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Proteomics is a major current focus of biomedical research, and location
proteomics is the important branch of proteomics that systematicaily studies the
subcellular distributions for all proteins expressed in a given cell type.
Fluorescence microscopy of labeled proteins is currently the main methodology to
obtain location information. Traditionally, microscope images are analyzed by

visual inspection, which suffers from inefficiency and inconsistency. Automated
and objective interpretation approaches are therefore needed for location

proteomics. In this article, we briefly review recent advances in automated
imaging interpretation tools, including supervised classification (which assigns
location pattern labels to previously unseen images), unsupervised clustering

(which groups proteins based on the similarity among their subcellular
‘distributions), and additional statistical tools that can aid cell and molecular
biologists who use microscopy in their work.

KEY WORDS: Location proteomics, Subcellular location features, Fiuorescence
microscopy, Cluster analysis, Protein distribution comparison, CD-tagging,

Systems biology. e 2006 Eisevier inc.

International Review of Cytology, Vol 249 193 0074-7696/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0074-7696{06)49004-5




1 I WLINECN ANLD IVIURNITHY

l. Introduction

With the development of high-throughput analysis techniques, the ap-
proaches used for biological and biomedical research have been tfundamen-
tally changed. The completion of sequencing for dozens of genomes has
revolutionized the way we think about acquiring biological data. We can
now imagine projects to acquire comprehensive data in a reasonable time
frame for a specific characteristic (sequence, structure, function, interaction,
etc.) for a complete set of molecules (DNA, RNA, protein, lipids, etc.) in a
given organism.

Although DNA contains all of the genetic information for an organism, it
1s largely protein expression that differentiates cell types within that organ-
1sm. Therefore, the focus of biological research has shifted from genomucs,
which mainly studies sequence information, to proteomics, where the central
goal 1s to characterize protein functionality.

Proteomics systematically characterizes different properties of all proteins
in a given cell type or tissue, mncluding their sequences, expression levels,
structures, functions, regulations, interactions, and location patterns.
Knowledge of the location pattern of a protein 1s necessary for a complete
understanding of its function. There are a number of ways in which this 1s
true. First, location pattern changes often correlate with activity changes.
For example, it has been shown that activation of the rgr oncogene i1s
partially associated with a change of 1ts location pattern {from the endomem-
brane network to the plasma membrane, which facilitates interaction with
RAS and activates the RAS downstream pathways (Hernandez-Munoz
et al., 2003). Activity of p33 1s also regulated by its location (O’Brate and
Giannakakou, 2003). The protective effects of extracellular signal-regulated
kinase 2 (ERK2) against apoptogenic stimuli are also dependent on the
cellular location of ERK activation (Ajenjo et al., 2004). Second, protein
mislocalization 1s often associated with disease. For example, while lamin B
receptors (LBR) are located in the inner nuclear membrane in normal cells,
they are largely distributed in the cytoplasm 1n cells carrying a mutation that
causes an autosomal-dominant form of Emery—Dreifuss muscular dystrophy
(Reichart et al., 2004). Third, the relationship between two proteins’ loca-
tions can be used to support (or question) protein interaction results found in
other experiments (such as those from yeast two-hybrid screening) since
components of a single protein complex may be expected to have the same
distribution pattern. We have coined the term location proteomics to de-
scribe the systematic study of protein location patterns (Chen et al., 2003). It
requires (1) methods to either experimentally determine or predict location
patterns for all proteins, and (2) methods to systematically organize the set of
possible locations where a protein can be found. This chapter reviews work
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focused on automated experimental determination and discovery of protein
location patterns.

I1. Subcellular Location of Proteins

A. Description, Prediction, and Determination

1. Gene Ontology

Currently the most systematic approach to define and organize the set of all
possible location patterns is the set of terms for “cellular component™ 1n the
Gene Ontology (GO) (Harris et al., 2004). Cellular component 1s one of the
three general categories defined in the GO database, describing locations
at subcellular structure (such as plasma membrane) and macromolecular
complex (such as the ubiquitin ligase complex) levels. The “‘cell” term
(GO:0005623) in GO describes all components within and including plasma
membrane as well as extracellular structures. The cellular component ontol-
ogy is represented as a directed acyclic graph (DAG) in which location terms
are grouped into higher order structures. A DAG differs from a tree-
structured hierarchy in that a child can have multiple parents (i.e., multiple
paths from the root to a specific node). For example, two GO codes are found
for mouse AtpSal protein (ATP synthase, H" transporting, mitochondrial
F1 complex, o subunit, isoform 1): GO:0005739 (mitochondrion) and
GO:0005615 (extracellular space). A portion of the cellular component
ontology leading to G0O:0005739 (mitochondrion) 1s shown in Fig. 1.

2. Overview of Current Methodology for Protein Location
Prediction and Determination

Genome sequencing projects have produced large numbers of putative amino
acid sequences that are often largely unannotated. To learn protein functions
in the context of their subcellular organelle, it is crucial either to experimen-
tally determine their location pattern or to predict their subcellular location
from a sequence.

a. Protein Subcellular Location Prediction 1In the past decade, many efforts
have been made to develop location prediction methods using difierent
approaches. One category of approaches is based on protein sequence simi-
larity, such as LOCKey (Nair and Rost, 2002) and Proteome Analyst (Lu
et al., 2004). A protein sequence is searched against a set of experimentally
annotated sequences, and text features are extracted from homologs and
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FIG. 1 Portion of cellular component ontology for GO:0005739 (mitochondrion).

used to predict the location pattern. However, this approach suffers when
there 1s no significant match between the query protein and proteins in the
training set. The second set of approaches is based on amino acid composi-
tion (or its variations), and includes NNPSL (Reinhardt and Hubbard, 1998)
and SubLoc (Hua and Sun, 2001). Information about amino acid composi-
tions and the correlation between amino acids 1s used as features for predic-
tion. Although these approaches utilize general information of proteins, it
s not clear whether they can capture enough information to distinguish
the difference between some slightly different patterns (such as endosome
and lysosome). A third category 1s based on motif finding, such as TargetP
(Emanuelsson et al., 2000). This approach tries to identify motifs that are
important for localization (such as signal peptides) in the target sequence
and use this information for prediction. The major lmmitations for this
approach are (1) not all proteins 1in the same subcellular location have the
same motif and (2) many genes 1 automatically annotated genomes have
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unreliable 5 sequences. Most current methods, such as PSORT (Nakai and
Horton, 1999; Nakai and Kanehisa, 1992), LOC3D (Nair and Rost, 2003),
and LOCtarget (Nair and Rost, 2004) use a mixture of these approaches to
achieve better performance. Current research in this area focuses on (1) design
of more discriminating sequence descriptors, (2) improvement of classifica-
tion algorithms, and (3) incorporation of Gene Ontology information into the
classification scheme.

Even with recent improvements, current prediction algorithms still suffer
from two major limitations: (1) unsatisfactory prediction accuracy, especially
for some organelles (such as mitochondria), and (2) limited coverage, both
for the number of location patterns and for the number of taxonomic
categories covered 1n prediction.

b. Protein Subcellular Location Determination Protein subcellular location
prediction algorithms require a large database of proteins with experimen-
tally determined locations. Without major improvement in automated deter-
mination of protein location patterns, the prediction methods will inevitably
suffer from limited prediction accuracies and limited coverage. For example,
many similar but still statistically different location patterns exhibited by
different proteins in the same organelle or compartment cannot be distin-
guished by predictive schemes until there are sensitive and consistent meth-
ods to ideniify and systematically describe these slight differences in the first
place. |

Different approaches can be employed to determine protein location pat-
terns. For example, differential centrifugation separation can be used to
obtain subcellular fractions (Hardonk et al., 1977) and proteins contained
in each fraction can be identified by two-dimensional polyacrylamide gel
electrophoresis, enzymatic digestion of separated protein spots, and mass
spectrometry analysis. This approach is usually labor-intensive, and the
resolution of differential centrifugation separation is limited. Recently, efforts
have been made to create a high-throughput protocol for this approach (Jiang
et al., 2004).

Different microscopy technologies can also be employed for protein location
study. For example, electron microscopy (Subramaniam and Milne, 2004),

‘which provides ultrahigh resolution of the specimen, can be used to achieve

precise localization information (Lujan, 2004). Because electron microscopy
cannot be carried out on live cells, fluorescence microscopy has become the
most commonly used technique to study protein distribution within a cell
and the relationships between different proteins (i.e., colocalization of two
proteins) (Brelie et al., 2002). ' '

Traditionally protein locations are determined from images by visual
inspection. For large-scale, systematic location proteomics, however, visual
inspection is no longer feasible since it is labor-intensive and can be highly
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subjective. Unfortunately, while the determination of sequence, expression,
and even structure has been automated and large-scale high-throughput
projects have been initiated (Macbeath, 2002; Norin and Sundstrom, 2002),
the automated determination of protein location patterns has just begun.
Here we review current achievements for automated interpretation of protein
subcellular location patterns from fluorescence microscopy images.

B. Fluorescent Labeling of Proteins

Modern finorescence microscopy combines high-performance optical com-
ponents with digital image acquisition components and computerized con-
trol to allow imaging of cells and tissues with a combination of temporal and
spatial resolution and sensitivity achievable by no other method. Confocal
approaches use spatial filtering to reduce or eliminate out-of-focus light and
permit 1mages of thin optical slices to be acquired. This provides confocal
microscopy with the ability to collect a series of image sections in a thick

specimen, and has led to the tremendous popularity of confocal microscopy

(and its cousin, two-photon microscopy) in recent years.

While cells have some intrinsic fluorescence, little information can be
obtained by fluorescence microscopy of unstained cells. The coupling of
fluorophores and target proteins is therefore the key step in preparation for
a fluorescence microscopy experiment. In general, there are two types of
techniques used for this purpose.

The first method, commonly referred to as immunofluorescence, relies on
delivering external fluorescent molecules into cells (Fupiwara and Pollard,
1976). Cells are first fixed by adding a substance (e.g., paraformaldehyde)
that cross-links proteins in the cell, essentially immobilizing all cellular
components. This prevents the contents of the cells from washing away
when the cells are permeabilized; 1.e., when a detergent is used to fully or
partially dissolve the cell membrane. With the membrane barrier out of the
way 1t 18 possible to introduce desired molecules into the cell—for example,
antibodies conjugated to fluorescent dyes. An alternative to using antibodies
1s to use other substances known to bind to a particular protein. For exam-
ple, the compound phalloidin binds to F-actin, the polymerized protein that
forms part of the cytoskeleton. Therefore dye-conjugated phalloidin can be
used to label the actin cytoskeleton. The use of such probes 1s not strictly
immunotluorescence, but, if the probes are specific and require permeabiliza-
tion for entry, 1t 1s functionally i1dentical. There are several limitations to
mmmunofluorescent labeling, including dependence on the existence of spe-
cific antibodies or probes that are known to bind to the protein of interest
and an inability to 1mage live cells due to the need for fixation and permea-
bilization (which may also disrupt cellular structures), Vital fluorescent
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probes, such as probes that equilibrate preferentially into an organelle,
address the latter limitation but not the former.
The second method therefore i1s to have fluorescent molecules internally

generated in the cells. DNA sequences coding for a naturally fluorescent
protein (such as the green fluorescent protein, GFP) can be joined to either
cDNA or genomic DNA to produce a fluorescent chimeric protein. If a
genomic approach is used, either a specific gene or a random location in
the genome can be tagged. There have been several examples of this approach
(Habeler et al., 2002; Jarvik et al., 1996; Rolls et al., 1999; Telmer et al.,
2002). Random tagging of proteins can also be done with the use of small
epitopes (essentially short sections of a protein) instead of fluorescent pro-
teins (Kumar et al., 2000, 2002). In this case either a fluorescent antibody
against the epitope tag (which requires fixation and permeabilization) or a
cell-permeant fluorescent probe that binds to specific epitopes can be used
(Griffin et al, 1998). Epitope tags can be much smaller than fluorescent
proteins and are less likely to disrupt the function of the protein to which
they are attached.

When random-tagging experiments are repeated enough times, eventually
most (or possibly all) proteins in a given cell type can be labeled. Combined
with fluorescence microscopy, random tagging allows comprehensive
libraries of images depicting the location patterns of protemns 1n a given cell
type to be generated.

Assuming that a (large) collection of digital images has been acquired by
one or more of the above methods, the next step 1s to automate extraction of

information.

IIl. Subcellular Location Patterns of Proteins

A. Automatedad Classification

The first basic task to be carried out by automated interpretation 1s to assign

~a location pattern label to a previously unseen immage. This task can be

formalized as

Given a set of images i own and corresponding labels Yi,own, learn a mapping function f
between I own ANd Yinown, Such that when a new image i ¢ Iinown 18 presented the label
y = f{i) that is assigned is optimal according to some criteria.

Such a system 1s termed a classifier.

Different approaches can be used for this task. Either raw images or
characteristics (termed features) extracted from raw images can be used as
mput into a classifier. Most work in the area of subcellular analysis has



200 UHEN ANU NMUKPHY

utilized the latter approach (Boland and Murphy, 2001; Boland et al., 1998;
Chen and Murphy, 2004; Conrad et al., 2004; Huang and Murphy, 2004b;
Murphy et al., 2000; Steckling et al., 2004), although a successful application
of the first approach has been reported (Danckaert ef al., 2002). The reason
for this preference is obvious: cells vary greatly in their size, shape, inten-
sity, position, and orientation in fluorescent 1images, and as a result, raw
pixel intensity values in general are not very useful in location pattern
recognition. Consequently, the feature-based approach is the focus of this
review.

The core of the feature-based approaches is the development of sets of
numerical features to represent patterns that are not overly sensitive to
changes in intensity, rotation, and position of a cell (Boland and Murphy,
2001; Murphy erf al., 2000). Several categories of features have been used for
this purpose, including morphological, Zernike moment, Harlick texture,
and wavelet features. A standard nomenclature for referring to specific
features and sets of features has been introduced, in which the prefix SLF
(for subcellular location feature) 1s followed by either the number of a set
of features (e.g., SLF1) or a number and a subindex for a specific feature
(e.g., SLF7.3). Tables I and 1I summarize all SLFs developed so far for two-
dimensional (2D) and three-dimensional (3D) images, respectively.

Experience gained from the work described below indicates that calcula-
tion of a large number of features (dozens, even hundreds) from a number of
different categories can benefit a classifier, since they may contain different
types of information. However, this potential advantage comes at a cost: the
automated classifier becomes more complicated when more 1mput features
are included. Computational learning theory (Mitchell, 1997) points out that
the number of training samples required 1s linear with the complexity.
Therefore, a large set of input features can be used only when sufficient
training 1mages are available. Unfortunately, even with the newly developed
automated techniques, 1mage collection can still be a slow process and often
only limited training samples are available. In this situation, more features do
not guarantee better performance. Theretore, reducing the size of the feature
set by eliminating redundant or uninformative features i1s desirable 1n
many machine learning applications. In addition to helping with classifica-
tion problems, using fewer features 1s preferred for applications imnvolving
retrieval of images from databases using image content.

Different feature reduction methods have been tried for this problem,
including both feature recombination and feature selection methods. Feature
selection methods were observed to achieve better performance than feature
recombination methods in the context of subcellular pattern analysis (Huang
et al., 2003). Among feature selection methods, stepwise discriminant analy-
sis (SDA) and genetic algorithms have been observed to achieve the best
overall classification accuracy, and SDA 1s preferred since 1t 18 much more

Reference

Boland and Murphy (2001)
Huang and Murphy (2004b)

Huang and Murphy (2004b)

Murphy et al. (2002)

Murphy et al. (2002)

Boland and Murphy (2001)
Huang et al. (2003)

Boland and Murphy (2001)
Boland and Murphy (2001)
Boland and Murphy (2001)

Murphy et al. (2003)

12

11

13
13

11

49
49
11
49
49
12

Feature categories”

3
8
6

M

Feature selection
features from SLF8
Selected from SLF7

and six DNA

features

Selected from SLF4
Selected
Selected

Unselected
Unselected
Unselected
Unselected
Unselected
Unselected

Selected from SLEF7
The first eight

Number of features
16
22
78
34
37
65
84
32
31
44
47

SLF2
SLF3
SLF4
SLF35
SLF6
SLF7
SLF&
SLEF12
SLF13
SLF15
SLF16

SL.F1
“The feature categories are M, morphological features; E, edge features; C, convex hull features; S, object skeleton features;, D, DNA features;

Z, Zernike moment features; H, Haralick texture features; W, Daubechies D4 wavelet features; G, Gabor features.

Subcellular Location Feature Sets for 2D Images

Feature set name

TABLE |




TABLE I

Subcellutar Location Feature Sets for 3D Images

Number of

Parallel DNA
requirement

Reference

Short description

features

Feature set name

Velliste and Murphy (2002)

Unselected morphological features
N/A

28

Yes

3D-SLF9Y

SDA selected features from 3D-SLF9
Unselected morphological, edge and

Yes

3D-SLF10
3D-SLF11

Chen ef al. (2003)

Haralick texture features
Subset of 3D-SLF9 which does not

42

No

N/A

14

No

3D-SLF14

Chen and Murphy (2004)

require DNA 1mage
The first seven SDA selected features

No

3D-SLF17

from 3D-SLLF11 on 3D HeLa set®
The first 34 SDA selected features from

Chen and Murphy (2005)

34

No

3D-SLF18

3D-SLF11 on 3D 3T3 set’
3D-SLLF11 and 14 DNA features from

Nair et al. (2005)

56

Yes

3D-SLF19

Nair et al. (2005)

3D- SLF9
SDA selected features from 3D- SLF19

52

Yes

3D-SLE20

“The 3D Haralick texture features were calculated at 0.4 pm pixel resolution and 256 gray levels. This feature set achieved 98% overall classification

on the 3D Hel.a dataset.

*The 3D Haralick texture features were calculated at 0.5 um pixel resolution and 64 gray levels. This feature set i1s used for clustering the 3D 3T3

dataset.
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computationally efficient (i.e., it requires less computer time to find a good
subset of features).

1. Classification Based on Cell Level Features

Studies of protein subcellular location patterns are most easily understood in
the context of a single cell. Consequently, automated classification of protein
location patterns was initially carried out on single cell images.

However, many acquired images contain multiple cells per field. To prop-
erly calculate features at the level of each cell, regions of each image
corresponding to a single cell need to be defined. This cell segmentation can
be done either manually (by drawing a polygon for each cell) (Boland and
Murphy, 2001) or automatically (1.e., with balloon or watershed algorithms)
(De Solorzano et al., 2001; Nair et al., 2005; Velliste and Murphy, 2002). The
automated methods usually utilize either total protein stamning (so that each
cell appears as a contiguous region) or surface protein staining (so that the
cell boundary is visible). '

a. Classification of Major Subcellular Location Patterns in HeLa Cells Using
2D Images To test the feasibility of using automated classification to deter-
mine protein subcellular location patterns, a 2D image dataset that covers
all major location patterns was first generated in Hel.a cells (Boland and
Murphy, 2001). Nine proteins were fluorescently labeled, eight using anti-
bodies against proteins in the endoplasmic reticulum (ER), Golgl (giantin
and gppl30), lysosomes (LAMP?2), endosomes (transferrin receptor), mito-
chondria, nucleoli (nucleolin), and microtubules (tubulin), and one using
phalloidin that binds to microfilaments (actin). DNA was simultaneously
labeled with a fluorescent probe (DAPI) that could be separately detected.
Two Golgl proteins (glantin and gppl130) were intentionally included to test
the distinguishing power of automated classifiers. These two proteins are
almost indistinguishable by human visual ispection (Murphy et al., 2003).
The dataset contains 78-98 single cell images per class and 862 mimages n
total. Figure 2 shows representative images for this dataset.

i. Optimizing Classification Accuracy A steady improvement in the ac-
curacy of classification of this dataset has been achiecved over the past few
years. With the mimplementation of new features and the choice of more
robust classifiers, the overall classification accuracy improved from 84%
with a set of 37 features and a neural network classifier (Boland and Murphy,
2001) to the current best accuracy of 92.3% with 47 features and a majority-
voting ensemble classifier (Huang and Murphy, 2004b). The performance of
the current best classifier i1s presented in Table 111 in the form of a confusion
matrix. The diagonal numbers of the confusion matrix show the accuracies
for each individual class and the off-diagonal numbers represent the
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FIG. 2 Typical images from the 2D HeLa image dataset. Images are shown for cells labeled
with antibodies against an ER protein (A), the Golgi protein giantin (B), the Golgi protein
gppl30 (C), the lysosomal protein LAMP2 (D), a mitochondrial protein (E), the nucleolar
protein nucleolin (F), the endosomal protein transferrin receptor (H), and the cytoskeletal
protein tubulin (J). Filamentous actin was labeled with rhodamine-phalloidin (G) and DNA
was labeled with DAPI (K). Scale bar = 10 p. (From Boland and Murphy, 2001.)
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TABLE |I]
Confusion Matrix for a Majority Voting Ensemble Classifier with SLF16 for the 2D HelLa Dataset”

- Output of the classifier

True class PDNA ER Gia GPP LAM Mit Nuc Act TR Tub

DNA 99 1 0 0 0 0 0 0 0 0
-~ ER 0 97 0 0 0 2 0 0 0 1
Giantin 0 0 91 7 0 0 0 0 2 0
GPP130 0 0 14 82 0 0 2 0 ] 0
LAMP2 0 0 1 0 83 1 0 0 10 0
Mitochondria 0 3 0 0 92 0 0 3 3
Nucleolin 0 0 0 0 0 99 0 0
Actin 0 0 0 0 0 100 0 0
TR 0 1 0 0 12 2 0 1 81 2
Tubulin 1 2 0 0 0 1 0 0 ] 95

“The values shown are the percentage of images from the class shown in the row heading that
were classified as being in the class shown by the column heading. The overall accuracy is

92.3%. From Huang and Murphy (2004).

percentage of test samples of each “True” class (row heading) misclassified as
the “Predicted” class (column heading). We can interpret the classifier’s
performance on each individual class from the confusion matrix. For exam-
ple, the classifier shown in Table III correctly classified 88% of LAMP2
classes and mistakenly classified 1% of LAMP2 as giantin, 1% as mitochon-
dria, and 10% as tubulin. Due to rounding errors, the sum for a row 1s not
necessarily 100%.

ii. Tradeoff between Classification Accuracy and Computation Cost of the
Feature Set The features (SLF16) used to achieve the best accuracy of
02.3% were SDA selected from a mixture of 180 features of various types
(including wavelet features). Since wavelet feature calculation involves rotat-
ing each image to a common frame of reference and then decomposing it with
different scale filters, the computation cost (CPU time per image) 1s signifi-
cantly higher than for the other features (Huang and Murphy, 2004b). When
the computation cost is a concern, a feature set (SLF13) with 31 features
selected by SDA from all features except the wavelet features achieved a
90.7% classification accuracy with one-sixth of the average CPU time for
feature calculation (Huang and Murphy, 2004b).

iii. Classification without Parallel DNA Images A parallel DNA chan-
nel provides information on nuclear location, which serves as a reference
point for the cell center. Several features were designed to capture protein
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distribution information relative to the nucleus and these features were
included in the input feature sets above that give the best overall classification
accuracy. However, not all imaging protocols require or permit the acquisi-
tion of the parallel DNA channel. A feature set with no DNA information 1s
preferred for those cases.

A feature subset (SLF15) with 44 features SDA selected from a mixture of
features that does not require DNA information achieved 91.5% overall
classification accuracy (Huang and Murphy, 2004b), which indicates that
while not having DNA {features degrades classification performance slightly,
satisfactory performance can still be achieved without them. An overall
classification accuracy of 89.7% 1s achieved by a similar classifier trained on

SDA-selected features (SLF8 with 32 features) when computation-costly

wavelet features are removed (Huang and Murphy, 2004b). These results
suggest that when using numerical features, the protein subcellular location
pattern can be automatically determined in a reasonable time scale from
fluorescence microscope 1mages acquired using standard protocols that do
not require collection of DNA 1mages.

iv. Classification of Sets of Images When evaluating a protein’s location,
a cell biologist will usually not make a decision based on an image of a single
cell. Instead, a set of images 1s viewed and a final conclusion 1s based on an
overall impression. The same rationale can be used for automated classifiers.
By considering sets of cells as small as 10 and choosing the label that has the
most images assigned to 1t, an overall classification accuracy of 98% could be
obtained with a classifier that had an average accuracy of only 83% on single

cells (Boland and Murphy, 2001).

b. Classification of Two Proteins with Visually Similar Patterns in CSO-1
Cells Using 2D Images A similar feature-based approach was use to distin-
guish two visually similar proteins (Huntingtin and GIT) in CSO-1 cells
(Steckling er al., 2004). For this task, seven features, mostly defined in the
previous section, were used to train a maximum likelthood classification
scheme to separate the two proteins. In this experiment, 87% of the test
images were correctly classified. This independent research confirms that
the location pattern of previously unknown proteins could be automatically
identified by feature-based approaches. |

c. Classification of Images from Automated Microscopy An alternative to

genomic tagging that 1s suitable for automated acquisition and analysis 1s the
creation of a cell array in which each spot in the array contains a different
GEFP-tagged cDNA (Ziauddin and Sabatini, 2001). This approach has been
combined with automated microscopy to demonstrate the feasibility of
classifying images from automated acquisition (Conrad et al., 2004). In this
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study, 1mages for 11 cDNAs showing different subcellular location patterns
were captured automatically. An SVM classifier achieved an 82.2% overall
classification with 25 SDA-selected features drawn from a large number of
features (448) extracted from different feature categories (such as object,
edge, texture, moments, wavelets). Achieving this accuracy required training
of the system to recognize an ‘‘artifact” category; approximately half of the
images were found to be in this category. Even with this step, the observed
accuracies for two of the categories (ER and microtubules) were below 50%.
The results are encouraging for the application of the methods described in
this chapter to images obtained by automated microscopy.

d. Classification of Major Subcellular Location Patterns in HeLa Cells Using
3D Images With the development of optical sectioning techniques (i.c.,
confocal microscopy), it has become increasingly common to collect 3D
images when visualizing protein distributions. A 3D 1mage 1s simply a stack
of 2D images taken at different focal planes. Compared to their 2D counter-
parts, 3D fluorescence images provide an opportunity to achieve better
classification accuracy since we can expect that 3D 1mages contain more
information content than 2D mmages. Indistinguishable location patterns in
a 2D slice could be potentially separated by their distribution along the third
dimension. This 1s obvious for polarized cells where the protein composition
of the apical surface is different {from that of the basal and lateral surface. In
this case, the protein distribution 1s different among three dimensions. Even
for an unpolarized cell, the protein distribution on the third dimension still
provides extra information that may help in distinguishing different patterns.
For example, F-actin in HeLa cells is preferentially located above the nucleus
while tubulin is more concentrated near the bottom of the cell.

A 3D HeLa cell image dataset was collected using the same labeling
techniques as for the 2D Hela dataset to determinec whether an improved
classification accuracy could be obtained (Velliste and Murphy, 2002). This
dataset contains 50-52 single cell images per class and 502 imaged cells in
total. Figure 3 shows the representative images of this dataset.

Most 3D features [morphological (Velliste and Murphy, 2002), edge (Chen
et al., 2003), and Haralick texture features (Chen et al., 2003)] were natural
extensions of their 2D versions. Some new features were also implemented to
capture characteristics of protein fluorescence distribution along the z axis.

An overall classification accuracy of 98% was achieved using 3D-SLF17,
an SDA-selected feature subset of seven features. Table IV shows the confu-
sion matrix for this case. The results suggest that the classifier is near optimal,
since cells were imaged randomly and inevitably a small fraction of “abnor-
mal” cells, such as mitotic or dying cells, would be expected to be included.
Protein location patterns in these cells are likely different from those
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Giantin sppl30 Lysosomal

Mitoch. Nucleolar Actin Endosomal Tubulin

FIG. 3 Typical images from the 3D Hel.a image dataset. Red, blue, and green colors represent
DNA staining, total protein staining, and target protein fluorescence. Projections on the X-Y
(top) and the X-Z (bottom) planes are shown. The proteins labeled are the same as those 1n the
2D Hela image dataset (Fig. 2). (Reprinted by permission of Carnegie Mellon University.) (See
also color insert.)

TABLE IV
Confusion Matrix for a Neural Network Classifier with 3D-SLF17 for the 3D Hela Dataset?

Output of the classitier

True class DNA ER Gia Gpp LAM Mit Nuc Act TIR Tub

DNA 98 2 0 0 0 0 0 0 0
ER 0 100 0 0 0 0 0 0 0
Giantin 0 0 100 0 0 0 0 0 0
Gppl130 0 0 0 96 4 0 0 0 0 0
LAMP2 0 0 0 4 95 0 0 0 0 2
Mitochondria 0 0 2 0 0 96 0 2 0 0
Nucleolin 0 0 0 0 0 0 100 0 0 0
Actin 0 0 0 0 0 0 0 100 0 0
TR 0 0 0 0 2 0 0 0 96 2
Tubulin 0 2 0 0 0 0 0 0 0 98

“The values shown are the percent of images from the class shown in the row heading that

were classified as being in the class shown by the column heading. The overall accuracy is 98%.-
From Chen and Murphy (2004).
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observed in normal cells and could account for the small classification errors.
Tt is also worth noting that the 3D classifier is the first that i.s al?le to
distinguish giantin and gpp130, two proteins known to be located in shghtly
different parts of the Golgi apparatus, with over 95% accuracy at the single
cell level.

3D-SLF17 consists of at least one feature from each category (morp_:holog—
ical, edge, and Haralick texture for 3D images), suggesting that dlﬂ“e_rent
feature categories capture different information in the image and an c_'ptlmal
classifier should be trained from a combination of teatures from dlﬂer§nt
categories. 3D-SLF17 can be calculated efficiently, as the time-consuming
wavelet features are not included. Another important advantage of 3D-
SLF17 is that it does not require a parallel DNA image. I_t confirms 'that
for 3D images, even without the reference DNA informatlgn, an optimal
classifier could be trained to learn major subcellular location patterns, a
crucial step in extending the feature-based approach toward general usage
for biological and biomedical researchers. |

The already impressive performance can be improved further by classify-
ing sets of images. Trained classitiers (using either njcural networksior sup-
port vector machines) achieved above 99% classification accuracy with a set

size of 3 and 99.9% with a set size of 5 (data not shown).

2. Classification Using Field Level Features

As discussed above, classifiers trained on SLFs are capable of auto-matical}y
labeling protein subcellular location patterns in previops.ly unseen 1mages in
a single cell setting. However, typically a field containing multiple cells 1s
imaged. Partial cells on the boundary of imaged fields are_also fljeque.ntly
observed. Since current SLFs are designed to capture protein spatlial distri-
butions in a single cell setting, their use on multiple cells (either mntact or
partial) would not necessarily give appropriate results. SLF1.1, the number
of objects inside the cell (an object 1s defined as a .set of connected above-
threshold pixels in the image), is a good example. It 1s a very useful. feature to
distinguish the nuclear or nucleolar patterns (with one to a few o.b]ects) from
the mitochondrial or lysosomal patterns (with hundreds of objects). H(.)“f'-
ever, this feature is meaningless if an image contains multiple cells (unless 1t 1s
known that all images have the same number of cells!). As discusse:d abtz)V?, a
few automated segmentation algorithms have been described for identitying
regions corresponding to a single cellin a multicell field. Unfort}mately, they
either require extra labeling (such as nucleus, total cellular protein, or plasma
membrane protein labeling) or assume specific models (Scla}‘off and L1g,
2001), which makes them difficult to be generalized to arbitrary protein
fluorescence images. An alternative solution would be a set of features that
is not sensitive to the number of cells in a field.
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Such a feature set was created by selecting features that meet this requirement
from previous SLFs. This approach was tested by building an SVM classifier to
recognize images with multiple cells (Huang and Murphy, 2004a). So that the
label ot each cell in a multicell image could be known with certainty, synthetic
multicell images were created by combining single cell images whose location
patterns were known. A confuston matrix for this classifier is shown in Table V,
and the overall classification accuracy of 94.8% was even higher than for the
single cell counterpart. This ““surprising” improvement 1n performance could
be partially explained by so-called “majority voting” eflects where the effect of
abnormal cells 1n a class 1s diluted 1n multicell images so that the classifier makes
the correct prediction based on the majority type of cells in a field.

Although experiments classifying 3D multicell images have not yet been
carried out, higher accuracy i1s expected as well since most features in the best
3D feature set (3D-SLF17) are edge and texture features, which are insensitive
to the number of cells 1n the field. The only morphological feature in SLF17 1s
3D-SLF9.4, the standard deviation of object volumes, and since 1t does not
depend on the number of cells, it 1s also a potential field level feature.

3. Classification of Mixed Patterns Using Object Level Features

Previous sections show that a classifier can be trained to distinguish a set of
predefined patterns with high accuracy. However, protein localization 1s a
complicated process, and proteins are not restricted to being in a single

TABLE V

Confusion Matrix for an SVM Ciassifier with Entire 2D Field Level Features for the Multicell Image
Dataset”

Output of the classifier

True class DNA ER @Gia GPP ILAM Mit Nuc Act TR Tub

DNA 100 0 0 0 0 0 0 0 0
ER 0 96 0 0 0 0 0 4 0
Giantin 0 0 100 0 0 0 0 0 0
GPP130 1 0 2 98 0 0 0 0 0 0
LAMP2 0 0 0 4 94 0 0 0 2 0
Mitochondria 0 4 0 2 0 96 0 0 2 0
Nucleolin 0 0 0 0 0 0 100 0 0 0
Actin 0 0 0 0 0 0 0 100 0 0
TiR 0 4 0 0 2 4 4 0 82 4
Tubulin 0 4 0 0 2 4 0 0 8 82

“The overall accuracy was 94.8%. From Huang and Murphy (2004a).
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organelle. For example, the human mannose 6-phosphate uncovering en-
zyme (UCE) cycles between the trans-Golgi network (TGN) and the plasma
membrane (Rohrer and Kornfeld, 2001). In this case, the steady-state pattern
of UCE is a mixture of two fundamental location patterns (TGN and plasma
membrane) and the feature values for the UCE location pattern would be
different from the typical values for either of those fundamental patterns.
Consequently, a classifier trained to recognize the two fundamental patterns
would fail to recognize this mixed pattern. S

A straightforward solution would be to train a classifier to distinguish each
possible combination of fundamental location patterns. However, the large
number of possible combinations (exponential in the number of fundamental
patterns) makes this approach prohibitive. The problem i1s even more com-
plicated because different mixture ratios would be expected to yield different
combined patterns. For example, a Y488A mutation in UCE slows down
its traffic from the plasma membrane back to the TGN and consequently
the mutant protein has a much higher plasma membrane distribgtipn. The
location patterns for wild-type and Y488A-mutant UCE are _d1st1ngu1_sh—
able by both human visual inspection and automated machine learning
algorithms although they are both mixed from TGN and plasma membrane
patterns. | |

A more suitable approach would be to apply a machine learning algorithm
that is capable of recognizing mixtures composed of varyigg amounts of
independent fundamental patterns. An initial approach to -’[hl..?a problem has
been presented (Zhao et al., 2005). It is based on the principle _that. each
fundamental pattern has a distinguishable (but stochastic) combmathn of
object types. Object types were learned by cluster analysis and then _clqsmﬁers
{rained to recognize each type. The distribution of object types wﬁhm each
fundamental pattern was also modeled. The decomposition of an arbitrary
mixed image into its component patterns was then carried out by a tW(?-step
process. Each object in the image was assigned a type and then th§ mixture
fractions that would most likely have led this distribution of object types
were found. o

For the training phase of this system, the individual objects in mmages of
known fundamental patterns were first identified and a set of subcellular
object features (SOF1, shown in Table VI) was calculated for each. These
features for all objects in the dataset were then used to perform clu_ster
analysis to determine the types of objects that exist in the dataset. A classifier
was then trained to recognize each object type from its SOFs. Each funda-
mental pattern (whether for a training image or a test 1mage) ‘could then be
represented by the number of objects of each type or the fraction of fluores-
cence in each object type (or both). This allows the object type vecjtor for a
mixture pattern to be considered as a linear combination of quect type
vectors of component fundamental patterns. The mixture fractions could
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TABLE V]

Subcellular Object Features (SOF1) Used to Cluster Objects to Learn Object Types and to Train
Classifiers to Recognize Them?

Feature ID Description
SOF1.1 Number of pixels in object
SOF1.2 Distance between object center of fluorescence (COF) and DNA COF
SOF1.3 Fraction of object pixels overlapping with DNA
SOF1.4 A measure of eccentricity of the object
SOF1.5 Euler number of the object
SOF1.6 A measure of roundness of the object
SOF1.7 The length of the object’s skeleton |
SOF1.8 The ratio of skeleton length to the area of the convex hull of the skeleton
SOF1.9 The fraction of object pixels contained within the skeleton
SOF1.10 The fraction of object fluorescence contained within the skeleton
SOF1.11 The ratio of the number of branch points in the skeleton to the length of

the skeleton

“From Zhao et al. (2005).

then be found by solving a set of linear equations or maximizing the likeli-
hood of a multinomial model.

Using this approach on test images synthesized by creating random mix-
tures of up to eight subcellular patterns, an average of 83% accuracy 1n
determining the mixture proportions was achieved (Zhao er al, 2005).
While further work on this important problem will clearly be required,
these initial results suggest that decomposition of complex mixture patterns
1s feasible.

B. Objective Clustering

It has been shown in the previous section that a classifier trained on SLFs
could assign a set of predefined location pattern labels to previously unseen
images with high accuracy. However, it remains an open question as to how
many location patterns exist in a specific proteome. Ideally, we would like to
collect images of all proteins and learn the number of statistically distin-
guishable location patterns and the identity of each pattern in a proteome.
This becomes a typical unsupervised learning problem, addressable by
methods of cluster analysis.

Central to unsupervised clustering is the notion of the degree of similarity
(or dissimilarity) between individual data points (cell images). A major
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advantage of using SLFs to represent images 1s that the distance between two
data points can be easily defined. This measures the dissimilarity between two
points, €.g., a larger distance means two points are less similar to each other.
Common distance functions include Euclidean distance [2-norm (Qian et al.,
2004)], Manhattan distance [1-norm (Batchelor, 1978)], Chebyshev distance
[infinity-norm (Diday, 1974)], Mahanlanobis distance (Nadler and Smith,
1993), cosine angle distance (Qian et al., 2004), and Hamming distance
[suitable for binary features (Exoo, 2003)].

1. Dendrogram Analysis of the 2D Hel.a Dataset

As an 1nitial demonstration of the cluster analysis approach to subcellular
patterns, hierarchical clustering was performed on the 10 class 2D Hela
dataset (Murphy et al., 2002). Although many techniques that could improve
the quality of the clustering were not used in this simple experiment, the
resulting dendrogram (Fig. 4) still revealed that (1) similar location patterns
were grouped first (the two Golgi proteins, and the lysosomal and endosomal
proteins), and (2) 1t was consistent with the biological understanding of these
organelle patterns. This first result suggested the utility of clustering ap-
proaches using SLFs to reveal the intrinsic relationships among subcellular
patterns displayed in a dataset.

15 |
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Mahalanobis distance

Giantin
gpp130
LAMP2
TR
Tubulin
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Nucleolin
DNA

FIG. 4 Subcellular location tree created from the 2D Hela dataset using SLEF® and hierarchical

clustering with a Mahalanobis distance function. (From Murphy e? al, 2002. Copyright © 2002,
IEEE.)
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2. Clustering of the 3D 3T3 Dataset

One of the ultimate goals for location proteomics 1s to determine which
proteins share the same location pattern. In other words, given a set of
proteins, each with multiple image representations, we need to find a parti-
tioning so that proteins in one partition share a single location pattern.
Ideally, this approach would be applied to images of all proteins expressed
in a given cell type. Methods are therefore needed to collect images of the
distributions of large numbers of (or all) proteins.

As discussed in Section I1.B , this can be done by creating GFP fusions for
many different cDNAs and expressing them by carrying out individual
transfections. The advantage 1s that the tagged gene 1s known i each
transfection, but the disadvantage is that the protein 1s expressed under the
control of an exogenous promoter that may lead to overexpression and
mislocalization.

An alternative 1s to create random GFP fusions, make clonal hines, and
then determine the tagged gene in each line. Although more work 1s required
to 1dentify the tagged gene, the advantage is that the protein 1s expressed 1n 1ts
normal genomic context with all transcriptional and posttranscriptional
controls intact. One variation on this approach, CD-tagging, 1s particularly
powerful because tags may be inserted at a number of sites on each protein
(Jarvik et al., 1996). The CD-tagging method employs an engineered retrovi-
ral vector to randomly insert into the target genome a CD-cassette, flanked
by splicing acceptor and donor sequences. If the viral vector 1s inserted into a
genomic mntron, the CD-cassette will be transcribed as a guest exon. This
approach was used in the laboratories of Drs. Jonathan Jarvik and Peter
Berget to create a collection of 3T3 cell clones each of which expresses a
different tagged protein (Jarvik et al, 2002). The CD-cassette used for this
collection contains a GFP coding sequence, thus permitting the tagged
proteins to be visualized 1in live cells. To date, over 90 randomly tagged
clones expressing GFP chimera proteins have been 1solated. To acquire live
cells images with a minimum of blur due to organelle movement, spinning
disk confocal microscopy (Kozubek ef al., 2004; Nakano, 2002) was used to
collect a large number of images of each clone (Chen et al., 2003). The 3D
3T3 dataset obtained to date contains 8-33 single cell images per clone and
1554 1images 1n total. Figure 5 shows representative images of example clones.

Three machine learning algorithms have been applied to the dataset,
including k-means clustering of individual cells, hierarchical clustering of
mean feature vectors for each clone, and an ad hoc clustering algorithm based
on a confusion matrix from a classifier trying to i1dentify each individual
clone (Chen and Murphy, 2005). Both standardized (z-scored) Euclidean
(where each feature 1s normalized to have unit variance) and Mahalanobis
(where the correlation between features is taken into consideration) distance
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FIG. 5 Selected images from the 3D 3T3 image dataset. Tagged protein names are shown with
a hyphen followed by a clone number if the same protein was tagged in more than one clone in
the dataset. Projections on the XY (iop) and the X-Z (bottom) planes are shown. (From Chen

and Murphy, 2005.)

functions were evaluated. The performance of machine clustering algorithms
was also compared to a grouping based on visual imspection.

A traditional difficulty in machine clustering approaches 1s to find the
number of clusters in a dataset. For example, k-means approaches require
the number of clusters to be directly specified in the program. For hierarchi-
cal clustering, it is also critical to know which branches represent identical
classes. This can be achieved by finding a distance under which the separation
is not statistically significant. The distance threshold identified also indirectly
determines the number of clusters since data points connected at the thresh-
old belong to the same cluster. In some specific problems, outside informa-
tion can be used to determine the number of clusters. When this information
is not available, a set of trials with different numbers of clusters can be
performed and evaluated by some criterion that measures the goodness of
the clustering results. There is no prior information suggesting the proper
number of clusters for the 3D 3T3 dataset, although a reasonable assumption
is that the cells from the same protein clone should belong to a single cluster.
Therefore, the goodness of various clustering models was assessed by the
Akaike information criterion (AIC) (Ichimura, 1997) for different numbers
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of clusters (from two to the number of clones in the dataset) (Chen and
Murphy, 2005).

Evaluation of the clustering results using different clustering algorithms
and/or different distance functions is an equally difficult task since the actual
partition of the dataset is unknown for any real problem setting. Neverthe-
less, it is reasonable to assume that a good distance function would achieve
better agreement among different clustering algorithms. Cohen’s « statistic
(Cook, 1998) can be used to measure the agreement between two partition-
ings. This statistic measures the portion of agreement beyond random and it
has a value of 1 if two partitionings are in total agreement and an expected
value of 0 if the two partitionings are mutually independent.

Table VII summarizes the comparison of the x statistic using difierent
clustering algorithms and distance functions. It clearly indicates that the
standardized Euclidean distance function achieved better agreement com-
pared to Mahalanobis distance. It also revealed that machine learning clus-
tering algorithms (k-means/AIC, consensus analysis and clustering based on
confusion matrix) achieved much higher agreement compared to pairs be-
tween a machine algorithm and clustering by visual inspection. The consis-
tency displayed further suggested the value of automated clustering
approaches in location proteomics.

When standardized Euclidean distance was used in the k-means/AIC
algorithm to cluster the 3D 3T3 dataset, the optimal number of clusters
was 30. However, 13 of these clusters contained only outlier images (outliers
of a clone were those distributed to any cluster except the one with the most
images for that clone). Therefore, these clusters were i1gnored, leaving 17

TABLE VI
Comparison of Clustering Methods and Distance Functions®”

Standardized Euclidean distance Mahalanobis distance
(K) ()
k-means/AIC vs. consensus 1 0.5397
k-means/AIC vs. ConfMat 0.4171 0.3634
Consensus vs. ContMat 0.4171 0.1977
k-means/AlIC vs. visual 0.2055 0.1854
Consensus vs. visual 0.2055 0.1156

M

“The agreement between the sets of clusters resulting from the four clustering methods
described in the text was measured using the x test. A value of 1 represents pertect agreement
between the clusters formed by the two methods. From Chen and Murphy (2005).

bThe standard deviations of the statistic under the null hypothesis were estimated to range
between 0.014 and 0.023 from multiple simulations.
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FIG.6 A consensus subcellular location tree generated for the 3D 3T3 image dataset using 3D-
SLF18 features. The columns to the right of the tree show the protein names (if known),
descriptions of the subcellular location from visual inspections of the images, and subcellular
location inferred from Gene Ontology (GO) annotations (if any). The sum of the lengths of
horizontal edges connecting two proteins represents the distance between them in the feature
space. Proteins for which the location described by human observation differs significantly from
that inferred from GO annotations are marked (*%*). (From Chen and Murphy, 2005.)

clusters containing the major patterns in the dataset. The consensus tree
from hierarchical clustering 1s displayed in Fig. 6 (this tree and the represen-
tative 1mages for each protein clone are available in an interactive web
interface: http://murphylab.web.cmu.edu/services/PSLID/tree.html). The
same 17 clusters were identified in’ both the consensus clustering and AIC
analysis.

A natural question 1s whether the clusters obtained from unsupervised
learning could be used for supervised training of a classifier to recognize this
new set of patterns. When this test was performed, an average accuracy of
87% was achieved. This classifier 1s able to recognize the largest number of
subcellular patterns reported to date.

As at least a partial confirmation of the validity of the results obtained by
clustering, we can observe that the tree shows visually similar location
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patterns being grouped together. For example, the three nucleolar proteins in
the dataset were combined in a distinct cluster. Also, two groups of nuclear
protemns were found 1n the dataset. Close inspection of the images from both
groups confirmed that there are differences between them, one with exclusive
nucleus distribution and the other with weak cytoplasmic distribution as well

(Chen et al., 2003).

3. Cluster Analysis of Location Patterns in UCE Mutants

The clustering results above had the goal of clustering proteins with similar
patterns. An analogous goal would be to cluster mutant versions of a single
protein to determine which share the same location. Mutagenesis of sus-
pected targeting sequences 1s often used to identify important residues in that
sequence. To illustrate the value of the clustering approach i this context, we
applied 1t to images of a set of mutants obtained by the laboratory of
Dr. Jack Rohrer.

The tratlicking of UCE, a key enzyme 1n lysosome biogenesis, has been
discussed briefly above. UCE uncovers the mannose 6-phosphate recognition
tag on lysosomal enzymes, a step necessary for mannose 6-phosphate recep-
tors to recognize these enzymes and ensure their sorting to lysosomes. UCE i1s
localized to the TGN 1n steady state and cycles between the TGN and plasma
membrane. It requires targeting information both for exit from the TGN and
for return from the plasma membrane. It has been determined that the Y*5°
residue 1s required for traffic from the plasma membrane back to the TGN
since a Y**°-A mutant has impaired internalization from the plasma mem-
brane. To locate the sequence that mediates exit from the TGN, the subcel-

lular distributions of a set of mutants created by site-directed mutagenesis of

a GFP-tagged UCE were studied by imaging and cluster analysis (Nair ez al.,
2005). '

In an initial experiment, adjacent pairs of residues suspected of being part
of the targeting signal were mutagenized. When images of these mutants were
clustered, the dendrogram (Fig. 7A, the dendrogram and representative
immages from each clone are available online at http:/murphylab.web.cmu.
edu/services/PSLID/HelLa UCE/Figure4A.html) suggested that mutating
the QE or MN residues of the cytoplasmic tail created an intermediate
location pattern between wild-type UCE (which exhibited mostly TGN
staining) and the Y**° mutant (which had a strong plasma membrane distri-
bution). It was therefore postulated that one or more of the Q¥?EMN

residues could be responsible for the traffic from the TGN to the plasma

membrane. Mutants with single residue mutation were consequently gener-
ated and studied together with the double mutants. The clusters formed by
the single and double mutants are shown in Fig. 7B (available online at http://
murphylab.web.cmu.edu/services/PSLID/HeLa UCE/Figure4B.html). The
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FIG. 7 Subcellular location tree using 3D-SLF20 and Mahalanobis distance showing grouping
of various GFP constructs of the uncovering enzyme (UCE) by similarity in localization. (A)

Results for the GFP-UCE wild-type, GFP-UCE 502 Stop (which truncates the cytoplasmic tail

but does not affect targeting), GFP-UCE Y**%-A/502 Stop (which is not internalized from the
plasma membrane), and mutant constructs with pairs of the Q*¥?EMNGEPL residues in the
cytoplasmic tail of UCE converted to alanine. (B) Results for those mutants plus a2 mutant with
all four of the Q**EMN residues converted to alanine plus single mutants in those four
residues. (From Nair et al., 2005.)
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largest cluster contained the Y**° mutant and three mutants that do not
appear to affect TGN exit significantly. A second cluster contained wild-
type UCE, a mutant with a truncated cytoplasmic tail that does not affect
tracking, and a mutant in which both the Y**®* and Q*~ residues were
replaced by alanines. The important conclusion 1s that the first mutation
stops return to the TGN but the second mutation compensates for it by
preventing exit from the TGN. However, additional conclusions not obvious
on visual ispection could also be drawn from the remaining clusters. These
are that mutations in the M, N, and E residues, while not blocking TGN exit,
conferred a distinct phenotype on the enzyme. The results suggest that yet
another step in the trafiic process involves those residues.

This experiment indicated that coupled with prior biological knowledge
and proper experimental design, an automated interpretation approach
could yield new biological knowledge.

4. Clustering Drugs by Their Aflects on Location Patterns

The work described above involved clustering of proteins (or mutant pro-
teins) by their location patterns reflected in fluorescence microscope images.
Clustering using features derived from analysis of fluorescence microscope
images has also been described to group drugs by their mechanism of action
on cultured cells (Perlman et al., 2004). In this study, automated microscopy
was used to collect 10 images for cells stained in parallel for 10 different
marker proteins (plus DNA) upon treatment with one of 100 different drugs.
The DNA fluorescence image was used to find nuclear regions, and then a
14-pixel-wide cytoplasmic annulus surrounding each nucleus was created.
These regions were used to calculate a total of 93 descriptors from all of the
marker images for a given drug. The descriptors mainly measured nuclear
size, shape, and intensity, and the average intensities of the 10 marker
proteins in the nuclear region and in the cytoplasmic annulus. For each
drug, each descriptor for each marker was converted into a score reflecting
how much the distribution of that descriptor changed from the control case.
The drugs were then clustered using this vector of scores. Drugs with known
mechanisms of action were observed to be clustered, validating the approach
for determining mechanisms of action for unknown drugs.

C. Other Statistical Analyses

Results from classification and clustering analysis clearly show that SLFs
capture the essential characteristics of protein fluorescence images. This
suggests that they can also be used as a foundation for other kinds of
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statistical analysis. Two approaches that address commonly encountered
problems in cell biology studies are described below.

1. Objective Selection of Typical Images from an Image Set

Due to space limitations, only a small portion of the images in a dataset can
be used for communicating results in papers or presentations. Selecting
typical images from an image set is therefore a routine task for many
researchers, especially for cell biologists. Similar to location pattern determi-
nation, visual inspection is the traditional and most commonly used ap-
proach for this task. Consequently, criteria for the selection are largely
subjective and this approach suffers from inconsistency (i.e., for the same
image set, two independent researchers are unlikely to choose the same image
or set of images as representative).

The shortcomings of selection by visual inspection can be avoided by
developing an automated system using SLFs that make objective selections
of representative images based on statistical models. As in clustering, dis-
tance (or dissimilarity) is the core concept here. When each image is reduced
to a tfeature vector, the distances from each vector to the mean feature vector
of the image set can be used to reflect the dissimilarity between the
corresponding 1mage and the set as a whole. Therefore the inverse of this
distance can be used to rank images in order of their typicality (Markey et al.,
1999). This approach was experimentally validated using 2D images of
subcellular patterns in Chinese hamster ovary cells. Figure 8 shows the

FIG.8 The most (A, B, E, and F) and least (C, D, G, and H) typical DNA (A-D) and LAMP2
(E—H) mmages selected by the TypIC program from the 2D CHO dataset. Scale bar = 10 um.
(After Markey et al., 1999.)
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most and least representative images selected for DNA (A-D) and lysosomal
protein (E—-H) patterns. The most typical images (A and B) selected for the
DNA pattern show a clear boundary between nucleus and cytoplasm while
the least typical images (C and D) exhibit a weak but distinguishable punc-
tuate pattern extending from the nucleus, which suggests either a poor
fixation or perhaps that the nuclear membrane had been compromised before
fixation. For the lysosomal protein pattern, the most typical images (E and
F) showed some lysosomes concentrated in the perinuclear region and some
distributed peripherally. In contrast, the least typical images showed a much

more peripheral distribution (G), or an apparent reduction in the number of

lysosomes (H).
A program for implementing this algorithm, TypIC (for Typical mage

Chooser), was originally implemented as a web service and is now included in
the PSLID database service described below.

2. Objective Comparison of Two Image Sets

Another frequent question asked by biologists using fluorescence microscopy 1s
whether two 1image sets represent different location patterns. For instance, there
could be interest in whether expression of a mutated or engineered gene changes
the location pattern of the targeted protein. Pharmaceutical researchers could
be interested in determining whether a certain drug treatment significantly
changes the location pattern of a protein of interest. As i1s the case for the
task of selecting typical images, the conventional approach to comparing sets of
patterns 1s visual inspection. The same limitation applies: two different
researchers could possibly reach the opposite conclusion for the same two sets.

This problem can be avoided by using the automated and objective ap-
proach of statistical hypothesis tests, such as the Hotelling 7~ test, to com-
pare two feature matrices (Roques and Murphy, 2002). When the Hotelling
T” test (a multivariate version of the Student’s 7 test) is employed, two image
sets would be concluded to be different at a given confidence level if the
resulting F value i1s greater than a critical F value calculated for that confi-
dence level. By this method, all pairs of classes in the 2D Hel.a dataset were
shown to be statistically different at the 95% confidence level, which is
consistent with the finding that a trained classifier could distinguish all

10 classes with relatively high accuracy. On the other hand, when two sets

of images of giantin labeled with different antibodies were compared, the sets
were found to be indistinguishable at that confidence level. This supports the
utility of this approach for detecting meaningtul differences without being
overly sensitive to experimental variations.

A program for mmplementing this algorithm, SImEC (for Statistical

Imaging Experiment Comparator) 1s also available in the PSLID system
described below.
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D. Protein Subcellular Location Image Database

As for other biological entities, there is a need for large scale online databases
to organize biological images from different sources as well as to exchange

and manage these images. A number of approaches to creating such data-

bases have been described (Andrews et al., 2002; Gonzalez-Couto et al., 2001;

Huang et al., 2002). A critical requirement for such databases 1s integration
of well-designed numerical features for describing each image into the data-
base. The SLFs described above provide excellent discrimination between
subcellular location patterns to create a database to capture large numbers of
fluorescence microscope images depicting protein location (Huang et al.,
2002). This Protein Subcellular Location Image Database (PSLID) uses a
publicly available database schema (Fluorescence Microscope Annotation
Schema, http://murphylab.web.cmu.edu/servicessEMAS), and permits query
via text annotation of sample preparation and image collection.

PSLID is built using public domain database and web server software
(Postgres and Apache). It contains a Java Server Page (JSP) web interface
that permits the different tasks described in this chapter (1.e., classification,
clustering, SIMEC, and TypIC) as well as text and feature-based query to be
carried out on large sets of images. The current PSLID database (containing
the 2D and 3D images for HeLa and 3T3 cells described above) can be
accessed at http:/murphylab.web.cmu.edu/services/PSLID, and the open
source software can also be downloaded to create additional local databases.
One goal of the current work is focused on providing tools for federating such
local databases to create a global but distributed database (Singh ez al., 2004).

IVV. Concluding Remarks

Current advances in automated interpretation of protein subcellular location
distributions were briefly discussed in this review. The studies summarized
here have shown that protein subcellular location patterns can be interpreted
automatically and objectively by feature-based approaches, and usually
outperform visual mspection.

The core of the automated interpretation approaches is the development of
features capturing essential characteristics of protein subcellular distributions
while not being overly sensitive to experimental variations, such as the cell
location, orientation, and absolute intensity. Even for unpolarized cells, 3D
images have higher pattern information content than 2D images. Conse-
quently, classifiers trained on 3D images achieved better performance.

Although the current methods are still far from perfect, they can be
expected to form the foundation of future research in location proteomics.
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For example, better performance could be achieved by continuously improv-
ing teature design (more complete coverage of information contained), better
feature implementation (increased computational efficiency), and developing
algorithms for using images with higher dimension (e.g., time series images).
Combined with advances in random tagging and high-throughput imaging
techniques, automated interpretation tools can generate a complete view of
the location patterns for most, if not all, proteins expressed in an arbitrary
cell type. We are only at the threshold of discovering what new insights
location proteomics can contribute to biological and biomedical research.
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