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ABSTRACT
*

A common task in cell and molecular biology is to evaluate

the difference or similarity among location patterns under

different circumstances. Our previous work has described an

automated method to objectively compare any pair of

subcellular location patterns using well-characterized

numerical features. This paper describes an improved

version of the previous comparison method by applying

nonparametric testing and multiple testing methods. We

show that the new approach has better performance for

detecting differences, especially on small amounts of data.

The new approach was also used to compare location

patterns in a dataset containing 3D images. To demonstrate

the application of the method, we collected images of drug-

treated cells and then use the method to evaluate the effects

of drugs on location patterns.

1. INTRODUCTION

Location proteomics, the systematic study of cellular protein

localization, is critical to the thorough understanding of how

cells work. Although there are many methods to determine

protein locations, systematic description of location patterns

had not been undertaken until automated, quantitative

methods for interpreting fluorescence microscope images of

cellular proteins were developed [1-3]. These methods have

been shown to have higher sensitivity than human visual

inspection [4], and are more flexible than the hand-tuned

applications that are commonly used for drug screening by

high-throughput microscopy. They can be expected to be

widely used to study drug effects in a systematic manner

[5]. Regardless of the application, the ability to reliably

compare subcellular patterns between two conditions is

critical to any automated microscopy system.

We have previously described a basic scheme for

objective comparison of location patterns [6]. The approach

is simple: each image is converted to a vector of features

that describe the pattern in it, and then a feature matrix is

formed from the vectors for all of the images of a given

*Summer research program participant from the Universidad Metropolitana,

San Juan, Puerto Rico.

condition. Whether the patterns for two conditions are

different or not can then be determined by testing the

hypothesis that the two feature matrices are statistically the

same. Such an approach has been shown to be able to

distinguish any pair from a set of ten location patterns in

HeLa cells [6]. In particular, the patterns of two Golgi

proteins, giantin and gpp130, that cannot be distinguished

by visual inspection [4] can be differentiated correctly.

However, the power of this approach suffers from the

limitations of the testing method used, the Hotelling's T
2

test. It may have low power when the data are not normally

distributed. Furthermore, the number of features that can be

used in the test must be less than the number of samples.

Therefore we have explored other testing methods to

overcome the disadvantages of the T
2
test. Since the

distributions of the features of our data are unknown, a

distribution free testing method would be more suitable.

Usually there are two ways to get a distribution free test.

One is to apply a �
2
test on the binning of data, such as the

power-divergence statistic test [7]. However, these tests do

not work well on high dimensional data unless the sample

sizes are very large. Another way is to do permutation tests.

Some permutation tests such as the energy test [8] are

computationally expensive because their rejection regions

can only be determined by simulation. Therefore we prefer a

permutation test whose test statistic has a known closed-

form asymptotic distribution under the null hypothesis for

any data distribution.

Here we implement two such testing methods and

compare their results with those from the T
2
test. A multiple

testing method based on false discovery rate theory was also

applied to find differences between individual features.

2. DATA PREPARATION

2.1. 2DHeLa Dataset

The 2DHeLa dataset [1] was used in our initial study of

location pattern comparison [6]. It includes images from all

major subcellular patterns collected by immunofluorescence

microscopy, including those of the two similar Golgi

patterns mentioned above. For each pattern, there are 73-98

images of the protein channel. Parallel DNA channels were

also collected to allow characterization of the distribution of

each protein relative to a common frame of reference.
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2.2. 3D3T3 Dataset

We also used a 3D dataset from the CD-tagging project

(http://cdtag.bio.cmu.edu/www/public/), which seeks to

visualize all proteins in NIH 3T3 cells [9]. The CD-tagging

technique randomly tags one protein in each cell with a

fluorescent protein, GFP. Different lines of tagged cells

were isolated, the tagged protein was identified by RT-PCR,

and images of each line were collected by spinning disk

confocal microscopy [3]. We used 90 clones from this

dataset with 9-33 images for each clone.

2.3. 3D3T3 Drug Dataset

This dataset was collected to demonstrate the application of

our approach to evaluating drug effects on cells. The images

were acquired in the same manner as the 3D3T3 dataset,

except that cells were treated with or without drugs 1 h

before imaging. Four cell lines (Table 1A) and four drugs

(Table 1B) were examined. All drugs were obtained from

Sigma Chemical Co. (St. Louis, MO, USA) unless otherwise

indicated. 10-20 images per cell-drug pair were collected.

3. METHODS

3.1. Feature Calculation

We have developed sets of Subcellular Location Features

(SLFs) for describing either 2D or 3D images [4]. For 2D

images, we used the 65 features of SLF6, the same features

used previously for comparison of 2D image sets [6]. These

features include 11 morphological features, 49 Zernike

moment features and 5 edge features. For 3D images, 14

morphological features (SLF14) were calculated [10]. Both

2D and 3D features were designed to be insensitive to the

translation and rotation of a cell within an image. Complete

descriptions of the SLF can be found at

http://murphylab.web.cmu.edu/services/SLF.

3.2. Multivariate Hypothesis Testing

To compare sets of images for two patterns, we assume that

feature vectors of each pattern are drawn independently

from a single distribution for that condition. If the

cumulative distribution functions of the two distributions are

denoted as F1 and F2 respectively, the null hypothesis H0

can then be stated as: H0: F1(x)=F2(x) for every feature

value x. The two patterns will be considered to be different
if the null hypothesis is rejected.

In our previous work, the hypothesis test was conducted

using the pooled Hotelling T
2
test. The test statistic, which is

the Mahalanobis distance between the two groups, has an F-

distribution. The F-distribution has two parameters, or

degrees of freedom, which must be positive. In the case of

our feature comparison, the second degree of freedom is the

total number of images minus the number of features plus

one. This results in a limitation that the number of images

must be one more than the number of features. Another

limitation of the test is that it works best for data sampled

from multivariate normal distributions. While some SLFs

show a normal distribution, some show more exponential or

even bimodal distributions [11].

To overcome these limitations, two nonparametric

approaches were investigated here. One is the Friedman-

Rafsky (FR) test [12], which compares two groups by

analyzing the structure of the minimal spanning tree (MST)

of the pooled data. The test statistic is the number of edges

that connect samples from different groups in the MST, and

we reject the null hypothesis when the test statistic is small.

The other approach is the k nearest neighbor (KNN) test

[13]. Its test score is the number of occurrences when a k

nearest neighbor of a sample belongs to the same group. The

null hypothesis is rejected when the test statistic is large.

Both the FR test and the KNN test were constructed using

Euclidean distance and all features were normalized to zero

mean and unit variance before distance calculation.

3.3. Multiple Testing

Once two patterns are found to be different, one may be

interested in the source of the difference. Independent

univariate tests for each feature are helpful for finding

which features contribute to the difference, but the

occurrence of false conclusions that a feature is different

increases with the number of tested features. A better way to

deal with this problem is the Benjamini-Hochberg (BH)

method [14], in which the rejection threshold increases

linearly with the ascent order of p-values of all the features.

For example, if there are m features to test, we will get m p-

values from univariate testing. We sort them in an ascending

order and the sorted p-values are denoted as p1, p2, …, pm.

Then the threshold at level � is t�/m, where t is the largest

value that satisfies pt< t�/m. The false discovery rate, which

is defined as the number of false rejections divided by the

number of rejections, can be well controlled if the p-values

Table 1. List of cell lines and drugs for drug effects evaluation.

A) Cell lines

Tagged Gene Tagged Protein

Rab21 GTP-binding protein RAB21 [Hs]

Glut1 Glucose transporter 1

Ap3b1 Adaptor-related protein complex AP-3 �l subunit

Cav1 Caveolin1

B) Drugs

Drug Stock Final Conc.

Bafilomycin A1a DMSOb, 0.5mM 200nM

Brefeldin A 200 proof EtOH, 0.5mg/ml 10µg/ml

Chloroquine ddH2O, 10mM 100µM

Nocodazole DMSO, 10 mg/ml 10µg/ml
aA.G. Scientific, Inc., San Diego, CA, USA
bDimethyl sulfoxide
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are independent or positively dependent. The p-values of

SLFs turn out to be positively dependent because different

images tend to generate different features. The BH method

can also be used as a multivariate test by rejecting the null

hypothesis if at least one feature is found to be different.

4. RESULTS

First, pairwise comparison was implemented for the

2DHeLa dataset by the three methods. We set the number of

neighbors considered in the KNN test to 3, which has been

used successfully for other data [15]. Test statistics were

calculated for each pair of image groups. As observed

before for the T
2
method [6], all pairs were found to be

different at the level 0.05 by all methods. Giantin and

gpp130 were the most similar patterns according to test

statistic values (data not shown).

In order to compare the power of the three testing

methods, we built 1000 pairs of groups by drawing samples

from the feature distributions of gpp130 and giantin. Since

the real feature distributions are unknown, they were

estimated by the Gaussian kernel method (using a kernel

density estimation toolbox for Matlab from

http://ssg.mit.edu/~ihler/code/kde.shtml). (Examples of the

estimated distributions are available as described below.)

The more groups that a hypothesis testing method

distinguishes at the same level, the more powerful the

method. When there are 40 samples in each group, the KNN

test is the most powerful method by distinguishing 89% of

the pairs and the power of the FR test (79%) is close to the

KNN test. However, the T
2
test only distinguished 15% of

the pairs. This indicates that the KNN test and the FR test

could be much more sensitive than the T
2
test when data

size is small. This was also shown in fig. 1, which was

obtained by calculating the power of the three methods with

different number of samples. According to the figure, to

distinguish 90 percent of the pairs, the KNN test required 38

images and the FR test required 46 images in each group.

The nonparametric methods were also shown to have

higher power for the 3D3T3 dataset. In the pairwise

comparison of the 3D images among 4005 pairs, the T
2
test

failed to detect a difference between 226 pairs. The numbers

of such undistinguished pairs are 214 and 158 for the FR

test and the KNN test respectively.

Although the nonparametric methods showed higher

sensitivity, it is possible that this is gained from a higher risk

of false rejection. A valid method should only reject true

null hypothesis lower than or close to the level. To validate

the three testing methods, we randomly drew two groups of

40 images each from the same distribution and compared

them. The FR test rejected 40 pairs as different out of 1000

trials, and the KNN test 56. This close match to the 5%

rejection expected demonstrated the validity of the

nonparametric methods. For 3D data, the false rejection

rates were close to 5% for all of the three methods even if

there were only 10 images in each group.

Univariate tests have also been tried in the previous

work and 7 features were found to be different for the

giantin and gpp130 pair [6]. However, no correction was

done to reduce the rate of false positives. In the 1000 pairs

that were from the same population, over 600 pairs have at

least one different feature. When we used the BH method

only three features instead of seven came out to be different

(the histograms are available as described below) and only

16 out of the 1000 pairs had at least one different feature.

Note that even if no individual feature is different it does not

mean that the multivariate distributions are not different.

The giantin and gpp130 patterns can still be distinguished

from each other without the 7 most different features (p-

value<0.01 for all the three tests, data not shown).

Finally we applied our testing methods to the small

dataset of images in the presence and absence of various

drugs. As shown in Table 2, no drug caused a change that

was detected by all four methods. This means that the

changes could be very minor and a powerful testing method

is necessary. Among the testing methods, the KNN test has

the highest sensitivity since it found seven different drug-

control pairs; the FR test found four. In contrast, the T
2
test

only found two affected pairs. It is not surprising that the

nonparametric methods detected more changes because

these methods have been shown to be more powerful than

the T
2
test in the results above. While the correct answer to

these tests cannot be known with certainty, they allow the

possibility of screening drugs automatically at a specified

confidence level.

Table 2. Drug effects evaluation. Each pair was compared by

four methods, the T
2
test, the FR test, the KNN test, and the BH

method. The values in each cell of the table show whether any

difference was detected by the four methods (1 signifies a

difference was found).

Rab21 Glut1 Ap3b1 Cav1

Baf. 0/1/1/1 1/0/1/1 0/0/0/0 0/0/0/0
Bre. 0/0/0/0 0/0/0/0 0/0/0/0 0/1/1/0
Chl. 0/0/0/1 1/0/1/1 0/0/1/0 0/0/0/0
Noc. 0/1/1/1 0/0/0/0 0/0/0/0 0/1/1/1

Fig. 1. The power of detecting difference of the testing

methods upon different sample sizes for the three methods:

the T
2
test (+), the FR test (�) and the KNN test (�). The

dashed line indicates the level at which 90 percent of null

hypotheses were rejected.
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5. DISCUSSION

This paper showed an improvement in comparing protein

subcellular location patterns by using nonparametric testing

methods. The improvement was especially significant for

small amounts of data. This means that fewer images were

required for correct detection of a difference. Although

finding exactly the optimal number of images is impossible,

the results on comparing giantin and gpp130 give us a clue

to determine a reasonable sample size. From Fig. 1, we

concluded that around 40 images in each group would allow

us to detect minor changes.

The results from the drug evaluation experiments also

showed that nonparametric methods were more sensitive.

However, we may not be able to conclude that a drug

changed a location pattern directly, since a difference may

be caused by indirect effects such as induction of cell death

or changes in cell shape or size. One way of alleviating this

problem is to continually improve the feature set to remove

dependency on changes in unwanted parameters.

In many cases, large numbers of cells can easily be

acquired. However, in some cases the resulting increase in

acquisition time per condition may be undesirable. To

balance the tradeoff between speed and accuracy, coarse to

fine methods can be used. First, powerful testing methods

like the KNN test can be used to find candidates after

acquiring a few images. Then more images are only taken

for these identified candidates for further studies.

The comparison method we propose is not only helpful

for drug screening, but also important for characterizing all

proteins in location proteomics. With this method, we can

relate one protein to another with a statistical significance

level. Furthermore, each protein can be described in various

states by specifying under what conditions the location

pattern will change.

The data and code used for the work described here are

available at http://murphylab.web.cmu.edu/data, along with

supplementary figures. The image comparison methods

described here are also available through the Protein

Subcellular Location Image Database

(http://murphylab.web.cmu.edu/services/PSLID).
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