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ABSTRACT

Protein subcellular locations, as an important property of

proteins, are commonly learned using fluorescence

microscopy. Previous work by our group has shown that

automated analysis of 2D and 3D static images can

recognize all major subcellular patterns in fluorescence

micrographs, and that automated methods can be used to

distinguish patterns that are subtly different. Since many

proteins are in constant movement within the cell, we

extended our studies to time series images, which contain

both spatial and temporal information. In this paper, we

present the application of a set of temporal texture features,

which do not require predefining objects for tracking, to the

classification of subcellular location patterns. We

demonstrate that these features successfully captured new

information contained in the time domain by evaluating the

accuracy of automated classification of a data set of five

proteins with similar location patterns.

1. INTRODUCTION

Proteomics requires the discovery of every characteristic of

all proteins, including the subcellular location. A protein’s

location indicates its environment and possible function, and

therefore it is one of the key properties that need to be

learned. A common way to identify a protein’s subcellular

location is to label it with fluorescent dye, take microscope

images and then make decisions by human visual

inspection. Our group has developed computer programs

that can replace this last step. The automated approach is

more objective and sensitive than visual examination, and

single cell 2D and 3D images of major subcellular patterns

can be classified with accuracy over 90% [1-3]. We have

also grouped proteins by their similarity to build subcellular

location trees [3]. All the machine learning and statistical

tools we have assembled are based on features that extracted

from static images. We now expand our study to time series

images, which contain additional information in the time

domain. Many proteins are in constant movement. For

example, many membrane proteins are transporters that

carry molecules into or out of the cell, and cytoskeletal

proteins change their patterns during the cell cycle. In order

to completely understand a protein’s behavior within the

cell, analyzing time series images will be essential.

The challenge of studying protein movement is the

difficulty of defining targets for tracking, which is the most

intuitive way of studying movement. Proteins are often not

grouped to form rigid objects, and blobs of fluorescence can

merge or split. Previous computer vision studies have

addressed motions with similar nature, for example, wavy

water or flags blowing in the wind. Pioneering work by

Nelson and Polana was published in 1992 [4], where the

authors raise the concept of “temporal texture” to define

such “complex and nonrigid” motion. They calculated the

normal flow on each pixel to represent movement along the

image gradient. Then they compared the directionality

obtained from the flow field to uniform direction flow.

Bouthemy and Fablet later adapted the Haralick co-

occurrence texture for static images to movies [5]. Ngo,

Pong and Zhang developed a series of features based on

temporal slices and utilized co-occurrence matrices as well

[6]. To our knowledge, temporal texture features have not

previously been applied to fluorescence microscope images.

Given their simplicity and generality compared with

approaches based on more complicated models to study

protein movement, we describe here the application of

simple co-occurrence temporal textures to the classification

of time-series images of protein distributions.

2. METHODS

2.1. Image Acquisition
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A number of NIH 3T3 cell lines expressing different

proteins fused with green fluorescent protein (GFP) by CD-

tagged have been described previously [7]. Five of these

lines were selected for this study. Cells were plated on

glass-bottom culture dishes 48 h before imaging. The

imaging system consists of a LaserPhysics Reliant 100s 488

Argon laser, a Yokogawa CSU10 Confocal Scanner Unit,

and an Olympus IX50 microscope with a 60x 1.4NA

objective. Images were collected with a Roper Scientific/

Photometrics CoolSnap HQ Cooled CCD camera. The

resulting images have 1280 x 1024 pixels in one slice and

the distance between neighboring pixels was 0.11 micron.

For each cell, 15 slices were taken to form a 3D stack,

where the distance of two neighboring pixels in the z

direction was 0.5 micron. The exposure time for each slice

was 3s, so the time interval between two 3D stacks was

approximately 45 seconds (ignoring time for image transfer

and storage). Each movie consists of 7-34 time points,

depending on the extent of fluorescence photobleaching.

Fig. 1. Sample fluorescence microscope images showing the

distribution of five GFP-tagged proteins. Each image is a

2D slice from the first time point of a 4D (3D plus time)

series.

We collected 3D time series images of five proteins:

cytochrome b-5 reductase, diaphorase 1 (Dia1), serum

deprivation response protein (Sdrp), ATP synthase

(Atp5a1), adipose differentiation related protein (adfp) and

ADP-ATP translocase 23 (Timm23). 20-51 movies were

taken for each cell line. Figure 1 illustrates their 2D static

patterns. All of the five proteins are distributed outside the

nucleus. Dia1 and Sdrp have both even distribution in the

cytoplasm and bright spot-like vesicles. Atp5a1, Adfp and

Timm23 have only a punctate pattern coming from vesicles

or mitochondria.

2.2. Feature Calculation for Static Images

To perform machine learning or statistical analysis, we

represent each image using numerical features. We have

extensively described sets of such features appropriate for

analysis of subcellular patterns in static images, and have

defined a number of sets of these Subcellular Location

Features (SLFs). These include morphological features,

edge features, geometric features, DNA features, Haralick

texture features and others [8]. A detailed description of

each feature and feature set is available at

http://murphylab.web.cmu.edu/services/SLF.

2.3. Feature Extraction for Time Series Images

The temporal texture features we used on time series images

were inspired by the Haralick texture features, which

capture the intensity correlation of neighboring pixels in

space [9]. The co-occurrence based temporal texture

features capture the value correlation of neighboring pixels

in time. The starting point for calculation of Haralick

features is the generation of a gray-level co-occurrence

matrix that captures the correlation (or lack of correlation)

between the gray levels of adjacent pixels.

This is an NxN matrix, where N is the number of gray

levels (e.g., 256). The element in row i and column j of the

matrix is the frequency that a pixel that has value i in the

image at time point 1 has a value j in the same position in

the image at time point 2.

For proteins that show no movement from t1 to t2, the

two images at the two time points are the same, and the co-

occurrence matrix will only have non-zero values on the

diagonal. Different protein movement patterns can be

expected to result in different co-occurrence matrices.

Given the co-occurrence matrix for a pair of images

separated by a certain time interval, we calculate 13

statistics described by Haralick [9] (we use only 13 of the

statistics originally described by Haralick due to

computational instability with the 14
th
). These features are

then compiled across all images separated by that interval,

and we use the mean and variance across the series as the

final features of the image. This process was carried out for

spacings of 45s (adjacent time points), 90s (every other time

point), 135, 180s, and 225s. The result is 13*2*5 =130

features in total.

As discussed above, temporal texture features based on

co-occurrence matrices have been previously described. It is

therefore worth noting the differences between these

approaches and ours. Bouthemy and Fablet [5] built the co-

occurrence matrix using the magnitude of normal flow

rather than directly on intensity, and Ngo, et al. [6] built the

co-occurrence matrix on x-t and y-t temporal slices and only
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calculated two statistics (smoothness and contrast) from the

each matrix.

2.4. Automated Classification

We seek to determine how well the patterns of the five GFP-

tagged proteins can be distinguished using either static or

temporal features. Before feeding the features into a

classifier, we used Stepwise Discriminant Analysis (SDA)

[10] to select the features that have the best power to

discriminate between the classes. Feature selection is

necessary because features that confound the classes can

reduce the classifier’s ability to learn the real differences.

The SDA algorithm has been tested against other feature

selection methods and proved to perform the best in our

previous subcellular classification work [11]. Once a set of

features was selected by SDA, it was used to train Support

Vector Machine (SVM) classifiers. An SVM is a

generalized linear classifier that transforms the features into

a new feature space using kernel functions. In the new

feature space, a linear decision boundary can be drawn to

separate classes. SVM will find the maximum margin

hyperplane in the feature space to insure the minimal

prediction error. We used the max-win strategy to deal with

multiple classes, and 10-fold cross validation to evaluate the

classification accuracy.

3. EXPERIMENTAL RESULTS

To test the ability of temporal features to distinguish similar

patterns, we collected images of five cell lines that express

GFP-tagged proteins with similar location patterns. The

choice was based on results of cluster analysis of static 3D

images of 90 tagged cell lines [_insert Chen 2005 ref]. The

five lines chosen are all contained within two adjacent

clusters found by this analysis.

In order to demonstrate that temporal texture features

capture useful extra information in the time domain, we did

classification experiments using static features and using

static features plus temporal texture features. Forty two 3D

static features (SLF11) were calculated for the 3D stack at

the first time point and 84 2D static features (SLF7) were

calculated on the center slice of the first stack. SDA selected

10 features from the 126 static features. Six of them are 2D

haralick texture features, two are 2D morphological features

and two are 3D edge and morphological features. This

suggests that 2D static patterns are more useful in

distinguishing the five classes. Using 10-fold cross

validation to train and test SVMs, we obtained an average

accuracy of 75.32% (Table 2). The confusion matrix shows

that Dia1 is confused with Sdpr, and only 15% can be

correctly recognized. The other 4 proteins can be corrected

predicted with above 70% accuracy.

We next added the 130 temporal texture features, and

repeated the same procedure. SDA selected eight features,

four of which were temporal texture features (which

included the top two as ranked by SDA) and four of which

were 2D Haralick texture features. Surprisingly, no 3D static

features were selected. This suggests that for our data set,

the temporal texture features have captured all the useful

information that the 3D static features provided. It

demonstrates an important fact that temporal texture

features can depend not only on the movement pattern, but

also on the static pattern of the carrier of the movement. Let

us imagine that we cut out a small hole on a piece of paper,

lay the paper on top of a picture, and slide the picture

underneath. Depending on what is on the picture, what we

observe will be very different. If the picture is of a clear

sky, we will see no changes; if the picture is of a sky full of

stars, we will see black and white shifts. The same idea

applies when we build the temporal co-occurrence matrix;

we analyze the pixel value changes in each position. How

the value changes over time depends on the values in the

neighborhood, as well as the movement itself.

Using the eight selected features to train and test an

SVM classifier (Table 3), we obtained an average accuracy

of 85.06%, 9.74% better than using only static features.

Recognition accuracy of Dia1 is increased from 15% to

50%. Timm23 also has a 15% increase in recognition

accuracy.

We also repeated the same procedure for the temporal

features without combining them with static features. SDA

selected seven features from the 130 temporal texture

features, four of which are among the six temporal texture

features that SDA selected from the mixture of static and

temporal features. The overall classification accuracy with

Prediction by Classifier

True Class Dia1 Sdpr Atp5a1 Adfp Timm23

Dia1 15 75 0 0 10

Sdpr 9 83 0 0 9

Atp5a1 0 10 85 0 5

Adfp 0 0 2 94 4

Timm23 0 0 8 20 73

Table 2. Confusion matrix for classification of five protein

patterns using 2D and 3D static features. The overall

average accuracy is 75.32%.

Prediction by Classifier

True Class Dia1 Sdpr Atp5a1 Adfp Timm23

Dia1 50 35 5 0 10

Sdpr 9 87 0 4 0

Atp5a1 0 5 95 0 0

Adfp 2 0 2 92 4

Timm23 0 5 0 8 88

Table 3. Confusion matrix for classification using 2D and

3D static features plus temporal texture features. The

overall average accuracy is 85.06%.
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just the seven temporal features was 74.03% (Table 4). The

result shows that temporal texture features themselves

capture a significant amount of information, at least about

the variation in pattern between these five proteins. The

prediction accuracy for three of the proteins is above 70%.

Summarizing the results in Tables 2-4, we can see that the

static features alone give 75% accuracy, the temporal

texture features alone giving 74% accuracy, and the

combination gives 85% accuracy. While it is clear that much

information contained in the two feature sets is overlapped,

there is sufficient new information in the combination to

reduce the error rate by 40% (from 25% to 15%).

4. CONCLUSIONS

Time series images provide a important dimension of

information for protein subcellular distribution. We applied

the concept of temporal texture from the computer vision

field to our protein fluorescence images. We used co-

occurrence based temporal texture features as a numeric

description of movement characteristics. The features are

defined on a pixel basis, and require no predefined entity for

tracking. By combining the temporal texture features with

static features, we improved the classification accuracy for a

five protein data set and therefore demonstrated the value of

using time series images and temporal texture features to

better understand protein subcellular distributions. The co-

occurrence based temporal texture features we used are

powerful features that capture not only temporal but also

spatial information and they can provide high classification

accuracy by themselves.
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