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Abstract

Segmenting the mandibular canal from cone beam CT
data, is difficult due to low edge contrast and high im-
age noise. We introduce 3D coherence filtering as a
method to close the interrupted edges and denoise the
structure of the mandibular canal. Coherence Filtering
is an anisotropic non-linear tensor based diffusion al-
gorithm for edge enhancing image filtering. We test dif-
ferent numerical schemes of the tensor diffusion equa-
tion, non-negative, standard discretization and also a
rotation invariant scheme of Weickert [1]. Only the
scheme of Weickert did not blur the high spherical im-
ages frequencies on the image diagonals of our test
volume. Thus this scheme is chosen to enhance the
small curved mandibular canal structure. The best
choice of the diffusion equation parameters ¢; and ca,
depends on the image noise. Coherence filtering on
the CBCT-scan works well, the noise in the mandibular
canal is gone and the edges are connected. Because
the algorithm is tensor based it cannot deal with edge
joints or splits, thus is less fit for more complex image
structures.

1 Introduction

Accurate information about the location of the
mandibular canal is essential in case of dental surgery
[2], because violation of the canal space during implant
placement can damage the inferior alveolar nerve or
blood vessels. Cone beam CT (CBCT) is becoming an
increasingly utilized imaging modality in dental exam-
inations, with a factor of ten lower dose than conven-
tional CT [3]. We tested automatic canal segmenta-
tion methods from literature such as the Fast March-
ing Method on CBCT scans. These methods fail on
CBCT scans because of higher noise, missing ridges
and less contrast between mandibular canal and sur-
rounding tissue than in conventional CT.

In this research we focus on improving the CBCT im-
age quality by filtering the data to remove noise and
enhance the edges, with smoothing which adapts to
the underlying image structure to preserve edges.

We introduce 3D nonlinear anisotropic diffusion filter-
ing which is based on the 2D coherence enhancing dif-
fusion introduced by Weickert. The diffusion tensor in
this method is oriented using an image structure ten-
sor, with a kernel which is elongated in the direction
of the underlying image edges. There are many pos-
sible ways to discretize the continuous diffusion ten-
sor equations and image derivatives. We will evaluate
the influence of several discretization schemes and pa-
rameters choices.

2 Coherence Filtering

The anisotropic diffusion filtering method consist of two
steps. The first is describing the image structure with
the commonly used structure tensor also referred to
as the "second-moment matrix”. The second step is
transforming the structure tensor into a diffusion tensor
for edge enhancing diffusion filtering.

2.1 Step 1, Structure Tensor

Let I(x) denote a 3D image, where x = (z,y, 2) is the
coordinate vector. The structure tensor of a coordinate
in the image I is a symmetric positive semi-definite 3 x
3 tensor given by

J(VI)=K;* (VI-VIT) (1)

With VI the image gradient, and K, a Gaussian
weighting function with sigma p. The eigen-analysis
of this structure tensor will give the orientation of the
local image features:

[%5% 0 0 VIT
J(VI)=[vivavs]- | 0 puz 0 | | vo7 2)
0 0 s vsT

The eigen vectors v1,va, vs give the local image ori-
entations, with vy = [v11, v12, v13]" . With eigen values
w1 > uo > pg describing the average contrast in those
directions.
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2.2 Step 2, Diffusion Tensor
The diffusion tensor filtering equation is described by:

ou

—=V-(D 3
57 =V (DVu) 3)
The natural way is to use the same eigenvector orien-
tations for the diffusion tensor D as given by the struc-
ture tensor:

D1 Dig Dz
D= | Dia Dy Do (4)
D3 Dz D33

Dii = Mui 4+ Av3; + Asvd,

D22 = )\11}%2 + AQUSQ + )\3’032

D33 = /\11]%3 + /\21)53 + /\31}32’3 (5)
D1z = Av11vi2 + Aav21V22 + A3v31U32

D13 = Av11v13 + A2v21023 + A3v31033

Do3 = Av12013 + A2¥22023 + A3U32033

The eigenvalues A\, A2, A3 are calculated with a from
2D to 3D extended equation of Weickert [1]. There are
other edge enhancing eigenvalue equations in litera-
ture, but they often require edge threshold values [4].
Extension from 2D to 3D gives two possibilities, line
enhancement [5]

)\1 =0
Ao =0 (6)
—co
A3 =+ (1—c)e e
s mar-aen ()

or plane enhancement

Al =
A2 = caa+(1—c)exp ((112_—0113)2) )
N = et (L-c)exp ((M_CZ?,)?>

with ¢; € (0,1) a global smoothing constant, and ¢z > 0
the edge enhancing smoothing constant.

The described edge enhancing diffusion filtering is re-
peated in an iterative way. The number of iterations
is set by the user, and will determine the amount of
smoothing.

3 Known Limitations

The described method to find the image structure
orientations is comparable to the vesselness filter of
Frangi et al. [6]. Using the structure tensor to find the

orientations is more robust against noise than the Hes-
sian used by Frangi, but a combination of both meth-
ods gives the best cylindrical structure detection [7]
. We will only use the structure tensor because sec-
ond order derivatives of a 3D volume are CPU expen-
sive. Frangi uses a Gaussian scale space to find ves-
sels of different sizes, diffusion filtering only uses one
scale thus does not perform equally on lines of different
widths. There is one principle limitation of tensors, they
cannot model complex image structures only symmet-
ric spherical shapes. This causes vesselness filtering
like Frangi to fail on vessel joints and Diffusion Tensor
imaging (DTI) on touching and splitting nerves. A pos-
sible solution is describing each image coordinate with
multiple tensors.

4 Numerical Discretization

The image I is a discrete function thus the equations
must be discretized. First we describe derivate dis-
cretization, secondly different diffusion schemes, and
at last a rotation invariance diffusion scheme.

4.1 Derivatives

The gradient VI can be implement with several nu-
meric methods. Most commonly the image is low pass
filtered with a Gaussian kernel K; with sigma o fol-
lowed by central differences. Instead of central differ-
ences also the truncated derivatives of a Gaussian ker-
nel or Sobel kernel can be used. Scharr et al. changed
the smoothing values [1,2,1] of the commonly used
Sobel kernel to [3, 10, 3], which give more rotation in-
variant derivatives.

4.2 Diffusion Schemes

The tensor diffusion equation 3 can be solved numer-
ically using finite differences. The common way is to
replace spatial differences with central differences [5]
and use for % a forward difference approximation [1]:

wlbtl k.
e = AT = (8)
- . ;
uitt = (I +7AF)) % uf;

Where 7 is the time step size and uf] denotes the ap-
proximation of u(x,t) in pixel (i,j) at time k7. The
expression Aﬁj * u{ﬁj is a discretization of V - (DVu).
Thus convolution with a spatially and temporally vary-
ing mask Aiﬁj also called stencil gives the diffusion up-
date. Two common discretizations are the so-called
standard discretization [8] and non-negative discretiza-

tion using a 3 x 3 x 3 stencil. Stability is an issue with
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these schemes, and only a small time step is allowed
7 < 0.5/n, with n the number of image dimensions. To
allow large time steps implicit discretization schemes
were introduced, and explicit schemes stabilized by
means of additive operator splitting (AOS).

4.3 Rotation Invariant Scheme

Rotation invariant anisotropic diffusion is important
with curved like structures such as the mandibular
canal. Weickert showed that larger stencils than 3 x 3
in 2D are needed to fix the number of degrees of free-
dom of the kernel to allow rotation invariance; so he
introduced a 5 x 5 stencil. We can write the divergence
operator equation 3 in 3D as:

V- (DVu) = 9,51 + 0yj2 + 0-J3 9)

With j1, j2, j3 the flux components which are described
by:

J1 = Dy (&ru) + D1o (Byu) + D13 (8Zu)
jg = D12 (Gmu) -+ D22 (8yu) + D23 (('Lu) (1 O)
js = Dais ((%;u) + Das (8yu) + D33 (8zu)

The image derivatives such as d,u are calculated by
using the Sobel filter with values of Scharr, the same
kernel is used to calculated the derivatives of the flux
components. There is no need to combine above
equations into a real 5 x 5 x 5 stencil, because that
will result in more calculations for the same result.

5 Results

We perform three tests. The first to find the most suit-
able diffusion scheme, the second to test the influ-
ence of the involved parameters. The last test is fil-
tering a CBCT scan, to evaluate the performance on
the mandibular canal.

5.1 Scheme Comparison

First, we compare the performance of the 3D diffu-
sion schemes: the standard, non-negative and the
5 x 5 x 5 scheme of Weickert. We use a spherical
image with varying frequencies to test rotational per-
formance, also uniform noise is added to measure fil-
tering performance. We use a diffusion time of 15s
and small time step of 0.1s, the diffusion parameters
are chosen: c; = 0.001,c; =10719 p=1,0 = 1.

The standard and non-negative schemes show large
blurring artifacts on image diagonals especially at the
finer structures, figure 1. The most suitable scheme for
the curved mandibular canal is the 5 x 5 x 5 line filtering
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Figure 2: Stability test of 5 x 5 x 5 scheme

scheme, despite of small checkerboard artifacts. The
time needed to perform 150 iterations on this 257 x
257 x 257 volume with a Intel Core 2 Duo is in the order
of 30 minutes for all schemes.

5.2 Parameters

A constant decreasing image variance is one of the
main principles of iterative noise filtering. By looking
at the image variance while filtering with a number of
diffusion step sizes we will find the maximum time step
for which our 5 x 5 x 5 stencil is stable, figure 2. The
maximum stable step size found is 2.5s, with a higher
value small regions with very high and very low values
start to occur.

We also test the influence of ¢; on the filtering of the
spherical frequencies volume. Setting the constant to
103 gives the smallest squared difference between
test and noise filtered volume. Setting the constant
higher results in Gaussian smoothing. If you set ¢; to
low for instance 10~8, it will causes more severe chess-
board artifacts, and uniform areas are less denoised.

The second constant ¢, determines if the diffusion be-
haves like an edge enhancing diffusion (EED) [5] or
coherence enhancing diffusion (CED). CED will close
interrupted lines and flow-like structures, by steering
the diffusion flux to the outbalanced direction. Coher-
ence enhancing diffusion is less robust against noise,
will not blur uniform regions (because there pu; = pus
), and will smear out endpoints of image lines. Setting
the ¢, constant to 10~ '° which effectively is EED fil-
tering, gives the smallest squared difference between
filtered and spherical test volume. The denominator
term of Weickerts equation, mu; — mus will depend
on the relation between structure and noise. Thus the
value of ¢, should be chosen by the user depending
on amount of noise in the image and the need for edge
enhancement.
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Figure 1: Performance of different 3D diffusion schemes. (a) Spherical Frequencies, (b) Uniform Noise added, (c)
Standard, (d) Non-negative, (e) 5 x 5 x 5 line filtering, (f) 5 x 5 x 5 surface filtering

(a) CBCT (b) Filtered

Figure 3: Mandibular CBCT scan, coherence filtered
with 5 x 5 x 5 stencil, and after filtering geometrically
transformed to a dental scan like volume. Part of a
slice with channel is shown here.

5.3 Mandibular Canal

We filtered a cone beam CT dataset of the head of
a dental patient with dimensions 400 x 400 x 552 and
a uniform voxel resolution of 0.4mm. We used the
5 x 5 x 5 scheme with coherence filtering parame-
ters: time step 2s total diffusion time 10s, co = 105,
c1 = 10-3, 0 = 1 and p = 2. An image of the filter-
ing result is shown in figure 3. The noise in the chan-
nel has disappeared and the edges are enhanced and
connected. The CPU-time needed was 459 seconds,
which could eventually be improved by explicitly using
SSE instructions.

6 Conclusions

The tensor model cannot model edge joints or splits,
which makes it unsuitable for complex image struc-
tures. The best discretization scheme for small curved
edges and ridges is the 5 x 5 x 5 diffusion scheme
of Weickert. Main disadvantage of this scheme are
chessboard like artifacts due to central differences,
also noise is preserved in uniform image regions. Co-
herence filtering of a CBCT scan took 8 minutes, and
successfully enhanced the edges of the mandibular
canal. Main conclusion, coherence filtering with a
5 x 5 x 5 stencil is suitable as pre-processing for auto-
matically mandibular canal segmentation.
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