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In this column, I briefly reflect on the manner in which
automated analysis of the subcellular distribution of pro-
teins (location proteomics) is relevant to the field of
cytomics. There are many definitions of cytomics that vary
slightly in emphasis. Fundamentally, however, it is the sys-
tematic, comprehensive study of at least one cytome,
where a cytome is the collection of cell states exhibited
by a tissue or organism. We define a cell state as a unique
combination of all observable cell behaviors or pheno-
types. Different cell types represent different cell states,
of course, but the same cell type can exist in more than
one state (e.g., activated and quiescent). Clearly, a cell’s
state is influenced by and reflected in the set of proteins
that it expresses.

However, simply knowing how much of a protein is
expressed is not sufficient to understanding its contribu-
tion to the cell state. It is particularly important to also
know its subcellular location because changes in protein
subcellular location can cause dramatic effects on cell
behavior. Perhaps the most thoroughly studied example of
this phenomenon is the changes in protein location asso-
ciated with apoptosis (1). Changes in location within a
cell type may also cause or result from disease, as illus-
trated by the suspected involvement of the Wnt pathway
and b-catenin in a number of cancers (2).

Based on the success of the various genome projects, the
feasibility and desirability of undertaking projects to study a
single aspect of gene or protein structure or function has
become accepted. Many such projects have been initiated,
including projects to determine or predict all protein struc-
tures and to measure gene and protein expression levels in
many cell types and under many conditions. However, sub-
cellular location has received less attention than many other
aspects of gene and protein behavior. The major exception
is in yeast, in which almost all proteins have been assigned
to a set of major subcellular structures (3,4) using fusion of
cDNAs with the coding sequence of fluorescent proteins
such as the green fluorescent protein. For example, Huh

et al (4) used green fluorescent protein tagging of cDNAs
and visual examination to assign proteins to 12 categories:
cell periphery, bud, bud neck, cytoskeleton, microtubule,
cytoplasm, nucleus, mitochondrion, endoplasmic reticulum,
vacuole, vacuolar membrane, and punctate. They then used
colocalization with red fluorescent protein markers to
divide the cytoskeleton class into two classes, actin cytoske-
leton and spindle pole, and to add nine new categories:
nucleolus, nuclear periphery, golgi apparatus, three types of
transport vesicles, endosome, peroxisome, and lipid parti-
cle. In all, 4,156 proteins were assigned to these 22 cate-
gories in their study.
Pilot projects in mammalian cells have also been de-

scribed. For example, Simpson et al. (5) used cDNA tag-
ging to localize approximately 100 proteins in a human
cell line, and Jarvik et al. (6) used a clever genomic-tagging
approach (termed CD-tagging) to localize a similar num-
ber of proteins in mouse 3T3 cells. As with the yeast stud-
ies, analysis was restricted to assignment of proteins to
one of a limited number of major locations.
These results, although useful and illustrative, do not

provide location information with sufficient resolution to
be useful for understanding and modeling cell behavior.
The limited resolution also applies to systems that have
been designed for predicting subcellular location from pro-
tein sequence. Further, there is an implicit assumption in
many prediction schemes or curated protein databases that
proteins have a single location regardless of cell type or
condition. In contrast, location is not necessarily the same
between different cell types, as illustrated by the differ-
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ences in subcellular location of viral glycoproteins between
cell types that correlate with viral susceptibility (7).

The analysis above demonstrates the need for high-resolu-
tion, comprehensive analysis of the subcellular location of
proteins in many or all cell types. This demands high-
throughput methods for imaging tagged proteins and auto-
mated methods for analyzing the resulting images. To meet
the latter need, my colleagues and I began applying machine
learning methods to subcellular pattern analysis a number of
years ago. We initially demonstrated the feasibility of auto-
mated classification of subcellular patterns (8) and have
extended and refined these results to the point that all major
subcellular patterns can be recognized in two- and three-
dimensional images of single cultured cells with very high
accuracy (9). An important conclusion from this work is that
automated classifiers can not only be trained for this task
but also can perform better than visual examination (10).
More recently, the combination of classification methods
with an automated imaging system has been described (11).

Although automated, these classification approaches
still have the same limitation as the visual and prediction
approaches: they can recognize only the major patterns
that they have been trained with. An important alternative
therefore is to use unsupervised machine learning (cluster
analysis) to group proteins by their high-resolution pat-
terns. We have coined the term ‘‘location proteomics’’
(12) to describe the combination of large-scale protein tag-
ging, high-resolution imaging and clustering by subcellular

pattern. The most extensive results of this type described
to date are for 90 tagged 3T3 clones that were demon-
strated to contain 17 distinct location patterns (Fig. 1)
(13). A similar clustering approach has been taken to
group drugs by their effects on subcellular patterns (14).
In addition to being critical for bottom-up systems biol-

ogy efforts to model cell behavior, information that will
become available from location proteomics over the next
decade can provide important clues to proteins that re-
flect abnormal cell states. These can then be used with
the same automated pattern analysis methods to detect
disease or monitor therapy.
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FIG. 1. Consensus subcellular
location tree for 87 3T3 cell
clones expressed by different CD-
tagged proteins. Numerical fea-
tures were calculated to describe
each image and then proteins
were grouped into statistically dis-
tinguishable groups. An interac-
tive browser (available at http://
murphylab.web. cmu.edu/PSLID/
tree.html) permits viewing of
images for particular proteins in
order of the degree to which they
are representative of the overall
pattern. Examples for two pro-
teins within neighboring but dis-
tinct clusters are shown. See
Chen and Murphy (13) for more
information on the clustering
methods used.
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