Machine Learning Approaches to
Biological Research: Bioimage
Informatics and Beyond

Lecture 3: Models from images
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Pattern unmixing

Some proteins may be found in more than one
organelle

Clustering sees each combination of
organelles as a new pattern

Can we “unmix” such mixed patterns?

Unmixing approach

Assume that each fundamental subcellular
pattern can be represented by some
combination of distinct object types (10%
small round objects and 90% long skinny
objects)

Assume that a mixed pattern is formed by
adding together the objects from two or more
fundamental patterns and that no new object
types are created
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Learning object types

Find all objects in all images of fundamental

types

Describe each object by features such as size,

ellipticity, distance from nucleus
Cluster objects to find types

Represent each fundamental pattern as
probabilities of observing each object type
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Test samples

algorithm?

* How do we test a subcellular pattern unmixing

* Need images of known mixtures of pure

patterns — difficult to obtain “naturally”

* Created test set by mixing different

proportions of two probes that localize to

different cell parts (lysosomes and
mitochondria)
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Pattern unmixing results
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Communicating patterns

* How do we communicate results learned
about subcellular patterns?

* Proposal: Use generative m

odels learned

from images to capture pattern and

variation in pattern
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Nuclear shape models

* Modified medial axis model

* Diffeomorphic model
—S. Yang, D. Kohler, K. Teller, T, Cremer, P. Le

Baccon, E. Heard, R. Eils, and K. Rohr, MICCAI
2006, LNCS 4190, pp. 907-914, 2006

Nuclear Shape - Medial Axis Model

Threshold Rotate Extract medial axis

Fit splines to
two curves :

11 parameters

" Width along
the medial axis

Medial axis
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Shape generation

11 parameters for each object

-5 parameters for each curve

— the length of the medial axis

Learn the distribution of parameters over many
nuclei

— Assume multivariate normal

Randomly sample parameters from distribution
Construct nuclear shape using the sampled
parameters

Synthesized nuclear shapes

Diffeomorphic analysis of nuclear shape

* Can use distance between shapes to
characterize shape space instead of
parameters of model — Gustavo Rohde




Concept: measure distances between
all examples as means of
characterizing shape space
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LDDMM references

Miller MI. Computational anatomy: shape, growth, and atrophy
comparison via diffeomorphisms. Neuroimage 2004;23 Suppl
1:519-33.

Beg MF, Miller M, Trouve A, Younes L. Computing large
deformation metric mappings via geodesic flows of
diffeomorphisms. International Journal of Computer Vision
2005;61:139-157.

Miller MI, Trouve A, Younes L. On the metrics and euler-lagrange
equations of computational anatomy. Annu Rev Biomed Eng
2002;4:375-405.

Finding deformation field

Goal: Find a function g(x,t) which smoothly
transforms an image |, into an image |, as t
goesfromOto T

= Choose g(x,t) to minimize sum of
= Total deformationing fromOto T
= Distance between | and | (g(x,T))




Finding deformation field

Solve differential describing evolution from x to g(x)

{dg(x,t) = v(g(x,t),t)

dt
gx0)=x

sd+ 1,0~ 1, (g D)

T
V= arg {r(lx%g({v(x,t)
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Finding deformation field

Geodesic distance between two images

di,, )= [ |0

| dt
Where

[v(x,0)

v =HLV(X’I)HLZ

for some operator L

Mapping two shapes to each other




Target shape

Starting shape

0 0.0165 0.0191 0.0194 0.0195

Distance
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Characterizing shape space

* Find deformation fields from each image to
every other image

 Calculate distance between each pair of

images as total deformation required between

them

Use multidimensional scaling (MDS) to find

variables (principal components) that

compactly represent variation

ol First 2
- components from
- MDS directly on
perimeter
coordinates

First 2
components from
I MDS on distance
LI R R M matrix from
LDDMM
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Finding mean shape

* For a population of images/shapes, find mean
shape as that from which all shapes can be
generated with minimum total deformation

Cell shape models

* Conditional radial distance ratio model

 Diffeomorphic model (in progress)

Examples of natural variation in cell
shape

O
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Cell Shape
Description: Distance Ratio

d, +d,
d,

Represent single shape as
vector of ratios for n
angles and represent
variation using PCA
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Diffeomorphic analysis of cell shape

Models for protein-containing objects

* Object library
* Gaussian objects

— Mixture of Gaussians with number of objects
determined from number of local minima

— Learn distributions for number of objects and
object size

— Learn probability density function for object
position relative to nucleus and cell shape
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Modeling Vesicular Organelles

Original Filtered Fitted Gaussians
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Position Model

r: normalized distance, a: angle to major axis

: d2}
A
“d1

r=d1/(d1+d2)

Synthesized Images

Lysosomes Endosomes

= SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao
= Have portable tool for generating images from model
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Framework for conditional subcellular
location models

* SLML: slots for different parts of cell model
— Nucleus
— Plasma membrane
— Specific protein

¢ Each slot can hold one of multiple types of
models, each of which is probabilistic

* Each slot’s model can be conditional
(dependent) on another
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Combining Models for Cell Simulations

Protein 1

Cell Shape
Nuclear Model

Protein 2

Simulation for
multiple
proteins

Cell Shape
Nuclear Model

Protein 3

Cell Shape
Nuclear Model
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