Machine Learning Approaches to Biological Research: Bioimage Informatics and Beyond

Lecture 3: Models from images

Robert F. Murphy
External Senior Fellow, Freiburg Institute for Advanced Studies
Ray and Stephanie Lane Professor of Computational Biology, Carnegie
Mellon University

September 29-October 1, 2009

Pattern unmixing

- Some proteins may be found in more than one organelle
- Clustering sees each combination of organelles as a new pattern
- Can we "unmix" such mixed patterns?

2

Unmixing approach

- Assume that each fundamental subcellular pattern can be represented by some combination of distinct object types (10% small round objects and 90% long skinny objects)
- Assume that a mixed pattern is formed by adding together the objects from two or more fundamental patterns and that no new object types are created

Zhao et al 2005

Learning object types

- Find all objects in all images of fundamental types
- Describe each object by features such as size, ellipticity, distance from nucleus
- Cluster objects to find types
- Represent each fundamental pattern as probabilities of observing each object type

Test samples

- How do we test a subcellular pattern unmixing algorithm?
- Need images of known mixtures of pure patterns – difficult to obtain "naturally"
- Created test set by mixing different proportions of two probes that localize to different cell parts (lysosomes and mitochondria)

Communicating patterns

- How do we communicate results learned about subcellular patterns?
- Proposal: Use generative models learned from images to capture pattern and *variation* in pattern

Nuclear shape models

- Modified medial axis model
- Diffeomorphic model
 - S. Yang, D. Köhler, K. Teller, T, Cremer, P. Le
 Baccon, E. Heard, R. Eils, and K. Rohr, MICCAI
 2006, LNCS 4190, pp. 907–914, 2006

Shape generation

- 11 parameters for each object
 - 5 parameters for each curve
 - the length of the medial axis
- Learn the distribution of parameters over many nuclei
 - Assume multivariate normal
- Randomly sample parameters from distribution
- Construct nuclear shape using the sampled parameters

Synthesized nuclear shapes

Diffeomorphic analysis of nuclear shape

 Can use distance between shapes to characterize shape space instead of parameters of model – Gustavo Rohde

LDDMM references

Miller MI. Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. Neuroimage 2004;23 Suppl 1:S19-33.

Beg MF, Miller MI, Trouve A, Younes L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 2005;61:139-157.

Miller MI, Trouve A, Younes L. On the metrics and euler-lagrange equations of computational anatomy. Annu Rev Biomed Eng 2002;4:375-405.

20

Finding deformation field

- Goal: Find a function g(x,t) which smoothly transforms an image I_n into an image I_m as t goes from 0 to T
- Choose g(x,t) to minimize sum of
 - Total deformation in g from 0 to T
 - Distance between I_m and I_n(g(x,T))

Finding deformation field

Solve differential describing evolution from x to g(x)

$$\begin{cases} \frac{dg(x,t)}{dt} = v(g(x,t),t) \\ g(x,0) = x \end{cases}$$

$$v = \arg\min_{v(x,t)} \left(\int_{0}^{T} \|v(x,t)\|_{V}^{2} dt + \|I_{n}(x) - I_{m}(g(x,T))\|_{L^{2}}^{2} \right)$$

22

Finding deformation field

Geodesic distance between two images

$$d(I_m, I_n) = \int_0^T ||v(x,t)||_V dt$$

Where

$$||v(x,t)||_V = ||Lv(x,t)||_{L^2}$$

for some operator L

...

23

Mapping two shapes to each other

Characterizing shape space

- Find deformation fields from each image to every other image
- Calculate distance between each pair of images as total deformation required between them
- Use multidimensional scaling (MDS) to find variables (principal components) that compactly represent variation

First 2 components from MDS directly on perimeter coordinates

First 2 components from MDS on distance matrix from LDDMM

Finding mean shape

• For a population of images/shapes, find mean shape as that from which all shapes can be generated with minimum total deformation

28

Cell shape models

- Conditional radial distance ratio model
- Diffeomorphic model (in progress)

29

Examples of natural variation in cell shape

Cell Shape Description: Distance Ratio

$$r = \frac{d_1 + d_2}{d_2}$$

Represent single shape as vector of ratios for *n* angles and represent variation using PCA

Diffeomorphic analysis of cell shape

Models for protein-containing objects

- Object library
- Gaussian objects
 - Mixture of Gaussians with number of objects determined from number of local minima
 - Learn distributions for number of objects and object size
 - Learn probability density function for object position relative to nucleus and cell shape

Modeling Vesicular Organelles Original Filtered Fitted Gaussians (c)

Framework for conditional subcellular location models

- SLML: slots for different parts of cell model
 - Nucleus
 - Plasma membrane
 - Specific protein
- Each slot can hold one of multiple types of models, each of which is probabilistic
- Each slot's model can be conditional (dependent) on another

Combining Models for Cell Simulations		
Protein 1 Cell Shape Nuclear Model Protein 2 Cell Shape Nuclear Model Protein 3 Cell Shape Nuclear Model Protein 3 Cell Shape Nuclear Model Protein 3 Cell Shape Nuclear Model Region Simulation for multiple proteins		
Integrating with Virtual Cell (University of Connecticut)) and M-Cell (Pittsburgh Supercomputing Center)		

1	2
_	