pixel along an edge

— Ratio of fluorescence along an edge
* 26 3D Haralick texture features

— Gray level co-occurence matrix for 13 directions

— Calculate 13 Haralick statistics for each direction

— Average each statistic over 13 directions and use mean
and range as separate features: result is 26 features
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Object level features (SOF)

* Subset of SLFs calculated on single objects

Index Feature Description

SOFI.1 _ Number of pixels in object

SOF1.2  Distance between object Center of Fluorescence (COF) and DNA COF
SOF1.3  Fraction of object pixels overlapping with DNA

SOF1.4 A measure of eccentricity of the object

SOF1.5  Euler number of the object

SOF1.6 A measure of roundness of the object

SOF1.7  The length of the object’s skeleton

SOF1.8  The ratio of skeleton length to the area of the convex hull of the skeleton
SOF1.9  The fraction of object pixels contained within the skeleton

SOF1.10  The fraction of object fluorescence contained within the skeleton

SOF1.11__ The ratio of the number of branch points in skeleton to length of skeleton

Field level features

* Subset of SLFs that do not require
segmentation into single cells
— Average object features
— Texture features (on whole field)
— Edge features (on whole field)

2Dt or 3Dt Features
Temporal Texture Features

* Haralick texture features describe the correlation
in intensity of pixels that are next to each other in
space.

— These have been valuable for classifying static patterns.

* Temporal texture features describe the
correlation in intensity of pixels in the same
position in images next to each other over time.

Temporal Textures
based on Co-occurrence Matrix

* Temporal co-occurrence matrix P:
Nievel BY Nioye matrix, Element P[i, j] is the
probability that a pixel with value i has value j
in the next image (time point).

* Thirteen statistics calculated on P are used as
features

Image at t0 Image at t1
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Implementation of
Image at t0 Image at t1 Temporal Texture Features
4 2 2 2 4 2 1 4 4 3 * Compare image pairs with different time
12 411 1 4 2 3 3 interval ,compute 13 temporal texture features for
each pair.
34442 233202 i
22332 442 2 3
33324 2 4214
Temporal 102 |3 |4 « Use the average and variance of features in each kind
co-occurrence |1 |1 |o [2 |o of time interval, yields 13*5*2=130 features
matrix (for 2 2 |1 |1 |5
image that 3]0 |5 |0 |1
changes) 41033 )1

Task: Learn to recognize all major L
subcellular patterns 2D Classification Results
giantin gpp130 True Output of the Classifier
g\as DNA| ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
DNA | 99 1 0 0 0 0 0 0 0 0
ER 0 97 0 0 0 0 0 0 1
Nucleolin Gia 0 0 91 7 0 0 0 0 2 0
Gpp 0 0 14 82 0 0 2 0 1 0
Lam 0 0 1 0 88 1 0 0 10 0
Mit 0 3 0 0 0 92 0 0 3 3
Nuc 0 0 0 0 0 0 99 0 1 0
Tubulin Act | 0 0 0 0 0 0 0 | 100] o 0
TfR 0 1 0 0 12 2 0 1 81 2
Tub 1 2 0 0 0 1 0 0 1 95
Overall accuracy = 92%
Human Classification Results Computer vs. Human
True Output of the Classifier
g""s DNA| ER | Gia | Gpp | Lam | Mit | Nuc | Act | TR | Tub 100 . »
bNA|10] o [o [ o] o] o] o]ofo]o 9% %
ER| 0 |9 | o o[3]6|o0o]o]o]o > ®
Ga| o | o |5 |3 ] 3] 3] o0 o | o 0 g 8
Gp| 0 | 0o [543 o] o] o] o] 3o g % *
tam| 0 | o | 6| o7 o] o]of2]o0 E
Mt | o [ 3| o] oo o |o]o]o]s ER °
Nuc| 0 [ o o] o] o] ofwo]o]o]o s
act| 0o | o | o] oo o] o f10]o0]o
| *
TR| 0 | 13 | 0 0 3 0 0 0 |8 | o0 400 " " " " " '
40 50 60 70 80 90 100
Twb| 0 | 3] o] oo oo 3] o]os Computer Accuracy
Overall accuracy = 83%
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3D Classification Results

True Output of the Classifier
g'as DNA| ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub
pva| 8 | 2 o] ol o] oo o] o]o
ER | o [w0] o] o] o] o]o]o]o]o
Ga| 0 | o w] oo o]o]o]|]ol]o
Gop| 0 [ o oo | a] o] o] o]o]o
Lm| o | o | o | 4o o] o]o]o]2
Mie| ol o] 2o o]ow|o|2]o0]o
Nel 0 o] o] oo ofJw]|]o|o]o
At 0o ool oo o] o w]|ol]o
| ol ool o[ 2]o0o]o]o]ow]:2
| o | 2ol o] o] o] o] o] o]ous

Overall accuracy = 98%

Location Proteomics

Tag many proteins
— We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in

Location Proteomics

Tag many proteins
— We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA

sequence that will “tag” in a random gene in e A
. Isolate separate clones, each of which produces express one tagged
protein

Use RT-PCR to identify tagged gene in each clone

* Collect many live cell images for each clone using spinning disk
confocal fluorescence microscopy
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Supervised vs. Unsupervised Learning

* Work discussed so far demonstrates the
feasibility of using classification methods to
assign all proteins to known major classes

* Do we know all locations? Are assignments
to major classes enough?

* Need approach to discover classes

Principles of CD-Tagging (Jarvik & Berget)
(CD = Central Dogma)

Genomic DNA +
CD-cassette

Exon | INITIGHRMNN T xon 2 ||

AtpSal-1 Ewsh Glutl
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How?
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Chen and Murphy 2005

Chen et al 2003;

= Features can be used to measure similarity of

protein patterns
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= Sample repeatedly from available images

consensus tree
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Proteins
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Nucleolar Proteins
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Nuclear and Cytoplasmic Proteins with Some Punctate

Staining
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