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Eukaryotic cells have many 

parts



Protein localization

� The sequence of each protein 
determines where it is localized in cells

� Subsequences (“motifs”) within a 
protein’s sequence are responsible for 
targeting it to one (or more) locations 
(structures/organelles)



Open questions

� How many distinct locations can 
proteins be found in?  What are they?

� How many distinct motifs direct proteins 
to those locations?  What are they?



Proteomics

� The set of proteins expressed in a given 
cell type or tissue is called its proteome

� Proteomics projects
� sequence

� structure

� activity

� partners

� location



Systems Biology and Location 

Proteomics

� All systems biology must be data driven

� Key to progress

� identification of aspect that needs to be analyzed “ome-wide”

� development of assays and automated analysis approaches 

� Systems biology needs 

systematic information on high-
resolution subcellular location 

� Eventually, for every expressed 
protein for all cell types under all 
conditions

� Providing this information is the 

goal of Location Proteomics



Automated Interpretation

� Traditional analysis of fluorescence 
microscope images has occurred by 
visual inspection

� Our goal over the past ten years has to 
been automate the interpretation, to 
yield better

� Objectivity

� Sensitivity

� Reproducibility



Supervised Learning of High-
Resolution  Subcellular 

Location Patterns
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The goal: Learn to recognize all 

major subcellular patterns



The Challenge

�� PixelPixel--byby--pixel or regionpixel or region--byby--region region 
matching will not work for matching will not work for cell cell 
patterns because different cells have patterns because different cells have 
different different shapes, sizes, orientationsshapes, sizes, orientations

�� Organelles/structures within cells are Organelles/structures within cells are 
not found in fixed locationsnot found in fixed locations

�� Instead, describe each image Instead, describe each image 
numerically and compare the numerically and compare the 
descriptorsdescriptors



1. Create sets of images showing the location of 

many different proteins (each set defines one 

class of pattern)

2. Reduce each image to a set of numerical 

values (“features”) that are insensitive to 

position and rotation of the cell

3. Use machine learning methods to “learn” 

how to distinguish each class using the 

features

Feature-based, Supervised 

learning approach

Boland et al 1996; 1997; 1998; 

Boland & Murphy 2001; Huang & 
Murphy 2004



Example  of 

classification using

Morphological Features
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# of objects

Average size of objects

Average distance to COF
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4

Any of these 

features could be 

used to 

distinguish these 

two classes

ER Nucleoli



Acquisition considerations

� Resolution defined as ability to distinguish two 
“point-sources”

� Maximal resolution in x-y plane given by Rayleigh
(or Abbe) limit

1.22λ/2NA

� where λ is wavelength of emitted light and NA is the 
numerical aperture of the objective; 244 nm for 520 
nm light and 1.3 NA

� Sampling theorem (Nyquist) says maximum 
information can be obtained if we sample at twice 
the maximum frequency present in a sample

� Try to achieve Nyquist Sampling at Rayleigh limit



Acquisition considerations

� Maintain low cell density if single cell 
measurements desired

� Control acquisition variables
� Select (initial) focal plane consistently

� Select fields consistently (at least one full cell 
per field)

� Maintain constant camera gain, exposure time, 
number of slices

� Select interphase cells or ensure sampling of cell 
cycle



Acquisition considerations

� Collect sufficient images per condition
� For classifier training or set comparison, more than 

number of features

� For classification or clustering, based on confidence 
level desired

� Collect reference images if possible (DNA, 
membrane)



Annotation considerations

� Maintain adequate records of all experimental 
settings

� Organize images by cell type/probe/condition



Preprocessing

� Correction for/Removal of camera defects

� Background correction

� Autofluorescence correction

� Illumination correction

� Deconvolution



� 2D slices 

(from bottom 

to top) for 

cell labeled 

for 

transferrin

receptor
(primarily in 

endosomes)

3D HeLa



� 2D slices 

(from bottom 

to top) for 

cell labeled 

for giantin
(primarily in 

Golgi)

3D HeLa



� 2D slices 

(from bottom 

to top) for 

cell labeled 

for tubulin
(major 

constituent of 

microtubules)

3D HeLa



Single cell segmentation 

approaches

� Voronoi

� Watershed

� Seeded Watershed

� Level Set Methods

� Graphical Models



Voronoi diagram

Seed

Edge

Vertex

Given a set of seeds, 

draw vertices and 

edges such that each 

seed is enclosed in a 

single polygon where 

each edge is 

equidistant from the 

seeds on either side.



Voronoi Segmentation 

Process

• Threshold DNA image (downsample?)

• Find the objects in the image

• Find the centers of the objects

• Use as seeds to generate Voronoi
diagram

• Create a mask for each region in the 
Voronoi diagram

• Remove regions whose object that does 
not have intensity/size/shape of nucleus



Original DNA image



After thresholding and removing small objects



After triangulation



After removing edge cells and filtering



Final regions masked onto original image



Watershed Segmentation

� Intensity of an 

image ~ elevation in 

a landscape

� Flood from minima

� Prevent merging of 
“catchment basins”

� Watershed borders 
built at contacts 

between basins

http://http://www.ctic.purdue.edu/KYW/glossary/whatisaws.htmlwww.ctic.purdue.edu/KYW/glossary/whatisaws.html



Watershed Segmentation

� If starting image has intensity centered on the cells 
(e.g., DNA) that you want to segment, invert image 

so that bright objects are the sources

� If starting image has intensity centered on the 

boundary between the cells (e.g., plasma 

membrane protein), don’t invert so that boundary 
runs along high intensity



Seeded Watershed 

Segmentation

� Drawback is that the number of regions may not 
correspond to the number of cells

� Seeded watershed allows water to rise only from 
predefined sources (seeds)

� If DNA image available, can use same approach to 

generate these seeds as for Voronoi segmentation

� Can use seeds from DNA image but use total 

protein image for watershed segmentation



Seeded Watershed 

Segmentation

Original image Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries



Level Set Methods

� Level set function φ(x,y,t) 

� Positive inside the contour (mountain)

� Negative outside the contour (valley)

� Zero on the contour, C embedded at its 

zero level (sea level)

http://http://ranger.uta.edu/~alp/personal/travelImageGallery.htmranger.uta.edu/~alp/personal/travelImageGallery.htm

n

F > 0

F < 0

φ > 0

φ < 0

C: φ = 0



Graphical Model Methods

� Assumptions

� Two classes of pixels: those part of a cell or part of 
the background

� Each pixel is likely to be the same class as its 

neighbors

� Have information about where cells are likely to be 

and where boundaries (edges) are likely to be

� Probability that two pixels are same class related 

to probability that there is an edge between them 



1. Start with initial 

DNA and edge potential
2. Run 1st believe 

propagation (BP), separate 

foreground and background.

3. Run 2nd BP, assign the 

pixels with the same class of 

p to be segmented_cell1, 

then set these pixels to be 

background

5. Iteration stops when the 

segmented cell is too small

4. Pick the most confident 

foreground pixel , Run BP, find 

another cell, and iterate....

6. The resulting masks 

Pick the most confidence 

foreground pixel p, set its 

DNA potential high



Feature extraction



Morphological Features -

Thresholding

� Morphological features require some method 
for defining objects

� Most common approach is global 
thresholding

� Methods exist for automatically choosing a 
global threshold (e.g., Riddler-Calvard
method)



Ridler-Calvard Method

� Find threshold that is equidistant from 
the average intensity of pixels below 
and above it

� Ridler, T.W. and Calvard, S. (1978) 
Picture thresholding using an iterative 
selection method. IEEE Transactions on 
Systems, Man, and Cybernetics 8:630-
632.



Ridler-Calvard Method

Blue line 

shows 
histogram of 

intensities, 
green lines 

show average 

to left and 
right of red 

line, red line 
shows 

midpoint 
between them 

or the RC 
threshold

Ridler-Calvard Illustration
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Ridler-Calvard Method

original

original

thresholded



Object finding

� After choice of threshold, define objects 
as sets of touching pixels that are above 
threshold



2D Features

Morphological Features

The ratio of the largest to the smallest object to COF 

distance

SLF1.8

The variance of object distances from the COFSLF1.7

The average object distance to the cellular center of 

fluorescence(COF)

SLF1.6

The ratio of the size of the largest object to the smallestSLF1.5

The variance of the number of above-threshold pixels 

per object

SLF1.4

The average number of above-threshold pixels per 

object

SLF1.3

The Euler number of the imageSLF1.2

The number of fluorescent objects in the imageSLF1.1

DescriptionSLF No.



2D Features

DNA Features

The fraction of the protein fluorescence that co-localizes with DNASLF2.22

The ratio of the area occupied by protein to that occupied by DNASLF2.21

The distance between the protein COF and the DNA COFSLF2.20

The ratio of the largest to the smallest object to DNA COF distanceSLF2.19

The variance of object distances from the DNA COFSLF2.18

The average object distance from the COF of the DNA imageSLF2.17

DescriptionSLF No.

DNA features (objects relative to DNA reference)



2D Features

Skeleton Features

The ratio of the number of branch points in the skeleton to the length of

skeleton

SLF7.84

The fraction of object fluorescence contained within the skeletonSLF7.83

The fraction of object pixels contained within the skeletonSLF7.82

The ratio of object skeleton length to the area of the convex hull of the

skeleton, averaged over all objects

SLF7.81

The average length of the morphological skeleton of objectsSLF7.80

DescriptionSLF No.

Skeleton features



Illustration – Skeleton



2D Features

Edge Features

Measure of edge direction differenceSLF1.13

Measure of edge direction homogeneity 2SLF1.12

Measure of edge direction homogeneity 1SLF1.11

Measure of edge gradient intensity homogeneitySLF1.10

The fraction of the non-zero pixels that are along an edgeSLF1.9

DescriptionSLF No.

Edge features



2D Features
Haralick Texture Features
(SLF7.66-7.78)

� Correlations of adjacent pixels in gray level images

� Start by calculating co-occurrence matrix P:

N by N matrix, N=number of gray level.

Element P(i,j) is the probability of a pixel with value i 
being adjacent to a pixel with value j

� Four directions in which a pixel can be adjacent

� Each direction considered separately and then 
features averaged across all directions
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Example image with 4 gray levels



Pixel Resolution and Gray Levels

� Texture features are influenced by the 
number of gray levels and pixel 
resolution of the image

� Optimization for each image dataset 
required

� Alternatively, features can be calculated 
for many resolutions



2Dt or 3Dt Features

Temporal Texture Features

� Haralick texture features describe the 
correlation in intensity of pixels that are next 

to each other in space. 
� These have been valuable for classifying static 

patterns.

� Temporal texture features describe the 
correlation in intensity of pixels in the same 
position in images next to each other over 

time.



Temporal Textures

based on Co-occurrence Matrix

� Temporal co-occurrence matrix P:

Nlevel by Nlevel matrix, Element P[i, j] is 
the probability that a pixel with value i 
has value j in the next image (time 
point).

� Thirteen statistics calculated on P are 
used as features
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Implementation of

Temporal Texture Features

� Compare image pairs with different time 
interval, compute 13 temporal texture 
features for each pair.

� Use the average and variance of features in 
each kind of time interval, yields 13*5*2=130 
features

T=     0s           45s         90s      135s      180s       225s      270s      315s     360s      405s   …



Machine Learning -

Classification Methods



-+

???

Simple two class problem



k-Nearest Neighbor (kNN)

� In feature space, training examples are

Feature #1 (e.g.., ‘area’)

Feature #2
(e.g.., roundness)

+

-+
+ +

+

+

+

-

-
-

-
-



� We want to label ‘?’

Feature #1 (e.g.., ‘area’)

Feature #2
(e.g.., roundness)

+

-+
+ +

+

+

+

-

-
-

-
-

?

k-Nearest Neighbor (kNN)



� Find k nearest neighbors and vote

Feature #1 (e.g.., ‘area’)

Feature #2
(e.g.., roundness)

+

-+
+ +

+

+

+

-

-
-

-
-

?

k-Nearest Neighbor (kNN)

for k=3,

nearest 
neighbors 

are

So we label it +



Decision trees

� Again we want to label ‘?’

Feature #1 (e.g.., ‘area’)

Feature #2
(e.g.., roundness)

+

-+
+ +

+

+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos



Decision trees

� so we build a decision tree:

Feature #1 (e.g.., ‘area’)

Feature #2
(e.g.., roundness)

+

-+
+ +

+

+

+

-

-
-

-
-

?

50

40

Slide courtesy of Christos Faloutsos



Decision trees

� so we build a decision tree:

area<50

Y

+
round. <40

N

-
...

Y
N

‘area’

round.

+

-+
+ +

+
+

+

-

-
-

--

?

50

40

Slide courtesy of Christos Faloutsos



Decision trees

� Goal: split address space in (almost) 
homogeneous regions

area<50

Y

+
round. <40

N

-
...

Y
N

‘area’

round.

+

-+
+ +

+
+

+

-

-
-
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?

50

40

Slide courtesy of Christos Faloutsos



Support vector machines

� Again we want to label ‘?’

Feature #1 (e.g.., ‘area’)

Feature #2
(e.g.., roundness)

+

-+
+ +

+

+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos



Support Vector Machines 

(SVMs)

� Use single linear separator??

area

round.

+

-

+

+

+

+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos



Support Vector Machines 

(SVMs)

� Use single linear separator??

area

round.
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Slide courtesy of Christos Faloutsos



Support Vector Machines 

(SVMs)

� Use single linear separator??

area
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Support Vector Machines 

(SVMs)

� Use single linear separator??
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Support Vector Machines 

(SVMs)

� Use single linear separator??
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Support Vector Machines 

(SVMs)

� we want to label ‘?’ - linear separator??

� A: the one with the widest corridor!

area

round.

+

-
+

+
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+

-

-
-

-
-

?

Slide courtesy of Christos Faloutsos



Support Vector Machines 

(SVMs)

� we want to label ‘?’ - linear separator??

� A: the one with the widest corridor!

area

round.

+

-
+

+
+

+

-

-
-

-
-

?

‘support vectors’

Slide courtesy of Christos Faloutsos



Cross-Validation

� If we train a classifier to minimize error on a 
set of data, have no ability to generalize error 
that will be seen on new dataset

� To calculate generalizable accuracy, we use 
n-fold cross-validation

� Divide images into n sets, train using n-1 of 
them and test on the remaining set

� Repeat until each set is used as test set and 
average results across all trials



Describing classifier errors

� For multi-class classifiers, typically report
� Accuracy = # test images correctly classified

# test images

� For binary classifiers (positive or negative), 
define
� TP = true positives, FP = false positives

� TN = true negatives, FN = false negatives

� Recall = TP / (TP + FN)

� Precision = TP / (TP + FP)

� F-measure= 2*Recall*Precision/(Recall + Precision)



2D Classification Results 

Overall accuracy = 92%

Output of the ClassifierTrue 

Class

95100100021Tub

281102120010TfR

001000000000Act

01099000000Nuc

33009200030Mit

010001880100Lam

010200821400Gpp

02000079100Gia

10002000970ER

00000000199DNA

TubTfRActNucMitLamGppGiaERDNA

Murphy et al 2000; 

Boland & Murphy 2001; 
Huang & Murphy 2004



Human Classification Results 

Overall accuracy = 83%

Output of the ClassifierTrue 

Class

93030000030Tub

083000300130TfR

001000000000Act

000100000000Nuc

30009600030Mit

020000730600Lam

030000335400Gpp

000033365600Gia

00006300900ER

000000000100DNA

TubTfRActNucMitLamGppGiaERDNA

Murphy et al 2003



Computer vs. Human
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50

60

70

80

90

100

40 50 60 70 80 90 100
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3D HeLa cell images
GiantinNuclear ER Lysosomalgpp130

ActinMitoch. Nucleolar TubulinEndosomal

Images collected using facilities at the Center for 
Biologic Imaging courtesy of Simon Watkins

Velliste & Murphy 2002



3D Classification Results 

Overall accuracy = 98%

Output of the ClassifierTrue 

Clas

s

98000000020Tub

29600020000TfR

001000000000Act

000100000000Nuc

00209600200Mit

20000954000Lam

00000496000Gpp

000000010000Gia

000000001000ER

00000000298DNA

TubTfRActNucMitLamGppGiaERDNA

Velliste & Murphy 2002; 

Chen & Murphy 2004



Conclusions (1996-2004)

� Automated classification of subcellular 
patterns possible without colocalization

� Accuracy better than visual examination

� Similar for basic patterns

� Better for similar patterns

� 3D images give better accuracy than 2D

� >> SLFs capture essence of patterns



Unsupervised Learning to 
Identify High-Resolution 

Protein Patterns



Location Proteomics
� Tag many proteins

� We have used CD-tagging

(developed by Jonathan Jarvik and

Peter Berget): Infect population of

cells with a retrovirus carrying DNA

sequence that will “tag” in a random gene in each cell



Principles of CD-Tagging (Jarvik & 

Berget) (CD = Central Dogma)

Exon 1 Intron 1

Exon 2

Genomic DNA +

CD-cassette

Exon 1 Tag

Exon 2

Tagged DNA

CD cassette

Tag Tagged mRNA

Tagged Protein
Tag (Epitope)

Tag



Location Proteomics
� Tag many proteins

� We have used CD-tagging

(developed by Jonathan Jarvik and

Peter Berget): Infect population of

cells with a retrovirus carrying DNA

sequence that will “tag” in a random gene in each cell

� Isolate separate clones, each of which produces express one 
tagged protein

� Use RT-PCR to identify tagged gene in each clone

� Collect many live cell images for each clone using spinning 
disk confocal fluorescence microscopy

Jarvik

et al 
2002



What 

Now?

Group 
~90 

tagged 
clones 

by 
pattern



Solution: Group them 

automatically

� How?

� Features can be used to measure similarity of 
protein patterns

� This allows us for the first time to create a 

systematic, objective, framework for 

describing subcellular locations: a 

Subcellular Location Tree

� Start by grouping two proteins whose 
patterns are most similar, keep adding 
branches for less and less similar patterns

Chen et al 2003;

Chen and Murphy 2005





Nucleolar Proteins



Punctate Nuclear 

Proteins



Predominantly 
Nuclear 

Proteins with 
Some Punctate

Cytoplasmic
Staining



Nuclear and Cytoplasmic Proteins with Some 

Punctate Staining



Uniform



Generative Models for 

Subcellular Location Patterns



Need

� How do we communicate results of 
clustering patterns?

� Show all images from a given cluster?

� Long download

� No ability to generalize

� Proposal: Use generative models



LAMP2 pattern

Nucleus

Cell membrane

Protein



Synthesized Images

Lysosomes Endosomes



Mitochondria Nucleoli

Synthesized Images



Model Distribution

� Generative models provide better way of distributing 
what is known about “subcellular location families” (or 
other imaging results, such as illustrating change due 
to drug addition)

� Have initial XML design for capturing the models for 
distribution

� Have portable tool for generating images from the 
model



Generation Process

Protein

Cell Shape

Nuclear Model

XML



Generating Multiple 

Distributions for Simulations

Protein

Cell Shape

Nuclear Model

XML

Simulation 1

Simulation 2

Simulation 3

Conclusions



Combining Models for Cell 

Simulations

Protein 1

Cell Shape

Nuclear Model

Protein 2

Cell Shape

Nuclear Model

Protein 3

Cell Shape

Nuclear Model

XML

Simulation

Shared 

Nuclear 
and Cell 

Shape



The Protein Subcellular 
Location Image Database 

(PSLID) 



PSLID: Protein

Subcellular Location Image Database

� A publicly accessible image database at 
http://pslid.cbi.cmu.edu
� Version 3 released February 2, 2007

� 2D and 3D images (single cell regions defined)

� Two cell types, HeLa and 3T3

� Over 120,000 images/3000 unique fields/14,000 cells

� 111classes; 55 known proteins; 11 targeting mutants 
of a single protein

� Programmatic search via URL

Huang et al 2002; Huang et al 2007



PSLID: Protein

Subcellular Location Image Database

� A downloadable open source system for creating 
local databases
� Version 3 of software released February 13, 2007

� Focused on subcellular pattern analysis

� SLF features integrated into database

� Integrated comparison, classification, clustering tools

� Designed for high-throughput microscopy

� Interface to OME in the works

� Large ITR project with UCSB for distributed system

Huang et al 2002; Huang et al 2007





External search

� http://pslid.cbi.cmu.edu/public3/search.j
sp?protein=calponin-2





Conclusions

� Methods well worked out for classifying and learning protein 
patterns - better than visual examination

� Temporal information improves discrimination

� Progress on decomposing complex patterns and 

synthesizing distributions

� High-resolution, reliable data for bottom-up systems modeling

� Graphical models provide improved classification of single 

cells in fields (and potentially tissues)

� New fast inference algorithm

� Image database integrated with interpretation tools (PSLID)

� Information extractor for online text and images (SLIF)
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Vision

� Full automation of

� experiment design 

� adaptive acquisition

� model-based image interpretation

� to generate biological knowledge from 
images in a form suitable for systems 
modeling



The Future of Subcellular 
Pattern Analysis



The problem

Protein (Order 104 )

Condition 

(Order 102)

Cell Type 

(Order 102)

Plus: Time scale from subsecond
to years



Other subcellular location 

projects
� O’Shea group - Yeast

� GFP-tagged cDNAs

� GFP and DNA images with some additional markers

� Pepperkok group - human (MCF7 cells)
� GFP-tagged cDNAs

� GFP and DNA images

� Uhlen group (Protein Atlas) - human
� Immunohistochemistry with monospecific antibodies

� DAB and hematoxylin images

� Fixed tissues

� Schubert group (MELK technology)
� Cycles of immunofluorescence, imaging and bleaching

� Fixed tissues

� Teasdale group (Locate, Hela)
� Immunofluorescence and GFP-tagged proteins

� GFP and DNA images



How do we really analyze 

subcellular location?

� Classification and comparison good for 

focused questions but there are too many 

questions to ask

� Scope of problem argues for cooperation on 

grand scale: Human Cytome Project?

� Need intelligent (optimized) data collection: 

probabilistic methods to integrate available 

data, make predictions and suggest 

experiments 
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What do we do
1. Biology: Pose a question about a biological system
2. Acquisition: Design strategy for collecting relevant 

information in the form of images of molecules, cells, 
organisms

3. Signal Processing/Computer Science: Find the answer 
through image processing and machine learning

4. Scientific Computing: Optimize computational 
performance for real-time applications and sharing

For more information: http://www.cbi.cmu.edu

Jelena Kovacevic and Bob Murphy
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Thank you !


