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Abstract
Systems Biology requires comprehensive systematic data on all aspects and levels of biological organization
and function. In addition to information on the sequence, structure, activities and binding interactions of
all biological macromolecules, the creation of accurate predictive models of cell behaviour will require
detailed information on the distribution of those molecules within cells and the ways in which those
distributions change over the cell cycle and in response to mutations or external stimuli. Current information
on subcellular location in protein databases is limited to unstructured text descriptions or sets of terms
assigned by human curators. These entries do not permit basic operations that are common to other biological
databases, such as measurement of the degree of similarity between the distributions of two proteins, and
they are not able to fully capture the complexity of protein patterns that can be observed. The field of
location proteomics seeks to provide automated, objective high-resolution descriptions of protein location
patterns within cells. Methods have been developed to group proteins into statistically indistinguishable
location patterns using automated analysis of fluorescence microscope images. The resulting clusters,
or location families, are analogous to clusters found for other domains, such as protein sequence families.
Preliminary work suggests the feasibility of expressing each unique pattern as a generative model that can
be incorporated into comprehensive models of cell behaviour.

Introduction
Systems Biology requires comprehensive, systematic data on
all aspects and levels of biological organization and function.
The genomics revolution led to a new paradigm for obtaining
such data: acquiring data on a specific aspect of structure
or function across a complete (or nearly complete) set of
biological entities. The complete set of these entities can be
referred to using the suffix ‘ome’ appended to the name of the
entity to be studied (e.g. genome, transcriptome and pro-
teome) and its study referred to using the suffix ‘omics’
(e.g. proteomics). The aspect to be studied can then be
used as a modifier. Thus proteomics is the study of all pro-
teins (in a given cell or tissue, each of which may have a
distinct proteome), and interaction proteomics is the study
of the interactions between the proteins in a proteome. This
approach to terminology has advantages over alternatives that
define an ‘ome’ [1] for each possible aspect or collection
of things that can be studied, even if those things are not
tangible. For example, the disadvantage of using the alter-
native ‘interactome’ is that, although it is clear that the aspect
being studied in a systematic way is interactions, the nature
of the things that are interacting is unspecified.

Following the logic laid out above, we have coined the
term location proteomics [2] to describe the systematic study
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of the location of proteins within cells. Location proteomics
requires one or more methods for determining or predicting
the location, combined with a systematic means of organizing
and referring to the set of possible locations in which a protein
may be found.

Word = 0.001 picture
To date, the latter has been best provided using the terms of
the cellular component ontology created by the Gene Onto-
logy Consortium [3]. However, there are at least two signi-
ficant problems with using this vocabulary-based approach.
The first is the often arbitrary manner in which terms
are assigned to a protein (and the resulting difficulty of
reasoning from them). For example, we may ask why one pro-
tein (human gpp130/golph4, SwissProt accession number
O00461) is assigned the term ‘Golgi lumen’ and another (hu-
man giantin/golgb1, SwissProt accession number Q14789) is
assigned ‘Golgi stack.’ The second problem is the inability of
the vocabulary to capture complex locations, such as ‘just the
rims of the cis- and medial-Golgi cisternae’.

Thus ways in which the Gene Ontology terms can be com-
bined are both too ambiguous and too numerous to ensure
that the same unique combination is always assigned to a
given protein pattern, and are insufficient to capture the
significant changes in the patterns observed in cells.

Since experimental determination of the location has been
performed only for a small fraction of all the proteins,
location prediction (reviewed in [4]) would appear to be a
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valuable approach (as it has been, to some extent, in structural
proteomics). Unfortunately, the absence of a well-defined
framework for assigning known proteins to a high-resolution
location limits the ability of researchers to train location
predictors with sufficient complexity to be ultimately useful
for predicting locations for unknown proteins. Knowledge of
the high-resolution location patterns of proteins is required
for meaningful systems modelling. A particular area of
uncertainty is whether location predictors, especially those
based on general properties such as amino acid composition,
are capable of predicting the ways in which location will
change for specific amino acid changes (e.g. for proteins
encoded by mutant alleles).

Automated determination of subcellular
location using fluorescence microscopy
There is a strong need for the collection of new data providing
information on the high-resolution patterns of proteins, but
there is also a need for tools that can interpret that data
automatically and assign proteins to systematically organized
locations. The most common and practical means of obtaining
data on subcellular location is to collect images of tagged
proteins by fluorescence microscopy. The development of
tools to interpret such images has been the focus of research
by my group for a number of years.

Before discussing these tools, it is worth discussing various
approaches to tagging of proteins for determining their
location. These can be divided into those that tag native, un-
modified proteins and those that modify the protein (usually
by manipulating the encoding DNA) to introduce a means
of visualizing it. The primary approach to tagging native
proteins is immunofluorescence, which uses antibodies,
but fluorescent probes that bind to specific proteins (e.g.
phalloidin binding to F-actin) are also used. This approach
has two major disadvantages: it cannot be used on live cells
and it depends on the availability of antibodies or probes of
sufficient specificity. The latter is especially a problem when
considering the determination of location on a proteomewide
basis.

Tagging of proteins by manipulating their encoding DNA
sequence does not suffer from these limitations, but intro-
duces the concern that the location of the tagged protein may
be altered by the presence of the tag. This concern cannot be
eliminated, but it can be lowered in some circumstances (as
discussed below). Protein tagging can be accomplished either
by manipulating a specific isolated coding sequence
(either genomic or cDNA) and then introducing the mani-
pulated gene into cells or by tagging a coding sequence (either
randomly or specifically) within the genome. A particularly
powerful version of the latter approach is CD tagging,
which utilizes a retroviral vector to insert a green fluorescent
protein-encoding exon into genomic DNA [5]. Tagging of
genomic DNA has the advantage that normal regulatory
sequences are preserved so that the levels of the tagged protein
can be expected to be similar to those of the unmodified
protein. In contrast, expression of tagged cDNAs is usually

accomplished using a strong promoter so that levels are typi-
cally much higher than those for the endogenous proteins.
This can lead to a concern beyond that resulting from the
tagging itself, since overexpression may saturate targeting
mechanisms and lead to mislocalization of the tagged protein.

Many projects describing the analysis of significant
numbers of tagged proteins have been reported (reviewed
in [5]). Most of these projects have involved cDNA fusions.

Given a means of generating images of tagged proteins,
conclusions about the subcellular locations of those pro-
teins can be drawn by visual inspection or by automated
interpretation. To demonstrate the feasibility of the latter
approach, my group carried out initial work on automated
classification of protein patterns for proteins whose subcellu-
lar location is known [6,7]. Using two-dimensional images of
HeLa cells showing the distributions of nine proteins (with
a parallel image of DNA), we showed that the patterns of all
major organelles could be recognized. This recognition was
accomplished using sets of numerical features to describe the
pattern in each image combined with an automated classifier,
such as a neural network. As we have implemented additional
features and more robust classifiers over the past few years,
the overall accuracy of recognition has improved from an
initial value of 84% for a neural network classifier using
a set of 37 features [7] to the best current value of 92%
for a majority-voting ensemble classifier using a set of 47
features [8]. Perhaps the most important conclusion from the
present study was not only that automated recognition of
subcellular patterns was feasible, but also that it could be
more accurate than visual inspection! This was demonstrated
by measuring human accuracy on the same images. The
results showed an overall accuracy of 83%, but, most im-
portantly, showed that the patterns of two Golgi proteins that
can be distinguished with an average accuracy of >86% by
the most recent automated system could not be distinguished
beyond random guessing by visual classification [9].

Since cells are three-dimensional (and usually have signi-
ficant thickness compared with the axial resolution of a
microscope, at least at high magnification), we next examined
whether the use of three-dimensional images would improve
the classification accuracy of the HeLa patterns [10]. This
was indeed the case, with the most accurate current classifier
being able to distinguish the same patterns with an average
accuracy of 98% [11]. Table 1 shows a confusion matrix for
these patterns, where rows of the matrix depict the protein
which was actually labelled in an image, and the columns
depict the pattern assigned to that image by the automated
classifier, and the values in the matrix represent the fraction
of the images in a given row that were classified in a given
column. Perfect performance would result in 100% along
the diagonal and 0% elsewhere, while random performance
would yield approx. 10% in each position. The results are
nearly perfect and the ability to distinguish the two Golgi
proteins, as well as the very similar lysosomal and endosomal
patterns, can be clearly seen.

The sets of numerical features used to obtain these results
were drawn from a number of categories that capture distinct
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Table 1 Results of an automated classification of three-dimensional images of HeLa cells

Values shown are the percentage of images from the class shown in the row that were classified as belonging to the class shown in the column.

The average rate of correct classification was 98%. Taken from [11]. ER, endoplasmic reticulum; LAMP2, lysosome-associated membrane protein 2;

Mit., mitochondria.

Output of the classifier

True class DNA ER Giantin Gpp130 LAMP2 Mit. Nucleolin Actin TfR Tubulin

DNA 98 2 0 0 0 0 0 0 0 0

ER 0 100 0 0 0 0 0 0 0 0

Giantin 0 0 100 0 0 0 0 0 0 0

Gpp130 0 0 0 96 4 0 0 0 0 0

LAMP2 0 0 0 4 95 0 0 0 0 2

Mitochondria 0 0 2 0 0 96 0 2 0 0

Nucleolin 0 0 0 0 0 0 100 0 0 0

Actin 0 0 0 0 0 0 0 100 0 0

TfR 0 0 0 0 2 0 0 0 96 2

Tubulin 0 2 0 0 0 0 0 0 0 98

information about an image. For example, morphological
features capture information about the properties of fluor-
escent objects in an image (such as individual vesicles),
while texture features reflect the probability that a pixel
of one intensity is found adjacent to a pixel of another
intensity (e.g. reflecting whether the pattern is random or
organized into elements like stripes or circles). All features
were implemented in such a manner that they are at least
largely unaffected by the position, rotation, size or shape
of a given cell in a field. A standard nomenclature for the
features and feature sets has been defined. Each set of features
is referred to by a number and the prefix SLF (subcellular
location feature), and each individual feature is referred to
by the set name followed by a period and the number of
that feature within the set (e.g. SLF3.2 is the second feature
within set SLF3). Once a set of features has been constructed,
the critical next step is deciding which features are useful
for the purposes of classification. We have compared a
number of methods that can be used for this feature reduction
step [12]. The best results were obtained with one of the
classical methods, stepwise discriminant analysis.

The demonstration that the SLF can be used to represent
protein location patterns sufficiently so that they can be
recognized with very high accuracy leads naturally to a new
use for the features: calculating the similarity between two
location patterns. This can be done, for example, to compare
two cell images of the same protein or the average feature
values from many images of two different proteins. The
use of the SLF in this manner creates, for the first time, an
objective way of measuring the degree of similarity between
the location patterns of different proteins, a capability that has
been critical in other domains (such as sequence comparison
using programs such as BLAST). Similarity of location for
two proteins could previously be measured by comparing the
Gene Ontology terms assigned to them; however, as discussed
above, this similarity measure relies on subjective assignment
of Gene Ontology terms to the patterns.

The next step towards a systematic framework for
representing subcellular location is the use of similarity
measured using SLFs to construct an objective grouping
(or clustering) of proteins based on their location. This is
an unsupervised learning task (as opposed to the supervised
learning task of classification), and it is therefore critical to
have one or more explicit criteria for evaluating the final
groupings of proteins. There are many methods that can be
used to perform this clustering, and many distance functions
that can be used. A very analogous situation arises in the
analysis of transcript levels using microarrays, but the case
of subcellular patterns may be considered more challenging
because the variation in pattern from cell to cell within
the same population is usually greater than the variation in
relative RNA level from duplicate samples.

We have explored using different clustering methods and
different distance functions to cluster three-dimensional
images of different clones of 3T3 cells obtained by Dr J. Jarvik
and Dr P. Berget using CD tagging (as discussed above).
We proposed a measure of the degree to which clusterings
by different methods agree as a criterion for choosing a
distance function, and described a method for rejecting outlier
images and choosing a features set. When this approach was
applied to images of the first 90 clones of 3T3 cells, we ob-
tained a consensus cluster tree that agrees with assignments by
visual inspection (and, where available, information on loca-
tion from protein databases), but which subdivides patterns
further than can be done reliably by eye. Figure 1 shows such
a tree with representative images from a few of the clusters.
The entire tree (and the supporting images) can be viewed
through an interactive browser at http://murphylab.web.
cmu.edu/services/PSLID/tree.html.

Of course, to build a comprehensive tree for subcellular
location requires images of far more than 90 proteins. A
major challenge for the field will be to collect images for
tens of thousands of tagged cell lines (just within one cell
type!). Tools for incorporating images from more than one
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Figure 1 Subcellular location tree for three-dimensional images of randomly tagged proteins in 3T3 cells

CD-tagged clones were generated and images collected by spinning disc confocal microscopy as described in [2] and

clustered as described in the text and in [13].

cell type will also be required, and we have made some
preliminary progress on combining images from two cell
types into a single tree.

Location proteomics meets systems
biology
The final task required to provide systems biology with
sufficient information on subcellular location so that accurate
cell (and tissue) simulations can be made will be to convert
the protein patterns discovered by the methods described
above into generative models of protein distribution. Such
models will enable the generation of synthetic cell images
that are statistically compatible with the underlying
images and, hopefully, in a manner that will allow the
distribution of more than one protein to be simulated in a
single cell. We have obtained very preliminary encouraging
results for building such models, but the full realization
of this goal will be a major challenge over the next few
years. Ultimately, we anticipate the availability of detailed
knowledge of the distribution of all proteins within all the
major cell types, and of models that predict how these
distributions change during development and disease.
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