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Abstract. Cone-beam computed tomography (CBCT) is an important
image modality for dental surgery planning, with high resolution images
at a relative low radiation dose. In these scans the mandibular canal is
hardly visible, this is a problem for implant surgery planning. We use
anisotropic diffusion filtering to remove noise and enhance the mandibu-
lar canal in CBCT scans. For the diffusion tensor we use hybrid diffusion
with a continuous switch (HDCS), suitable for filtering both tubular as
planar image structures. We focus in this paper on the diffusion dis-
cretization schemes. The standard scheme shows good isotropic filtering
behavior but is not rotational invariant, the diffusion scheme of Weick-
ert is rotational invariant but suffers from checkerboard artifacts. We
introduce a new scheme, in which we numerically optimize the image
derivatives. This scheme is rotational invariant and shows good isotropic
filtering properties on both synthetic as real CBCT data.

1 Introduction

Cone-beam computed tomography (CBCT) is an increasingly utilized imaging
modality for dental surgery planning [1], due to the low hardware cost and high
resolution images at a relative low radiation dose. For the surgical planning of
implants, the mandibular nerve canals have to be segmented. In these scans the
mandibular nerve canals are hardly visible. In implant placement, the segmenta-
tion is used to guard the safety margin around the canals during surgery. CBCT
scanners have a relatively low radiation dose [1] thus the small mandibular canal
is characterized by low contrast in a noisy image, see figure 4. The research goal
of this paper, is to find a method to improve image contrast in CBCT scans for
small structures.

Currently the best way to improve contrast in a CT image is to apply it-
erative reconstruction methods with regularization to suppress streak-artifacts
and to improve smoothness in uniform regions [2]. In practice CBCT systems
do not provide the required raw-scanner data for this approach. Therefore post
reconstruction noise filtering is the practical method to improve image quality.
A medical image is often assumed to have piecewise smooth regions with oscilla-
tory noise, separated by sharp edges. There are many methods available in the
literature to denoise such an image [3], in this paper we focus on edge enhancing
diffusion filtering.



Linear diffusion equals Gaussian filtering in which the diffusion time controls
the smoothing scale. To preserve the edges Perona-Malik introduced regularized
non-linear diffusion (RPM) [4]. Edge preservation is achieved by lowering the
scalar diffusion constant in the neighborhood of steep edges. This method re-
sults in piecewise smooth regions, however, image edges remain noisy. Instead
of using a scalar diffusion constant, a tensor can be used to adapt the diffusion
to the underlying image structure. So we smooth with small elongated kernels
along edges, and Gaussian like kernels in uniform regions. The tensor can be
constructed in two ways, as a coherence-enhancing diffusion (CED) [5] or as an
edge-enhancing diffusion (EED). Recently the CED and EED algorithms were
combined in an hybrid diffusion filter with a continuous switch (HDCS) [6]. If
the local image structure is tubular HDCS switches to CED and if it is planar
to EED.

The focus of this paper are the discretization schemes of the anisotropic
diffusion tensor. We will evaluate the performance of the standard discretization
scheme and the rotational invariant scheme of Weickert [7], and introduce a
new scheme in which optimal filtering kernels are constructed using numerical
optimization.

This paper is organized as follows, in the second section we introduce the dif-
fusion filtering algorithm and discretization schemes. The new optimized scheme
is introduced in the third section. Followed by evaluation of the diffusion schemes
on synthetic and real images, and by the final section with discussion and con-
clusions.

2 Diffusion Filtering

Anisotropic diffusion filtering is an iterative edge preserving smoothing method.
It describes the local image structure using a structure tensor also referred to as
the ”second-moment matrix”, for details see [5]. This descriptor is transformed
into a diffusion tensor D. The diffusion equation is commonly written in an
iterative forward difference approximation [7]:

% =V -DVu) = upt1 Zup+ (V- (DVu)) (1)
Where u (u = u(t,x,y,2)) is the image, x,y, z the pixel coordinates and ¢ the
diffusion time. In the discrete function the continues time is replaced by, 7 the
time step-size and k the number of the iterations. The eigenvectors of the diffu-
sion tensor D are set equal to the eigenvectors vy, va, vg with v = [v11, v12, v13]
of the structure tensor (note the symmetry):
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The eigenvalues of the diffusion tensor are A1, Ao, A3 . Because our CBCT scans
contain planar and tubular structures as well, we choose to use HDCS, with



switches between CED and EED eigenvalues depending on the local image struc-
ture, for details see [6].
We can write the divergence operator equation 1 in 3D as:

With ji, j2, j3 the flux components which are described by:

jl = D11 (&Eu) + D12 (3yu) + D13 (qu) (4)
Jo = D1o (Qbu) + Doy (3yu) + Do3 ((92’&)
j3 = D13 (&;u) + D23 (8UU) + D33 (8Zu)

For the standard discretization of the divergence operator central differences
are used:
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The other terms are written in the same way [8], and are combined to a pixel-
location dependent 3 x 3 or 3 x 3 x 3 convolution stencil. Non-negative discretiza-
tion makes the modification that stencil elements remain positive for various
gray values. Rotation invariant anisotropic diffusion is important with curved
like structures such as the mandibular canal. Weickert [7] showed that larger
stencils than 3 x 3 (2D) are needed to fix the number of degrees of freedom to
allow rotation invariance. This is achieved by implementing the equations 3 and
4, with Scharr’s rotational invariant 3 x 3 filters for the image derivatives 0, and
0y, resulting in an rotational invariant implicit 5 X 5 stencil.

3 Optimized Scheme
Another way to write the divergence operator using the product rule [9] is:

V - (DVu) = div(D)Vu + trace(D(VV©u)) (6)
We obtain for the divergence part of the equation:
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We write the Hessian part of the equation as:

trace(D(VVTu)) = (0u) D11 + (Oyyu)Daz + (0,.u) D33
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Equation 7 is discretized using 3 x 3 x 3 derivative kernels, and the Hessian of
equation 8 with a 5 x 5 x 5 second derivative kernel. In 2D the spatial kernels
can be written as:
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The kernel values p = [p1, p2..., p14] can be found analytically or by numerical
optimization. We choose numerical optimization, because it can optimize the
whole process, while analytical derivation is only feasible for separate parts of
the process, with simplifications such as ignoring numerical round of effects. We
optimize the diffusion kernel using the following cost function:

p = argmin (¢;(p) + aey(p)) (11)

This function finds a balance between the edge orientation invariant filtering
performance ey, and isotropic diffusion performance ey, with weight constant
o. With the first term ey we want to find the best edge enhancement for edges
with several orientations and spatial frequencies. Therefore we use the difference
between an image with circles of varying spatial frequencies without noise I,
and an image with Gaussian noise added I,,,;5¢, which is diffusion filtered. With
F(Inoise, p) the diffusion filtering of the image with noise using kernel values p:

er(P) = > [F(Tnoise, p) — 1|, with I = sin(a® +y°) (12)

With the second term e, we want to achieve Gaussian like diffusion in uniform
regions. We use an image Ipqin: Which is zero except the center pixel equal to one.
The term e, is set to the difference between the isotropic noise filtered image
Ipoint and a least squares fitted Gaussian kernel. We set both diffusion tensor
eigenvalues to one, corresponding to a uniform region.

co(9) = argnin Y (Fllins )~ — e (laf/a)) (13)

We use the Matlab Nelder-Mead Simplex minimizer [10] because it is ro-
bust against local minima. Also a quasi Newton minimizer is used [11], because
the minimizer has a high convergence speed. We use 10 iterations of the Sim-
plex Method followed by minimizing until convergence with the quasi Newton
optimizer. This is done iteratively until the simplex method also converges. Pa-
rameters used for the circle image are, size 255 x 255, 7 = 0.1, iterations 5, o = 1,



p = 10, CED eigenvalues, Gaussian noise variance 0.1, and x and y coordinates
in the range [—10,10]. The parameters of Ipin¢ are image size 51 x 51 and 5
iterations, constant = 200. The computed kernel values p are:

0.008 0.049 0.032 0.038 0.111 0.448 0.081
0.334 0.937 0.001 0.028 0.194 0.006 0.948

It is important to note that the scheme is optimized for rotational invariance,
but that the derivative kernels are not rotational invariant, for instance M,
approximates a central difference instead of a Scharr like kernel.

In 3D the approach is the same, a spherical function in an image volume is
used, with 33 instead of 14 unknown kernel variables. The optimized kernels are
available in our open source diffusion toolbox?.

4 Evaluation

We evaluate the properties of the standard, rotation and optimized diffusion
scheme with respect to three image based criteria. The first is noise removal in
uniform regions, the second preservation and enhancement of image edges inde-
pendent of rotation and size. The final test is the combined filtering performance
on a real CBCT dataset.

In this first test we look at noise smoothing in uniform regions. To do this
we use the image Ipyns introduced in the optimization section, with the same
filtering parameters and 100 iterations. Figure 1 shows the image results and

(a) (b) () (d) (e) (f)

Fig. 1. Uniform Diffusion of a pixel with standard discretization (a), rotation invariant
(¢), optimized scheme (e). Sub figures (b), (d) and (f) show the difference between the
image result and least squares fitted 2D Gaussian function. The values in (b) are in
the order of 1-107°, (d) in the order of 1-1072 and (f) in the order of 1-107*.

difference between a least squares fitted Gaussian 2D function and the diffusion
result. Ideal uniform diffusion is equal to Gaussian filtering, thus the standard
diffusion and the optimized scheme perform well. The rotation invariant result
does not look like a Gaussian, this is because the scheme is based on Sobel like
derivative kernels, which do not use the local pixel value but only the neighboring
values.

In the second test we look at rotation invariant edge enhancement, using the
circle image with Gaussian noise I,,,;s¢, the same parameters as in the optimiza-
tion section and 100 iterations.

3 Source code, http://www.mathworks.com/matlabcentral /fileexchange/25449



Fig. 2. The sub figures show the test image (a), after diffusion with the standard
scheme (b), with the rotational invariant scheme (c¢), and the optimized scheme (d).

Figure 2 shows that only the rotational invariant and optimized scheme
are edge orientation independent. The rotational invariant scheme suffers from
checkerboard artifacts due to the Scharr derivative kernels which only uses neigh-
bor pixels and not the current pixel.

The final test is performed on 8 CBCT preprocessed human-head datasets of
400 x 400 x 551 voxels. The preprocessing consist of clustering the data sets in
to three intensity classes background, tissue and bone, using bias field corrected
fuzzy clustering [12], which is robust to streak artifacts. The resulting image
data serves as ground truth for the edges. The edges are detected by applying
a threshold on the gradient magnitude. Uniform regions are defined as the pix-
els which are at least six voxels away from an edge. Finally Gaussian noise of
variance 0.01 is added to the image data. The image data is filtered with the
standard and the optimized scheme using HDCS eigenvalues, with parameters
o =20.5, p=2,7=0.15, HDCS parameters A, = 30, A, = 30, A, = 15 and 26
iterations, see figure 3. Time to filter one dataset on an Intel Core 2 Duo desktop
PC is approximately 25 minutes for the diffusion, and about 2.5 hours for the
NLM filter.
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Fig. 3. Small part of HDCS filtered bone structure, ground truth (a), Gaussian noise
added (b), standard scheme (c¢), rotation invariant (d) and optimized scheme (e).

We compare the performance between the standard, the optimized diffusion
scheme, and the original non-local means (NLM) [13] . The summed squared
pixel distance between Gaussian low pass filtered and original diffusion results is
used as a performance value. A steep edge contains high frequencies which will
be removed by the low pass filter, resulting in a large pixel distance. In uniform
regions high frequency noise will also be removed, thus a large pixel distance is
a sign of noise which is not removed by the diffusion filtering. We calculate the



smoothing pixel distance values for the edge pixels and for the uniform regions.
The results are shown in table 1.

Table 1. Pixel distance between Gaussian smoothed and raw edge preserving diffusion
filtering results of standard, optimized diffusion scheme and NLM.

Edge Uniform region

dataset raw optimized standard NLM raw optimized standard NLM

1 6.2-10* 2.0-10% 1.1-10° 1.4-10°4.6-10* 1.6-10° 7.6 1.9
6.6-10* 2.1-10* 1.5-10% 2.1-10%4.7-10* 1.2-10° 6.7 1.5
6.4-10* 2.1-10* 1.2-10% 1.4-10%4.6-10* 1.4-10° 6.5 0.7
6.5-10* 2.0-10* 1.5-10% 2.2-10%4.7-10* 1.2-10° 6.2 3.1
6.9-10* 2.3-10* 1.3-10% 2.3-10%4.6-10* 1.5-10° 6.9 0.6
6.7-10* 2.6-10* 2.0-10% 1.6-10% 4.5-10* 2.2-10° 9.9 0.3
7.0-10* 2.2-10* 1.5-10% 1.9-10%4.7-10* 1.3-10° 6.8 2.6
6.4-10* 2.2-10* 1.3-10% 1.8-10%4.6-10* 1.4-10° 6.7 1.6
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The NLM algorithm and standard scheme gives the best smoothing perfor-
mance for uniform regions, with a 200 times smaller distance compared to the
optimized scheme. This is because the optimized scheme preserved the edges
of some random noise structures. The same noise structures are also visible in
the rotation invariant scheme in image 3. In the HDCS eigenvalues there is a
threshold value A, to separate between noise and a image structures. But in this
case the signal to noise ratio is too low to allow a good separation between noise
and real image structures. Also on the real object edges the optimized scheme
gives the highest pixel distance. This can be due to remaining noise on the edges
or due to a steeper image edge than with standard scheme. Figure 3 shows it is
because the image edges are more pronounced.

The original 8 CBCT datasets were also filtered with the three methods, and
slices were shown to three medical experts which use cone-beam CT. They pre-
ferred the optimized filtering despited the fact it sometimes enhances noise struc-
tures. They explained that the other methods lose small important details, while
the optimized filtering enhanced some hardly visible structures. Noise structures
are not a major problem because the anatomy is known.

Finally we show the filtering results of all schemes on an CBCT scan which is
geometric transformed to make the jaw flat, see figure 4. The optimized scheme
gives the best enhancement and preservation of the mandibular canal.

S Y
(b) () (d)
Fig. 4. Small part of HDCS filtered scan (a), mandibular canal (arrow) , standard

scheme (b), rotation invariant (¢) and optimized scheme (d). The optimized scheme
better preserves the original edges and image structure.
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Conclusion

The introduced 2D/3D anisotropic diffusion scheme, shows better edge enhance-
ment in our synthetic and CBCT data, compared to the standard, rotation in-
variant scheme and NLM. Filtering is Gaussian in uniform image regions without
checkerboard artifacts. The results show that the better edge preservation also
causes high noise structures to be preserved. Despite this artifact the medical
experts preferred the introduced method because it enhanced also hardly visible
anatomical structures. The cause of the problem is not the optimal scheme, but
has to be solved by a better separation between noise edges and real edges in
the diffusion tensor construction part.
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