Machine Learning Approaches to
Biological Research: Bioimage
Informatics and Beyond

Lecture 4: Active learning
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Efficient Acquisition and Learning of
Fluorescence Microscope Data Models
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Develop a mathematical framework and algorithms
to build accurate models of fluorescence microscope data sets
as well as design intelligent acquisition systems based on those models

| 1. Use all the input from the 2. Choose acquisition requests

microscope to model the that allow us to construct an
data set accurate model in the shortest

amount of time




Active Learning



Problem Setup

* Unlabeled data available but labels are expensive

* | would like to choose which data to label
— to maximize the “value” of that data to my problem
— to minimize the “cost” of labeling



Toy Example: threshold function

Unlabeled data: labels are all 0 then all 1 (left to right)

Classifier is threshold function:

h (x) =1 if x >w (0 otherwise)

Goal: find transition between 0 and 1 labels in minimum steps
Naive method: choose points to label at random on line

Better method: binary search for transition between 0 and 1



Example: Sequencing genomes
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Example: collaborative filtering

Users rate only a few movies usually; ratings “expensive”

Which movies do you show users to best extrapolate movie
preferences?

Also known as questionnaire design

Baseline questionnaires: I
— Random: m movies randomly ity ety my

— Most Popular Movies: m most frequently
rated movies
Most popular movies is not better than random
design!
Popular movies rated highly by all users; do not
discriminate tastes

[Yu et al. 2006]



Entropy Function

* A measure of information in
random event X with possible
outcomes {x,,...,.X,}

H(x) = - Zi p(xi) Iog2 p(Xi)

L

1.0 -

« Comments on entropy function:

— Entropy of an event is zero when the
outcome is known

— Entropy is maximal when all outcomes

are equally likely 0 } L

* The average minimum yes/no 0 0.5 1.0

guestions to answer some question
(connection to binary search)

0.0 T

H(X)

[Shannon, 1948]



Loss Functions

* A function L that maps an event to a real number,
representing cost or regret associated with event

e E.g., inregression problems, L(y, 6'f(x)) maps to reals
 Examples:
— Quadratic (least squares) loss
— Linear (absolute value) loss
— 0-1 (binary) loss
— Exponential




Risk Function

Risk is also known as expected loss

The (frequentist) risk function is explicitly expected loss

Bayes risk

Loss

Trade-off:

R(©, X) = 5, L(8, X) p(x|6)

is defined as posterior expected loss:

R(O, X) = Z4 L(0, x) p(0x)

“\ P(6]x)

Xx) accurate

“Gain” heke-is-chtoses x to minimize-expectedioss, X



What is Active Learning?

Unlabeled data are readily available; labels are
expensive

Want to use adaptive decisions to choose which
labels to acquire for a given dataset

Goal is accurate classifier with minimal cost



Active learning warning

e Choice of data is only as good as the model itself
* Assume a linear model, then two data points are sufficient
 What happens when data are not linear?
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Active Learning

Active learner is able to query world and receive a response
before outputting a classifier

Learner selects queries (but cannot impact response)
Two general methods:

— Select “most uncertain” data given model and parameters
— Select “most informative” data to optimize expected gain

Given model M with parameters 8 and loss function L
Query g with response x updates the model posterior 6’

L(&, X) = E,L()



Active Learning Approaches

* Membership queries
* Uncertainty Sampling
 Query by committee



Membership queries

Earliest model of active learning in theory work [Angluin 1992]

X = space of possible inputs, like {0,1}®
H = class of hypotheses

Target concept h™ € H to be identified exactly.
You can ask for the label of any point in X: no unlabeled data.

H,=H
Fort=1,2,...
pick a point x € X and query its label h'(x)
let H, = all hypotheses in H,_, consistent with (x, h'(x))

What is the minimum number of “membership queries” needed to

reduce H to just {h'}?
Slide credit: S. Dasgupta




Membership queries: example

X = {0,1}11
H = AND-of-positive-literals, like x; A x5 A x

S={} (set of AND positions)
Fori=1ton:
ask for the label of (1,...,1,0,1,...,1) [0 at position i]

if negative: S =S U {i}

Total: n queries

General idea: synthesize highly informative points.

Each query cuts the version space -- the set of consistent hypotheses -
- in half.

Slide credit: S. Dasgupta




Problem

Many results 1n this framework, even for complicated hypothesis
classes.

[Baum and Lang, 1991] tried fitting a neural net to handwritten
characters.
Synthetic instances created were incomprehensible to humans!

[Lewis and Gale, 1992] tried training text classifiers.

“an artificial text created by a learning algorithm 1s unlikely to be a
legitimate natural language expression, and probably would be
uninterpretable by a human teacher.”



Uncertainty Sampling

[Lewis & Gale, 1994]

* Query the event that the current classifier is most uncertain
about

If uncertainty is measured in Euclidean distance:

e Used trivially in SVMs, graphi odels, etc.



1994

A Sequential Algorithm for Training Text Classifiers
David D. Lewis (lewis@research.att.com) and William A. Gale ( gale@research.att.com)

AT&T Bell Laboratories; Murray Hill, NJ 07974; USA
In W. Bruce Croft and C. J. van Rijsbergen, eds., SIGIR 94: Proceedings of Seventeenth Annual International
ACM-SIGIR Conference on Research and Development in Information Retrieval, Springer-Verlag, London, pp. 3-12.

Abstract
The ability to cheaply train text classifiers is critical to their use in information retrieval, content
analysis, natural language processing, and other tasks involving data which is partly or fully textual.
An algorithm for sequential sampling during machine learning of statistical classifiers was developed
and tested on a newswire text categorization task. This method, which we call uncertainty sampling,
reduced by as much as 500-fold the amount of training data that would have to be manually classified
to achieve a given level of effectiveness.
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SCOTIC

Score Function

(S,) = uncertainty(P(S, | O,))

uncert

= H(St)
= ) P(S, =i)log P(S, = i)




Uncertainty Sampling Example

P(Sy

H(Sy)

0.02

0.043
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0.024

0.05

0.086

0.12

Sex | Age | Test | Test | Test S
A| B | C t

M|[20- | 0| 1] 1 ?
30

Fl2- | 0| 1]0 2
30

F|3-|1][0]0 ?
40

FAeo+1 1111 0| Fase

MI[10-] 0| 1]0 ?
20

M[20- [ 1| 1| 1 2

30

0.01

0.024

0.96

0.073




Uncertainty Sampling Example

P(Sy

H(Sy)

0.01

0.024

0.02

0.043

0.04

0.073

0.00

Sex | Age | Test | Test | Test S,
A B C

M|[20- | 0| 1| 1 ?
30

Fl20- o |10 2
30

Fl30-]1|01]0 ?
40

F o0 11 11 0| Faise

M{10-1 01|10
20 TRUE

M |[20- | 1| 1| 1 2

30

0.06

0.00

0.97

0.059




Uncertainty Sampling

GOOD: couldn’t be easier
GOOD: often performs pretty well

BAD: H(S,) measures information gain about the
samples, not the model

4

Sensitive to noisy samples
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Figure 1. A figure of the version space and the examples that achieve maximal information gaimn for the two
threshold learning problem defined below.

The question i1s whether constructing queries according to their expected mnformation
gain 1s a good method in general, 1.e. whether it always guarantees that the prediction error
decreases exponentially fast to zero.

The answer to this question 1s negative, to see why this 1s the case consider the following,
slightly more complex, learning problem. Let the sample space be the set of pairs in which
the first element, . 1s either 1 or 2. and the second element, 2. 1s a real number in the range
[0,1].1e.2 € X = {1,2} x [0, 1]. Let D be the distribution defined by picking both ¢ and
2z independently and uniformly at random. Let the concept class be the set of functions of
the form

ooy L w2
c‘m““-"_{(), w, >z’ 4

L]

02

where @ € [0, 1]%. The prior distribution over the concepts is the one generated by choosing
W uniformly at random from [0, 1]?. In this case each example corresponds to either a
horizontal or a vertical half plane, and the version space, at each stage of learning. 1s a
rectangle (see Figure 3). There are always two examples that achieve maximal information
gain, one horizontal and the other vertical. Labeling each one of those examples reduces
the volume of the version space by a factor of two. However, the probability that the Gibbs
rule makes an incorrect prediction 1s proportional to the perimeter of the rectangular version
space, and not to its volume. Thus, if the learner always constructs queries of the same type,
only one of the dimensions of the rectangle 1s reduced, and the perimeter length stays larger
than a constant. This implies that the prediction error also stays larger than a constant.

We conclude that the expected information gamn of an unlabeled example is nor a sufficient
criterion for constructing good queries. The essential problem is that the distribution over

If our objective is to reduce
the prediction error, then

“the expected information gain
of an unlabeled sample is NOT
a sufficient criterion for
constructing good queries”



1992

Query by Committee

H. S. Seung” M. Opper! H. Sompolinsky
Racah Institute of Physics and Institut fur Theoretische Physik Racah Institute of Physics and
Center for Neural Computation Justus-Liebig-Universitat Giessen Center for Neural Computation
Hebrew University D-6300 Giessen, Germany Hebrew University
Jerusalem 91904, Israel manfred.opper@ Jerusalem 91904, Israel
seung@mars.huji.ac.il physik.uni-giessen.dbp.de haim@galaxy.huji.ac.il
Abstract

We propose an algorithm called query by com-
mittee, in which a committee of students is
trained on the same data set. The next query
is chosen according to the principle of marimal
disagreement. The algorithm is studied for two
toy modcls the hlgh-low game and pcrccptron

rithm yields asymptotlcally finite information

gain. This leads to generalization error that
decreases choncntiallI with the number of ex-

amples. This in marked contrast to learning
from randomly chosen inputs, for which the in-

. vely slow
inverar nower law  We anooest that asvmntat-
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Ooh, now we’re going to learn
something for sure!

One of them is definitely wrong.

30



The Original QBC
Algorithm

As each example arrives...

1. Choose a committee, C, (usually of size 2) randomly
from Version Space

2. Have each member of C classify it

3. If the committee disagrees, select it.



