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i Protein localization

= The sequence of each protein
determines where it Is localized in cells

= Subsequences (“motifs”) within a
protein’s sequence are responsible for
targeting it to one (or more) locations
(structures/organelles)
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‘ Open questions

= How many distinct locations can
proteins be found in? What are they?

= How many distinct motifs direct proteins
to those locations? What are they?
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‘ Proteomics

= [he set of proteins expressed in a given
cell type or tissue is called its proteome

= Proteomics projects
= sequence
= Structure
= activity
= partners
» location
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Systems Biology and Location

Proteomics

All systems biology must be data driven

Key to progress

= identification of aspect that needs to be analyzed “ome-wide”
= development of assays and automated analysis approaches

Systems biology needs
systematic information on high-
resolution subcellular location

= Eventually, for every expressed
protein for all cell types under all
conditions
Providing this information is the
goal of Location Proteomics
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i Automated Interpretation

= [raditional analysis of fluorescence
microscope images has occurred by
visual inspection

= Our goal over the past ten years has to
been automate the interpretation, to
yield better
= ODbjectivity
= Sensitivity

= Reproducibility
Carnegie Mellon




Supervised Learning of High-
Resolution Subcellular

! Location Patterns
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The goal: Learn to recognize all
jor subcellular patterns

giantin

2D
Nucleolin Images Of

Hel a
cells

Tubulin
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‘ The Challenge

= Pixel-by-pixel or region-by-region
matching will not work for cell
patterns because different cells have
different shapes, sizes, orientations

s Organelles/structures within cells are
not found in fixed locations

= Instead, describe each image
numerically and compare the
descriptors
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Feature-based, Supervised

‘ learning approach

1. Create sets of images showing the location of
many different proteins (each set defines one
class of pattern)

2. Reduce each image to a set of numerical
values (“features”) that are insensitive to
position and rotation of the cell

3. Use machine learning methods to “learn”
how to distinguish each class using the

features
Boland et al 1996; 1997; 1998;

Boland & Murphy 2001; Huang &
Carnegie Mellon Murphy 2004




Example of
classification using
Morphological Features

108 # of objects 6 — Any of these
83 Average size of objects 030 «— features could be
31 Average distance to COF 4 used to

distinguish these
two classes
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Acquisition considerations

= Resolution defined as abllity to distinguish two
“point-sources”

= Maximal resolution in x-y plane given by Rayleigh
(or Abbe) limit

1.220/2NA

= Where A is wavelength of emitted light and NA is the
numerical aperture of the objective; 244 nm for 520
nm light and 1.3 NA

= Sampling theorem (Nyquist) says maximum
iInformation can be obtained if we sample at twice
the maximum frequency present in a sample

= Try to achieve Nyquist Sampling at Rayleigh limit
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‘ Acquisition considerations

= Maintain low cell density if single cell

measurements desired
= Control acquisition variables

Carnegie Mellon

Select (initial) focal plane consistently

Select fields consistently (at least one full cell
per field)

Maintain constant camera gain, exposure time,
number of slices

Select interphase cells or ensure sampling of cell
cycle



‘ Acquisition considerations

= Collect sufficient images per condition

= For classifier training or set comparison, more than
number of features

= For classification or clustering, based on confidence
level desired

= Collect reference images if possible (DNA,
membrane)
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‘ Annotation considerations

= Maintain adequate records of all experimental
settings

= Organize images by cell type/probe/condition
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‘ Preprocessing

Correction for/Removal of camera defects
Background correction

= Autofluorescence correction

= |[llumination correction

= Deconvolution
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slices
(from bottom
to top) for
cell labeled
for
transferrin
receptor
(primarily in
endosomes)
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slices
(from bottom
to top) for
cell labeled

for giantin
(primarily in
Golgi)
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slices
(from bottom
to top) for
cell labeled
for tubulin
(major
constituent of
microtubules)
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Single cell segmentation

i approaches

= Voronoi

= Watershed

= Seeded Watershed
= Level Set Methods
= Graphical Models
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‘ Voronoi diagram

Given a set of seeds,
draw vertices and

edges such that each
seedisenclosedina "]
single polygon where %y
each edge is 05
equidistant from the
seeds on either side. o3}

=
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Voronoi Segmentation

‘ Process

Carnegie Mellon

Threshold DNA image (downsample?)
~ind the objects in the image
~ind the centers of the objects

Use as seeds to generate Voronoi
diagram

Create a mask for each region in the
Voronoi diagram

Remove regions whose object that does
not have intensity/size/shape of nucleus




®

Original DNA image




|A

After thresholding and removing small objects




|A

After triangulation
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Final regions masked onto original image



Watershed Segmentatlon

Intensity of an Gk, S
image ~ elevation in — &= S5
a landscape oy
= Flood from minima

= Prevent merging of ., T e
“catchment basins” = - o
- Watershed borders http://www.ctic.purdue.edu/KYW/glossary/whatisaws.html

built at contacts
between basins
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‘ Watershed Segmentation

= [If starting image has intensity centered on the cells
(e.g., DNA) that you want to segment, invert image
so that bright objects are the sources

= [If starting image has intensity centered on the
boundary between the cells (e.g., plasma
membrane protein), don’t invert so that boundary
runs along high intensity
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Seeded Watershed

‘ Segmentation

= Drawback is that the number of regions may not
correspond to the number of cells

s Seeded watershed allows water to rise only from
predefined sources (seeds)

= If DNA image available, can use same approach to
generate these seeds as for Voronoi segmentation

= Can use seeds from DNA image but use total
protein image for watershed segmentation
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Seeded Watershed

‘ Segmentation

Original image Seeds and boundary

Applied directly to protein image (no DNA image)

Note non-linear boundaries

Carnegie Mellon




i Level Set Methods

= Level set function ¢(x,y,t)
= Positive inside the contour (mountain)
= Negative outside the contour (valley)

= Zero on the contour, C embedded at its
zero level (sea level)

0<0
B e e | F<O
\‘\4/ 0>0
o) N/
F>0

http://ranger.uta.edu/~alp/personal/travellmageGallery.htm
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‘ Graphical Model Methods

= Assumptions

= Two classes of pixels: those part of a cell or part of
the background

= Each pixel is likely to be the same class as its
neighbors

= Have information about where cells are likely to be
and where boundaries (edges) are likely to be

= Probability that two pixels are same class related
to probability that there is an edge between them
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€ [d ked

1. Start with initial 2. Run 1t believe 3. Run 2" BP, assign the

DNA and edge potential propagation (BP), separate  pixels with the same class of
foreground and background. p to be segmented_cellt,
Pick the most confidence then set these pixels to be
foreground pixel p, set its background

DNA potential high

4. Pick the most confident 5. lteration stops when the 6. The resulting masks
foreground pixel , Run BP, find  segmented cell is too small

CarnegithbeHibiand iterate....







Morphological Features -

‘ Thresholding

= Morphological features require some method
for defining objects

= Most common approach is global
thresholding

= Methods exist for automatically choosing a
global threshold (e.g., Riddler-Calvard
method)
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i Ridler-Calvard Method

= Find threshold that is equidistant from
the average intensity of pixels below
and above it

= Ridler, T.W. and Calvard, S. (1978)
Picture thresholding using an iterative
selection method. IEEE Transactions on
Systems, Man, and Cybernetics 8.630-
632.
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Ridler-Calvard Method

Blue line Ridler-Calvard Illustratio

shows
histogram of
intensities,
green lines 0.2
show average
to left and 0.15 |
right of red
line, red line
shows
midpoint
between them 0.05
or the RC
threshold

0.25

0.1

Pixel Value
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Ridler-Calvard Method

original thresholded
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‘ Object finding

= After choice of threshold, define objects
as sets of touching pixels that are above
thresholad
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2D Features
Morphological Features

SLF No. Description

SLF1.1 The number of fluorescent objects in the image

SLF1.2 The Euler number of the image

SLF1.3 The average number of above-threshold pixels per
object

SLF1.4 The variance of the number of above-threshold pixels
per object

SLF1.5 The ratio of the size of the largest object to the smallest

SLF1.6 The average object distance to the cellular center of
fluorescence(COF)

SLF1.7 The variance of object distances from the COF

SLF1.8 The ratio of the largest to the smallest object to COF
distance
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2D Features
DNA Features

DNA features (objects relative to DNA reference)

SLF No. Description

SLF2.17 The average object distance from the COF of the DNA image
SLF2.18 The variance of object distances from the DNA COF

SLF2.19 The ratio of the largest to the smallest object to DNA COF distance
SLF2.20 The distance between the protein COF and the DNA COF

SLF2.21 The ratio of the area occupied by protein to that occupied by DNA
SLF2.22 The fraction of the protein fluorescence that co-localizes with DNA
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2D Features
Skeleton Features

Skeleton features

SLF No. Description

SLF7.80 The average length of the morphological skeleton of objects

SLF7.81 The ratio of object skeleton length to the area of the convex hull of the
skeleton, averaged over all objects

SLF7.82 The fraction of object pixels contained within the skeleton

SLF7.83 The fraction of object fluorescence contained within the skeleton

SLF7.84 The ratio of the number of branch points in the skeleton to the length of
skeleton
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lllustration — Skeleton
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2D Features
Edge Features

Edge features

SLF No. Description

SLF1.9 The fraction of the non-zero pixels that are along an edge
SLF1.10 Measure of edge gradient intensity homogeneity

SLF1.11 Measure of edge direction homogeneity 1

SLF1.12 Measure of edge direction homogeneity 2

SLF1.13 Measure of edge direction difference
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2D Features
Haralick Texture Features

‘ (SLF7.66-7.78)

= Correlations of adjacent pixels in gray level images
= Start by calculating co-occurrence matrix P:
N by N matrix, N=number of gray level.

Element P(i,)) is the probability of a pixel with value |
being adjacent to a pixel with value |

= Four directions in which a pixel can be adjacent

= Each direction considered separately and then
features averaged across all directions

Carnegie Mellon




Example image with 4 gray levels
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i Pixel Resolution and Gray Levels

= [exture features are influenced by the
number of gray levels and pixel
resolution of the image

= Optimization for each image dataset
required

= Alternatively, features can be calculated
for many resolutions
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2Dt or 3Dt Features

‘ Temporal Texture Features

= Haralick texture features describe the
correlation in intensity of pixels that are next
to each other in Space.

= These have been valuable for classifying static
patierns.
= Temporal texture features describe the
correlation in intensity of pixels in the same
position in images next to each other over
time.
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Temporal Textures
based on Co-occurrence Matrix

= [emporal co-occurrence matrix P:

Niovel Y Niovo Mmatrix, Element PJi, |] is
the probability that a pixel with value |
has value | in the next image (time
point).

= [hirteen statistics calculated on P are
used as features
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Image at t0
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Implementation of

‘ Temporal Texture Features

= Compare image pairs with different time
interval, compute 13 temporal texture
features for each pair.

= Use the average and variance of features in
each kind of time interval, yields 13*5*2=130
features
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Machine Learning -

! Classification Methods
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‘ Simple two class problem

+

.

?9?
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‘ kK-Nearest Neighbor (KNN)

= In feature space, training examples are

Feature #2
(e.g.., roundness) +

Feature #1 (e.g.., ‘area))
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‘ kK-Nearest Neighbor (KNN)

= We want to label “?’

Feature #2
(e.g.., roundness) +

Feature #1 (e.qg.., ‘area)

Carnegie Mellon




‘ kK-Nearest Neighbor (KNN)

= Find k nearest neighbors and vote

5 So we label it + for k=3,
Feature #2 ¥ ) ) :
e.g.., roundness + neares
= ) + + neighbors
are
N ) _
+
+
+

Feature #1 (e.g.., ‘area)
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‘ Decision trees

= Again we want to label *?’

Feature #2
(e.g.., roundness) +

Feature #1 (e.g.., ‘area)

Slide courtesy of Christos Faloutsos
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‘ Decision trees

= SO we build a decision tree:

?
Feature #2 '
(e.g.., roundness) +
+ +
40
+
+
+
+

50

Feature #1 (e.g.., ‘area)

Slide courtesy of Christos Faloutsos
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‘ Decision trees

= SO we build a decision tree:

area<b0

. 2 i Y / N
round. -
o

40 - - round. <40

L - Y \ N
50 ‘aread’ i ﬁ

Slide courtesy of Christos Faloutsos
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‘ Decision trees

= Goal: split address space in (almost)
homogeneous regions

area<b0

round. .
o

40 - - round. <40

+ T Y \ N
50 ‘area’ i ﬁ

Slide courtesy of Christos Faloutsos

Carnegie Mellon




‘ Support vector machines

= Again we want to label *?’

Feature #2
(e.g.., roundness) +

Feature #1 (e.qg.., ‘area)

Slide courtesy of Christos Faloutsos

Carnegie Mellon




Support Vector Machines
(SVMs)

= Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)

= Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)

= Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)

= Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)

= Use single linear separator??

round.

darea

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)

= we want to label “?’ - linear separator??
= A: the one with the widest corridor!

round.

darea

Slide courtesy of Christos Faloutsos
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Support Vector Machines
(SVMs)

= we want to label “?’ - linear separator??
= A: the one with the widest corridor!

round.
‘support vectors’

/

Slide courtesy of Christos Faloutsos
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i Cross-Validation

s If we train a classifier to minimize error on a
set of data, have no ability to generalize error
that will be seen on new dataset

= [0 calculate generalizable accuracy, we use
n-fold cross-validation

= Divide images into n sets, train using n-1 of
them and test on the remaining set

= Repeat until each set is used as test set and
average results across all trials
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‘ Describing classifier errors

= For multi-class classifiers, typically report

Accuracy = # test images correctly classified
# test images

= For binary classifiers (positive or negative),
define

Carnegie Mellon

TP = true positives, FP = false positives

TN = true negatives, FN = false negatives

Recall = TP / (TP + FN)

Precision = TP / (TP + FP)

F-measure= 2*Recall*Precision/(Recall + Precision)



Murphy et al 2000;
Boland & Murphy 2001;
Huang & Murphy 2004

2D Classification Results

True Output of the Classifier

Class 'NA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TR | Tub
DNA | 99 | 0 0 0 0 0 0 0
ER | 0 97 0 0 2 0 0 0 1
Gia | 0 0 91 0 0 0 0 2 0
Gpp | 0 0 14 | 8 | o 0 2 0 1 0
Lam | 0 0 | 0 | 88 1 0 0 10 | 0
Mit | 0 3 0 0 92 | o 0 3 3
Nuc | 0 0 0 0 0 99 0 1 0
Act | 0 0 0 0 0 0 | 100 | o 0
TR | 0 | 0 0 12 | 2 0 | 81 2
Tub | 1 2 0 0 0 | 0 0 | 95

Carnegie Mellon

Overall accuracy = 92%




Murphy et al 2003

Human Classification Results

True Output of the Classifier

Class "oNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TR | Tub
DNA|100] o | o | o | o | o | o] o] o o
ER| o | 90| o | o | 3] 6 | o o o/ o
Ga| 0 | o |56 |3 | 3| 3| 0] o] o o
Goo| 0 | o | 54 | 33| o] o | o o 3 | o
lan| 0 | o | 6 | o | 73| o | o | o | 20 | o
Mt | 0 | 3 | o | o | o |9 | o] o] o 3
Nc| 0 | o | o | o | o o [100] o | o] o
Act | 0 | 0 | o | o | o o] o 10] o o
TR| o | 13 ] o | o | 3 | o | o | o | 8 | o
Tb | 0 | 3 | o | o | o | o] o] 3| o | o3

Carnegie Mellon

Overall accuracy = 83%




iComputer vs. Human

90 -

80

70 -

60

50 -

40

40 50 60 70 80 90 100
Computer Accuracy
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Velliste & Murphy 2002

3D Hela cell images

lear ER Giantin gppl130 Lysosomal

Mitoch. Nucleolar Actin Endosomal Tubulin

Images collected using facilities at the Center for
Carnegie Mellon Biologic Imaging courtesy of Simon Watkins




Velliste & Murphy 2002;
Chen & Murphy 2004

3D Classification Results

Output of the Classifier

S DNA | ER | Gia | Gpp | Lam | Mit | Nuc | Act | TfR | Tub

DNA | 98 2 0 0 0 0 0 0 0
ER 0 100 0 0 0 0 0 0 0
Gia 0 0 100 0 0 0 0 0 0
Gpp 0 0 0 96 4 0 0 0 0 0
Lam 0 0 0 4 95 0 0 0 0 2
Mit 0 0 2 0 0 96 0 2 0 0
Nuc 0 0 0 0 0 0 100 0 0 0
Act 0 0 0 0 0 0 0 100 0 0
TfR 0 0 0 0 2 0 0 0 96 2
Tub 0 2 0 0 0 0 0 0 0 98

Overall accuracy = 98%
Carnegie Mellon




‘ Conclusions (1996-2004)

= Automated classification of subcellular
patterns possible without colocalization

= Accuracy better than visual examination
= Similar for basic patterns
= Better for similar patterns

= 3D images give better accuracy than 2D
= >> SLFs capture essence of patterns

Carnegie Mellon




Unsupervised Learning to
ldentify High-Resolution

! Protein Patterns
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Location Proteomics

= [ag many proteins
= We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene

Carnegie Mellon




Principles of CD-Tagging (Jarvik &
Berget) (CD = Central Dogma)

Genomic DNA +
H B CD-cassette
/l Tagged DNA
CD cassette @

Tagged mRNA

B
m/i Tagged Protein

Carnegie Mellon




Tag many proteins
= We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA

_ sequence that will “tag” in a random gene S

Jarvik - |o)ate separate clones, each of which produces express one

3:;3'2 tagged protein

= Use RT-PCR to identify tagged gene in each clone

= Collect many live cell images for each clone using spinning
disk confocal fluorescence microscopy

Carnegie Mellon
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Chen et al 2003;
Chen and Murphy 2005

o

I

Z-scored Euclidean Dist
Mg (¥}
i —I

—

_] [l HOW'?‘
= Features can be used to measure similarity of
~ protein patterns

= This allows us for the flrst tlme to create a
~ systematic, objectlve framework for

~ describing subcellular locations: a

- Subcellular Location Tree

= Start by grouping two proteins whose
patterns are most similar, keep adding
branches for less and less similar patterns
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Generative Models for

! Subcellular Location Patterns

Carnegle Mellon



i Need

= How do we communicate results of
clustering patterns?

= Show all images from a given cluster?
= Long download
= No ablility to generalize

= Proposal: Use generative models

Carnegie Mellon




LAMP2 pattern

Cell membrane

Nucleus

Protein
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Synthesized Images

Lysosomes Endosomes
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Synthesized Images

Mitochondria Nucleoli
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‘ Model Distribution

= Generative models provide better way of distributing
what is known about “subcellular location families” (or
other imaging results, such as illustrating change due
to drug addition)

= Have initial XML design for capturing the models for
distribution

= Have portable tool for generating images from the
model

Carnegie Mellon




‘ Generation Process

Protein

Cell Shape
Nuclear Model

\_/_
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Generating Multiple

‘ Distributions for Simulations

Simulation 1

—

Protein

Cell Shape

Nuclear Model
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Simulation 2

.

Simulation 3
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Combining Models for Cell

‘ Simulations

Protein 1

Cell Shape

Shared
Nuclear
and Cell

Shape

Nuclear Model

Protein 2

Cell Shape
Nuclear Model

Simulation

Protein 3

Cell Shape

Nuclear Model

-
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The Protein Subcellular
Location Image Database

! (PSLID)
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Huang et al 2002; Huang et al 2007

PSLID: Protein

‘ Subcellular Location Image Database

= A publicly accessible image database at
http://pslid.cbi.cmu.edu

= Version 3 released February 2, 2007

= 2D and 3D images (single cell regions defined)

= Two cell types, HelLa and 3T3

= Over 120,000 images/3000 unique fields/14,000 cells

= 111classes; 55 known proteins; 11 targeting mutants
of a single protein

= Programmatic search via URL

Carnegie Mellon




Huang et al 2002; Huang et al 2007

PSLID: Protein

‘ Subcellular Location Image Database

= A downloadable open source system for creating
local databases
= Version 3 of software released February 13, 2007
« Focused on subcellular pattern analysis
= SLF features integrated into database
= Integrated comparison, classification, clustering tools
= Designed for high-throughput microscopy
= Interface to OME in the works
« Large ITR project with UCSB for distributed system

Carnegie Mellon




Q:Iv %‘ ﬁ;:'r @ hrep://pslid.cbi.cmu.edu/public3 findex. htmi v | © (GF !

PSLID stands for Protein Subcellular Localization Image Database. PSLID collects and structures 2-D through 3-D fluorescence microscope images,
annotations, and derived featres in a relational schema.

It is designed so that interpretations as well as annotations can be queried. The annotations in PSLID, composed of 44 linked tables with publicly
available descriptions, provide a thorough description of sample preparation and fluorescence microscope imaging.

Image interpretation is achieved using Subcellular Location Features that have been shown to be capable of recognizing all major subcellular structures
and of resolving patterns that cannot be distinguished by eve.

The fundamental unit of PSLID is an image set, which is simply a logical grouping of images. Image sets can be defined at the time of image loading, or
they can be defined by searching for images that meet specified criteria (e.g., all images of "actin” or all images that are similar to a query image). They
can also be created by analysis functions such as cluster analysis (e.g., the images in each cluster found by cluster analysis can be put into distinct sets).

Analysis capabilities that are incorporated in PSLID include:

o Searching for images by context (annotations) or content
» Ranking images by typicality within a set
o g.g., o choose an image for presentation or publication
* Ranking images by similarity t0 one or more query images
o "searching by image content” or "relevance feedback”
o Comparing two sets of images (hypothesis testing)
o g.g., o determine whether a drug alters the distribution of a tagged protein
Training a classifier to recognize subcellular patterns
Using a trained classifier to assign images to pattern classes
o @@, assigning images to "positive” or "negative"
Clustering images by their subcellular patterns
o g.g., finding "subcellular location families" within a large set of images

You can go to the Quick Start page to see instructions for PSLID installation, image loading, and image analysis using PSLID.
The public PSLID database currently contains a number of large image collections. It can be accessed interactively or via queries embedded in URLs. We

encourage the submission to PSLID of other image collections documenting the subcellular location of proteins to facilitate "one-stop” searching for
information on subcellular patterns.

Login Public Access Quick Start




‘ External search

= http://pslid.cbi.cmu.edu/public3/search.]
sp?protein=calponin-2

Carnegie Mellon




& @

_ €3 http://pslid.chi...otein=calponin-2

ﬁ} 3 http://pslid.cbi.cmu.edu/public3 /search.jsp?protein=calponin-2 v i:?:.-
_ temp7_710B35DB64C10ABCF21...

Search results for Image Type: 2D Static, Target: calponin-2

10 regions returned (30 regions shown) from the query.

View the summary of set temp8_710B35DB64C10A8CF219992B3A193B57.

Click < besides a given image to retrieve similar images in the database.

Image |Cell Name Organism Segmenter Experiment| Protocol  Target |Microscopy & Filter

% T3 Mus musculus | External Cyto039 |GFP Live Calponin-2| Olympus IX500
|Remn 68249

3T3 Mus musculus | External Cyto039 |GFP Live Calponin-2| Olvinpus IX500

q iT3 Mus musculus| External Cyvto039 |GFP Live Calponin-2| Olympus IX500
!Rem n 68311

3 iT3 Mus musculus| External Cyiol39 |GFP Live Calponin-2| Olvinpus IX500
!Rem‘ n 68342

aT3 Mus musculus | External Cyvtol39 |GFP Live Calponin-2| Olvinpus IX500
iRem‘ n 68373

iT3 Mus musculus| External Cyvto039 |GFP Live Calponin-2| Olympus IX500

iT3 Mus musculus| External Cvio039 |GFP Live Calponin-2| Olympus IX500

00 Musmusculus, _Exiemal FMSJ.EEILLMJMM&W""




Conclusions

Methods well worked out for classifying and learning protein
patterns - better than visual examination

Temporal information improves discrimination

Progress on decomposing complex patterns and
synthesizing distributions

= High-resolution, reliable data for bottom-up systems modeling
Graphical models provide improved classification of single
cells in fields (and potentially tissues)

= New fast inference algorithm

Image database integrated with interpretation tools (PSLID)
Information extractor for online text and images (SLIF)

Carnegie Mellon
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i Vision

= Full automation of
= experiment design
= adaptive acquisition
= model-based image interpretation
= t0 generate biological knowledge from

images in a form suitable for systems
modeling

Carnegie Mellon




The Future of Subcellular

! Pattern Analysis
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‘ The problem

Cell Type
(Order 102)

Condition
(Order 102)

Proteln (Order 104)

%#%m| T

Plus: Time scale from subsecond
Carnegie Mellon {o years




Other subcellular location
projects

= O’Shea group - Yeast
= GFP-tagged cDNAs
= GFP and DNA images with some additional markers
= Pepperkok group - human (MCF7 cells)
= GFP-tagged cDNAs
= GFP and DNA images
= Uhlen group (Protein Atlas) - human
= Immunohistochemistry with monospecific antibodies
= DAB and hematoxylin images
= Fixed tissues
= Schubert group (MELK technology)
= Cycles of immunofluorescence, imaging and bleaching
= Fixed tissues
= Teasdale group (Locate, Hela)
= Immunofluorescence and GFP-tagged proteins
= GFP and DNA images

Carnegie Mellon




How do we really analyze

‘ subcellular location?

= Classification and comparison good for
focused questions but there are too many
questions to ask

= Scope of problem argues for cooperation on
grand scale: Human Cytome Project?

= Need intelligent (optimized) data collection:
probabilistic methods to integrate available
data, make predictions and suggest
experiments

Carnegie Mellon
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olecular Biosensor and Imaging Center rrh

Mission

To develop fluorescence detection technologies for biomedical research and NASA space
exploration.

NIH Technology _enter for Networks
and Pathways
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WhaT do we do

Biology: Pose a question about a biological system

2. Acquisition: Design strategy for collecting relevant
information in the form of images of molecules, cells,
organisms

3. Signal Processing/Computer Science: Find the answer
through image processing and machine learning

4+ Scientific Computing: Optimize computational
performance for real-time applications and sharing

For more information: http://www.cbi.cmu.edu

Carnegie Mellon Jelena Kovacevic and Bob Murphy
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