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Proteomics, the large scale identification and characteriza-
tion of many or all proteins expressed in a given cell type,
has become a major area of biological research. In addition
to information on protein sequence, structure and expres-
sion levels, knowledge of a protein’s subcellular location
is essential to a complete understanding of its functions.
Currently, subcellular location patterns are routinely
determined by visual inspection of fluorescence micro-
scope images. We review here research aimed at creating
systems for automated, systematic determination of loca-
tion. These employ numerical feature extraction from
images, feature reduction to identify the most useful fea-
tures, and various supervised learning (classification) and
unsupervised learning (clustering) methods. These meth-
ods have been shown to perform significantly better than
human interpretation of the same images. When coupled

with technologies for tagging large numbers of proteins
and high-throughput microscope systems, the computa-
tional methods reviewed here enable the new subfield of
location proteomics. This subfield will make critical con-
tributions in two related areas. First, it will provide struc-
tured, high-resolution information on location to enable
Systems Biology efforts to simulate cell behavior from the
gene level on up. Second, it will provide tools for
Cytomics projects aimed at characterizing the behaviors
of all cell types before, during, and after the onset of vari-
ous diseases. q 2006 International Society for Analytical Cytology
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Recent advances in biological research, such as the
sequencing of the human genome, development of DNA
microarrays, and the launch of proteomics projects, have
provided rich data sets and enabled biological questions
to be addressed by revolutionary approaches. Rather than
creating an hypothesis from observations and then design-
ing and performing experiments necessary to either sup-
port or overthrow it, a new paradigm has evolved in
which biologists verify hypotheses that are generated
from analysis of large-scale data sources (data-driven re-
search). The creation of the appropriate structured data-
bases for each kind of biological information associated
with efficient data mining tools is critical for this process.
The National Center for Biotechnology Information’s well-
known Genbank database (http://www.ncbi.nlm.nih.gov/
Genbank/index.html) and BLAST search engine (http://
www.ncbi.nlm.nih.gov/BLAST/) are a good example of
this database/algorithm pair for sequence data.

Knowledge of a protein’s subcellular location is essential
to a complete understanding of its functions, and informa-
tion on protein subcellular location needs to be systemati-
cally organized into databases on a proteome-wide basis.

This is the goal of location proteomics (1), the determina-
tion of the high-resolution location patterns of most or all
proteins expressed in a given cell type. Work over the last
few years has led to methods that can automatically deter-
mine the subcellular location of a protein from fluores-
cence microscope images (1–7). Location proteomics is im-
portant to systems biology, since ‘‘bottom-up’’ models that
start from individual genes and proteins must simulate
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those components in their proper location to obtain accu-
rate predictions of cell behavior (8). Location proteomics
methods are also valuable for the new field of Cytomics,
which seeks to characterize the variation in behavior of all
cell types and how it relates to disease. Automated analysis
of changes in subcellular location of various marker pro-
teins can allow determination of the range of cell behaviors
from individual to individual and at various stages of disease
so that diagnosis and treatment can be customized for indi-
vidualized medicine (9–11).

FLUORESCENCE MICROSCOPYAND RANDOM
PROTEIN TAGGING

Subcellular location can be experimentally determined
by subcellular fractionation, electron microscopy, or fluo-
rescence microscopy. The last is the most common
method and relies on the ability to deliver fluorescent
molecules into cells to label specific proteins. There are
two ways of doing this.

The first method, immunofluorescence microscopy,
relies on delivering external fluorescent molecules into
cells. Cells are first fixed by adding a substance (e.g. para-
formaldehyde) that cross-links proteins in the cell, essen-
tially immobilizing all cellular components. This prevents
the contents of the cells from washing away when the
cells are next permeabilized, meaning that a detergent is
used to fully or partially dissolve the cell membrane. With
the membrane barrier out of the way, it is possible to
introduce any desired molecules into the cell, for example
antibodies conjugated to fluorescent dyes. An alternative
to using antibodies is to use other specific substances
known to bind to a particular protein. For example phal-
loidin binds to F-actin, a major component of the cytoskel-
eton. Therefore, dye-conjugated phalloidin can be used to
label the actin cytoskeleton. The use of such probes is not
strictly immunofluorescence, but is functionally identical.
One limitation of immunofluorescent labeling is the de-
pendence on the existence of specific antibodies or
probes that are known to bind to the target protein.
Another is that, due to the need for fixation and perme-
abilization, it cannot be used with live cells.

The second method is to have fluorescent molecules be
internally generated in the cells of interest. DNA se-
quences coding for a fluorescent protein (e.g., eGFP) can
be engineered so that they will be randomly attached to
an endogenous protein in the cell, thereby fluorescently
labeling that protein. There have been several examples of
the use of this technique (12–15). This method does not
depend on the existence of antibodies or probes that bind
to the target protein, because with these approaches, a
random protein is tagged. Random-tagging of proteins can
also be done with the use of small epitopes (essentially
short sections of a protein) instead of fluorescent proteins
(16,17). In this case, immunofluorescence is used to
image the location of the tagged protein, using an anti-
body against the epitope tag. This has the advantage that
epitope tags are frequently much smaller than fluorescent
proteins and are therefore less likely to disrupt the func-
tion of the protein they are attached to. On the other

hand, the fixing and staining that are required for immu-
nofluorescence can disrupt cellular structures, and it
means that live cells cannot be imaged.
When random-tagging experiments are repeated enough,

one can eventually label most (or possibly all) proteins in a
given cell type. This method combined with fluorescence
microscopy allows comprehensive libraries of images de-
picting the location patterns of proteins in a given cell type
to be generated.

THE NEED FOR IMAGE INTERPRETATION METHODS

Given large libraries of images, the remaining challenge
is to analyze the image data and to enter the results sys-
tematically into databases in a manner similar to DNA and
protein sequences. What is needed is a systematics for
protein location, i.e. a set of methods that allow objective
and repeatable determination of location class, quantita-
tive comparison of location patterns, and the creation of
subcellular location trees (SLTs) that group similar loca-
tion patterns (similar to phylogenetic trees). Methods will
have to be created for querying databases by image con-
tent, or similarity of protein location. For example, given
an image depicting a subcellular location pattern, it would
be desirable to retrieve all images showing a similar loca-
tion pattern (this would be the ‘‘protein location’’ equiva-
lent of BLAST).
Currently, protein location in databases like SWISS-

PROT (http://expasy.org/sprot) is described by unstruc-
tured text terms such as ‘‘nuclear,’’ ‘‘peri-nuclear,’’ ‘‘reticu-
lar,’’ or by phrases like ‘‘mainly found in the nucleoli but
also in the nucleus and cytosol.’’ Many protein entries have
no information on subcellular location, and others are
only assigned a more general description such as ‘‘mem-
brane protein.’’ This situation has been improved some-
what by the introduction of a standard vocabularies or a
hierarchical structure of terms, as is done in the Gene On-
tology database (18). However, assignment of these terms
by human curators suffers from problems with objectivity
and reproducibility, and, more importantly, textual
description is inherently insufficient to capture the subtle
differences between patterns that can be seen when com-
paring the tens of thousands of proteins expressed in a
given cell type (let alone the variation in patterns for the
same protein between cell types). There exists in fact a
continuum of possible location patterns, while a verbal
description would inherently discretize the space of possi-
ble patterns. Furthermore, verbal descriptions do not lend
themselves to quantitative comparison.
What is therefore needed is a measure of protein loca-

tion similarity, both for use in constructing an organized
database and for querying it. Such a measure would ideally
be able to capture the characteristics of a specific location
pattern while being relatively insensitive to changes in cell
shape and orientation. In addition, it would be desirable
for similarity measures to be independent of the image ac-
quisition method (e.g., deconvolution, confocal, or multi-
photon microscopy, laser scanning or slide-based cytome-
try), sample preparation (immunofluorescence, epitope-
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tagging, etc.), or image resolution, so that data from labo-
ratories around the world can be combined. This is a criti-
cal requirement, since the daunting scope of determining
locations for all proteins in all cell types under all impor-
tant conditions makes it unlikely that all data will be col-
lected by a single method.

This review will summarize efforts over the past decade

to develop methods for comparing, classifying, and clus-

tering fluorescence microscope images depicting subcel-

lular location patterns. These efforts have involved genera-

tion of large image datasets (see Table 1) as well as imple-

mentation and testing of computational methods.

AUTOMATED INTERPRETATION OF PROTEIN
SUBCELLULAR LOCATION PATTERNS

Subcellular Location Features

Cells can vary greatly in their size, shape, position,
orientation, and intensity in the fluorescence microscope
field. Consequently, raw pixel intensity values are gener-

ally not immediately useful for recognizing location pat-
terns, although some success has been achieved with

modular neural networks for direct recognition of basic

subcellular patterns (4). Alternatively, generalized repre-

sentation of a protein distribution can be achieved by a set

of numerical features computed from the image; these

describe the characteristics of the image and can be used

to differentiate different location patterns without being

overly sensitive to changes in the intensity, rotation, and

position of a cell. Our group has developed different sets

of Subcellular Location Features (referred to with the acro-

nym SLF followed by a number) for this purpose and a

summary of some of these feature sets can be found in

Table 2. Brief descriptions of the feature types follow (see

Ref. 6 for a more detailed discussion).
SLF for 2D images. SLFs for 2D images can be divided

into several categories:

� Morphological features (3), defined on the fluores-
cence objects in an image. A fluorescent object is a set of

Table 1
Image Datasets Used to Develop and Test Methods for Automated Protein Subcellular Location Pattern Interpretation

Dataset
name

Microscopy
method Objective

Pixel spacing (lm) No. of
colors per
image

No. of
classes/clones ReferenceX-Y Z

2D CHO Wide-field w/deconvolution 1003 0.23 NA 1 5 (2)
2DHeLa Wide-field w/deconvolution 1003 0.23 NA 2 10 (3)
3DHeLa Confocal scanning 1003 0.049 0.203 3 11 (22)
3DUCE Confocal scanning 633 0.098 0.163 3 12 (28)
3D3T3 Spinning disk confocal 603 0.11 0.5 1 90 (1,25)

All of the datasets were collected using immunofluorescence labeling except the 3D3T3 dataset, which was collected using CD-tagging
to create random GFP-fusions.

Table 2
Subcellular Location Feature Sets Used for Classification of 2D and 3D Images

Feature set 2D/3D
Parallel DNA
needed?

No. of
features Description

Highest
accuracy References

SLF1 2D No 16 Morphological, edge, and geometric features (3)
SLF2 2D Yes 22 SLF1 plus DNA related features 76% (3)
SLF4 2D Yes 84 SLF2 plus Zernike moment and Haralick

texture features
81% (3)

SLF5 2D Yes 37 SDA selected from SLF4 83% (3)
SLF7 2D No 84 SLF4 minus DNA features plus 6 new

morphological features
86% (5)

SLF8 2D No 32 SDA selected from SLF7 89% (5)
SLF12 2D No 8 SDA selected from SLF7, the smallest

set achieving 80% accuracy on 2D images
80% (23)

SLF13 2D Yes 31 SDA selected from SLF7 plus 6 DNA features 91% (5)
SLF15 2D No 44 SDA selected from SLF7 plus 60 Gabor and

30 Daubechies 4 wavelet features
92% (6)

SLF16 2D Yes 47 SDA selected from SLF7 plus 6 DNA related
features, 60 Gabor and 30 Daubechies
4 wavelet features

92% (6)

SLF9 3D Yes 28 3D morphological features 91% (22)
SLF10 3D Yes 9 SDA selected from SLF9 95% (6)
SLF11 3D No 42 3D morphological, edge, and Haralick

texture features
(1)

SLF14 3D No 14 SLF9 minus DNA features 89% (6)
SLF17 3D No 7 SDA selected from SLF11 with Haralick

features at 0.4 lm/pixel and 256 gray levels
98% (24)

The classification accuracies shown are for the 10-class 2DHeLa or 3DHeLa datasets.
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continuous pixels with intensity above a threshold. Exam-
ples of morphological features and their values for two
images of different organelle patterns are shown in Figure 1;
any one of these features could be used to distinguish the
two patterns.

� Geometrical features (3), defined using the convex
hull of an image. The convex hull is the small convex set
that encircles all above-threshold pixels.

� Zernike moment features (3,19), which measure the
similarity between an input image and a set of Zernike
polynomials (defined on a unit circle corresponding in ra-
dius to an average cell).

� Haralick texture features (3,20,21), defined on the gray
level co-occurrence matrix of an image that captures the cor-
relation between adjacent pixel intensities. Approximate
rotational invariance of these features can be achieved by
averaging across the four directions (horizontal, vertical, and
two diagonals) that pixels can be adjacent to each other.

� Edge features (3), which capture the number of
above-threshold pixels distributed along edges and the ho-
mogeneity of the edges in intensity and direction.

� DNA features (3), which describe the relationship
between protein fluorescence and DNA fluorescence in
parallel images. This category of features is available only
if a parallel DNA image is captured.

� Wavelet features (6), derived from discrete wavelet trans-
formation of an image, capture frequency information about an
image. We have used two sets of wavelet features, based on
the Daubechies 4 wavelet and Gabor wavelet transforms.

SLF for 3D images. Most of the 3D SLFs we have used
are direct extensions of their 2D counterparts. They can
be divided into the following categories:

� Morphological features (22), extended from their
2D version by using 3D Euclidean distance instead of 2D
Euclidean distance and replacing area by volume. To fur-
ther take advantage of the additional information in a 3D
image compared to 2D, we decompose distance into the
component in the focal plane and the component along
the optical axis of the microscope (for some cell types,

the protein distribution at the bottom of a cell can be
different from that at the top). This results in two addi-
tional 3D distance features for each original 2D distance
feature.
� Edge features (1), derived from edge detection for

each focal plane. We computed the edges only along each
slice because the slice spacing is typically much larger
than the pixel spacing in the slice and the number of
slices in 3D images is relatively small (14 to 24 for
3DHELA and 31 for 3D3T3). Once edge pixels are identi-
fied, the fraction of above-threshold pixels and the frac-
tion of fluorescence that are on the edge are calculated.
� Haralick texture features (1). There are 4 directions

in which a gray level co-occurrence matrix can be con-
structed for a 2D image. In 3D, the gray-level co-occur-
rence matrix can be built for 13 directions, and features
can be averaged over all directions to yield rotation invar-
iant features. We have used the mean and range of the 13
Haralick statistics as 3D texture features.

Feature Reduction

Given the above, each image in a dataset or database can
be represented by its SLF values. This is the form needed for
statistical learning and other analyses. However, not all of
the SLF are likely to be valuable and the presence of uninfor-
mative features can often limit learning. The presence of a
large number of unnecessary features can also increase the
computation time for learning. Therefore, feature reduction
is frequently performed before presenting data to a learning
algorithm to reduce the feature dimensionality and to re-
move redundant and uninformative features.
There are generally two types of feature reduction

methods: feature recombination and feature selection.
Feature recombination methods. In feature recom-

bination methods, original features are projected onto a
reduced feature space by a transformation function (linear
or nonlinear). This transformation function inevitably
results in features that are difficult to trace back to their
origins in the image. Principal components analysis is a
classic example of a feature recombination method.
Feature selection methods. In feature selection meth-

ods, a set of (ideally independent) features that provides dis-
criminatory power about the system is selected by an objec-
tive function, which evaluates the quality of each feature
(or combination of features). The features themselves are
unchanged in this procedure. However, to find the optimal
feature subset is an NP-hard task (i.e., one where the opti-
mal solution cannot be guaranteed to be found in an amount
of time that is no more than a polynomial function of the
number of features) and heuristic searches are usually em-
ployed (which run efficiently but could end up with a glob-
ally suboptimal solution).
Comparison of feature reduction methods. While

no global conclusions can be drawn about the utility of
various feature reduction methods, their performance can
be compared in the context of a specific feature space and
learning task. Using our dataset of 2D HeLa cell images,

FIG. 1. Illustration of morphological features extracted from images of
two subcellular patterns. Objects are defined using an automated threshold
selection method. The size and distance features are measured in pixels.

634 CHEN ET AL.

Cytometry Part A DOI 10.1002/cyto.a



we have carried out such comparison for eight feature
reduction methods (23). Four feature recombination me-
thods (Principal Components Analysis, Nonlinear Princi-
pal Components Analysis, Kernel Principal Components
Analysis, and Independent Component Analysis) and four
feature selection methods (Information Gain Ratio, Step-
wise Discriminant Analysis (SDA), Fractal Dimensionality
Reduction, and Genetic Algorithms) were described and
evaluated (23). The results indicate that feature selection
methods generally outperform feature recombination me-
thods for this dataset. Among feature selection methods,
SDA and Genetic Algorithms achieved the best classification
accuracy. Since SDA is orders of magnitude more computa-
tionally efficient than Genetic Algorithms, we have used
this method primarily in all of our work.

Supervised Learning of Subcellular
Location Patterns

Supervised learning can be described as learning rules
that enable the class (subcellular location in our case) of a
new observation (a cell image) to be predicted or assigned
based on the variables describing that observation (the
SLF). Another way of stating this is that the task is finding
a function (f) that maps features (X) to the output variable
(Y) using a set of training samples (with known Ys). Once
the mapping function f has been learned during training,
unlabeled samples can be classified based on their X (i.e.
Y 5 f(X) for unlabelled samples). Commonly employed
classification algorithms include decision trees, Bayes nets,
k-nearest neighbor, artificial neural networks, and support
vector machines.

Classification of 2D images. A decade ago, we set as
our initial task to test whether systematic analysis of pro-
tein subcellular location was feasible using numerical fea-
tures computed from fluorescence microscope images (2).
We created a 2D image set representing five location
classes by using deconvolution fluorescence microscopy to
image CHO cells fluorescently labeled for DNA and for pro-
teins in the Golgi, lysosomes, nucleoli, and microtubules.
This set contains 33 to 97 images per protein. Using a back-
propagation neural network (BPNN) and a combination of
Zernike moment and Haralick texture features, the five
classes of subcellular location pattern could be distin-
guished with an average accuracy of 88% (2). These
encouraging results were the first demonstration of the fea-
sibility of automated classification of subcellular patterns.

Classification of the 10-class 2DHeLa dataset. The
number of distinct subcellular location patterns in eukaryo-
tic cells is definitely much larger than the 5 classes in this ini-
tial trial. Inspired by the good performance achieved, a larger
10-class 2DHeLa dataset was constructed to cover most
major subcellular structures and organelles (2). To test
whether the automated classifier could distinguish between
similar patterns, two Golgi proteins, giantin and gpp130,
were included in this dataset. These were known to be diffi-
cult to distinguish by visual inspection, a belief that was later
verified experimentally (5). Specimens of HeLa cells were
prepared using rhodamine-phalloidin to label the microfila-

ments, and using immunofluorescence labeling to label pro-
teins located in the endoplasmic reticulum, Golgi (as repre-
sented by the proteins giantin and gpp130), lysosomes
(LAMP2), endosomes (transferrin receptor), mitochondria,
nucleoli (nucleolin), and microtubules (tubulin). A parallel
DNA image was obtained for each image and used both for
calculating features relative to the center of the nucleus and
as an additional location pattern. This image set is referred to
as 2DHeLa, and it contains images for 73–98 cells per pro-
tein. Example images are shown in Figure 2.
If the same set of moment and texture features used for

the 2D CHO dataset were used for the 2DHeLa dataset,
classification accuracy would be expected to be lower
since the 2DHeLa set includes twice as many patterns and
includes similar classes. Therefore, we developed new
sets of features, which included morphological and geo-
metrical features, edge features, and DNA features. As
shown in Table 2, promising initial results were obtained
with feature sets SLF2, SLF4, and SLF5 (2). Even better
results have subsequently been obtained by improving the
feature sets and using different types of classifiers. The
best results obtained to date have been for feature set
SLF16 using a mixture-of-experts classifier (6). The results
for this classifier are shown in Table 3 in the form of a con-
fusion matrix, where the diagonal shows the accuracies
for each individual class and the off-diagonal numbers are
the percentage of test samples of each ‘‘True’’ class (row
heading) that were misclassified as the ‘‘Predicted’’ class
(column heading). It can be seen from the results that
automated pattern analysis methods are quite capable of
recognizing most major classes of subcellular location pat-
terns. Note that the two pairs of patterns most easily con-
fused are the two Golgi proteins (giantin and gpp130) and
the endosomal and lysosomal proteins (LAMP2 and TfR).
Even though the accuracies for these two pairs of classes
are lower than for other classes, the classification accuracy
is high, considering the amount of similarity between
these pairs of classes and the amount of morphological
variability within each class.
Classification of the 3DHeLa dataset. With advances

in fluorescence microscope technology in the recent
years, it has become practical and even commonplace to
collect 3-dimensional (3D) images of cells. This provides
the opportunity to ask whether automated image interpre-
tation methods can perform better if they use 3D images
instead of 2D images. To this end, we constructed a high
resolution 3D image set of HeLa cells (22), consisting of
50–58 single cell images per class for the same set of
classes used in the 2DHeLa set. For each image, parallel
DNA and total protein images were recorded using differ-
ent fluorescence probes. Example images of the 3DHeLa

set are shown in Figure 3.
Our first approach to the classification of 3D cells uti-

lized a set of 28 morphological features that included 14
features relating the protein distribution to the parallel
DNA image. In combination with a BPNN classifier, this
set yielded an overall classification accuracy of 91% (22).
Using SLF10, a subset of 9 of these features selected by
SDA, an overall accuracy of 95% was achieved (6).
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Since a parallel DNA image may not always be available,
we determined the contribution of the DNA related fea-
tures to the overall accuracy. When set SLF14 was created
by removing the DNA features from SLF9, a significantly
lower overall accuracy of 88% was obtained. To see
whether the absence of these features could be compen-
sated for with additional features calculated from the pro-
tein image, we implemented new sets of 3D features that
included edge and Haralick texture features (24). The opti-
mal use of the Haralick texture features requires a choice
of the pixel resolution at which they should be calculated,
and experiments revealed that this optimum occurred
when images were downsampled to 0.4 lm resolution
and 256 gray levels. As seen in Table 4, the SLF17 feature
set, containing only 7 features selected from the whole set
of morphological, edge and texture features, can provide

98% overall classification accuracy (24). This performance
suggests that SLF17 is a near optimal feature set for captur-
ing all major subcellular location patterns in HeLa cells. It
is worth noting that the results in Table 4 represent the
first time that a classifier was able to achieve greater than
95% accuracy in distinguishing giantin and gpp130, two
proteins known to be located in slightly different parts of
the Golgi apparatus. It is also worth noting that the meas-
ured accuracy of distinguishing these two patterns by vis-
ual inspection is below 50% (5).

Unsupervised Learning of Subcellular
Location Patterns

One of the ultimate goals for location proteomics is to
determine which proteins share the same location pattern.
In other words, given a set of proteins, each with multiple

FIG. 2. Typical images from the 10-class 2DHELA image dataset. Red color represents DNA staining and green color represents target protein fluorescence.

Table 3
Confusion Matrix for Classification of Images from the 2DHeLa Set with a Mixture-of-Experts Classifier Using SLF8

(a Set of 32 Features Selected by Stepwise Discriminant Analysis from SLF7)

True Class

Predicted Class

DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

DNA 99 1 0 0 0 0 0 0 0 0
ER 0 97 0 0 0 2 0 0 0 1
Gia 0 0 91 7 0 0 0 0 2 0
Gpp 0 0 14 82 0 0 2 0 1 0
Lam 0 0 1 0 88 1 0 0 10 0
Mit 0 3 0 0 0 92 0 0 3 3
Nuc 0 0 0 0 0 0 99 0 1 0
Act 0 0 0 0 0 0 0 100 0 0
TfR 0 1 0 0 12 2 0 1 81 2
Tub 1 2 0 0 0 1 0 0 1 95

The results shown are the average percentages (over 10 cross-validation trials) of images in each true class that are classified in each
predicted class. The average correct classification rate across all classes was 92%. Results from reference (6).
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image representations, we need to find a partitioning so
that proteins in one partition share a single location pat-
tern. This is analogous to clustering genes by their expres-
sion patterns in microarray experiments. In both cases, one
of the goals of such clustering is to enable the identification
of sequence elements that might be shared between mem-
bers of a cluster. For coexpressed genes, these may be tran-
scriptional enhancers, while for colocated proteins, they
may be targeting motifs. Just as there may be indirect con-
trol of transcript clusters (i.e., one or more transcript may
regulate the transcription of the others in the cluster), so
also may targeting of proteins be indirect (proteins in a
cluster may bind to each other with only one of them con-
taining a targeting signal). In any case, the first step to
understanding these mechanisms on a proteome-wide scale
is to identify all high-resolution location patterns and deter-
mine which proteins display each.

Subcellular location trees. As discussed before, a
library of images representing many, if not all, proteins
expressed in a given cell type can be obtained by random
tagging techniques. An excellent version of this approach
is CD-tagging (12), which introduces an internal GFP do-
main to the tagged protein. CD-tagging has been used to
generate a library of over a hundred clones derived from
mouse 3T3 cells, each of which expresses a (usually differ-
ent) tagged protein (25). Three-dimensional images have
been collected for many of these clones using spinning
disk confocal microscopy (1).
It is a common practice to explore the similarities of

sequence or structure among a set of proteins by con-
structing a phylogenetic tree. The basis of this construc-
tion is a measure of the difference (or similarity) in
sequence or structure between each pair of proteins. A
similar approach can be used to group proteins using their

FIG. 3. Typical images from 11-class 3DHeLa image dataset. The eleventh (cytoplasmic) pattern is represented by the blue color. Red, blue, and green col-
ors represent DNA staining, total protein staining, and target protein fluorescence. Projections on the X-Y (top) and the X-Z (bottom) planes are shown.
Image' Carnegie Mellon University; used with permission.

Table 4
Confusion Matrix for Classification of Images from the 3DHeLa Dataset with a BPNN with 20 Hidden Units Using SLF17

True Class

Predicted Class

DNA ER Gia Gpp LA Mit Nuc Act TfR Tub

DNA 98 2 0 0 0 0 0 0 0 0
ER 0 100 0 0 0 0 0 0 0 0
Gia 0 0 100 0 0 0 0 0 0 0
Gpp130 0 0 0 96 4 0 0 0 0 0
LAMP2 0 0 0 4 95 0 0 0 0 2
Mit 0 0 2 0 0 96 0 2 0 0
Nuc 0 0 0 0 0 0 100 0 0 0
Act 0 0 0 0 0 0 0 100 0 0
TfR 0 0 0 0 2 0 0 0 96 2
Tub 0 2 0 0 0 0 0 0 0 98

The results shown are averages over 10 cross-validation trials. The average correct classification rate across all classes was 98%. Results
from reference (24).
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similarity as reflected in subcellular location features. We
refer to the trees created by this approach as SLTs.

The initial illustration of the principle of a protein SLT
was performed using the 10 classes in the 2DHELA data-
set and feature set SLF8 (5). The resulting tree revealed
that 1) similar location patterns were grouped first (two
Golgi proteins, and the pair of lysosomes and endosomes
proteins), and 2) the tree was consistent with the biologi-
cal understanding of these organelle patterns.

The first SLT built for a protein library was constructed
for 46 of the randomly tagged 3T3 cell lines obtained by
CD-tagging (1). A critical issue in constructing an SLT is
how (or whether) to select features from the starting fea-
ture set. In our initial study, we described one approach to
this problem, in which classifiers are trained in an attempt
to distinguish all proteins (even though some protein pairs
are expected to be indistinguishable) and increasing num-
bers of features selected by SDA are used. When this
approach was used starting from feature set SLF8 and using
a neural network classifier, a final set of 10 features was
obtained. This set was able to distinguish all 46 proteins
with about 70% accuracy, but since some proteins may
share a single location pattern this number does not reflect
the accuracy with which the fundamental classes can be
distinguished. Examination of this tree is somewhat difficult
because the exact underlying true cluster structure is not
known (otherwise, the clustering procedure would be
unnecessary). However, we observed, for example, that
most nuclear proteins were grouped into two separate clus-
ters. A close examination of images from the two clusters
revealed some subtle differences between them, which sug-
gested that the method is sensitive enough to properly
separate similar but distinct patterns.

More recently, an updated SLT was created on a larger
version of the 3D3T3 dataset (26). This version consisted
of 90 tagged proteins. The dataset was first screened to
eliminate those proteins considered to be too variable in
their distribution (using an algorithm described in the next
section). The feature set used to construct this SLT included
texture features calculated at an experimentally determined
optimal pixel resolution (0.5 lm) and gray levels (64). Also,
instead of constructing a single SLT on the dataset, which
could be sensitive to small variations, we constructed a
consensus tree (27). This is done by constructing many
trees, each using a randomly selected half of the images for
each protein, and keeping track of which branches are con-
served across many of these trees. The resulting consensus
tree (Fig. 4) and representative images for each protein can be
viewed through an interactive browser at http://murphylab.
web.cmu.edu/services/PSLID/tree.html.

Objective grouping of proteins based on subcellu-
lar location patterns. A traditional difficulty in interpret-
ing tree-structured clustering algorithms is to find which
branches represent the same class. An equivalent problem
is to find the number of inherent clusters. A parallel
approach we used for this problem is to cluster all indivi-
dual images from all proteins (by k-means algorithm) and
determine the optimal number of clusters (by Akaike In-
formation Content). However, some of the clusters con-

tained only outlier images from some proteins. Therefore,
we estimated the optimal number of clusters to be the
number of clusters containing a majority of the images of
at least one protein.
When this method is applied to the 3D3T3 dataset, 17

clusters (excluding those clusters containing only outliers)
were obtained. Furthermore, statistical analysis of the par-
titionings obtained from these two parallel approaches
(clustering and cutting the consensus tree to obtain the
same number of clusters) revealed a good agreement
between them (26), which suggested that either partition
largely reflects the real structure for this dataset.
SLTs for analysis of protein targeting mutants. In

addition to being useful for location proteomics, SLF fea-
tures and cluster analysis methods can also be used to
determine how many mutant localization phenotypes a
particular protein can display. In collaboration with Jack
Rohrer’s group at the University of Zurich, we have
demonstrated the feasibility of this application by analyz-
ing confocal images of normal and mutant GFP-tagged pro-
teins expressed in HeLa cells (28). A collection of single-
and double-mutants in the cytoplasmic tail of a protein
(uncovering enzyme or UCE) that is normally expressed in
the trans-Golgi network were created and expressed in
HeLa cells. 3D images were collected following the three-
color imaging protocol used for the 3DHeLa collection.
The images were automatically segmented into single cell
regions using the DNA and total protein images, and then
SLF were calculated and used to build a hierarchical clus-
ter tree. The value of the approach was demonstrated in
that both an intermediate phenotype between the normal
and ‘‘null’’ phenotype and an ‘‘alternate’’ phenotype were
found; both of these had not been discerned by visual ex-
amination of the images but could be verified once they
were identified by the cluster analysis.

IMAGE COMPARISON

The results reviewed above show that the SLF capture
the essential characteristics of protein distributions in flu-
orescence microscope images. This validates their use for
other statistical analyses besides classification and cluster-
ing. Following is a brief description of some additional
tasks that can be accomplished with the SLF.

Objective selection of typical images

The traditional way of selecting a representative image
from an image set is to use visual inspection. However,
this process is subjective and labor-intensive. With the nu-
merical SLF available, we can determine the distance of
each feature vector (representing an image) to the mean
feature vector and images can be ranked by this distance
(29). The representative images would be those on top of
the ranked list.

Objective comparison of two image sets

A frequent question asked by biologists about fluores-
cence images is whether two different image sets repre-
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sents different location patterns or not. For instance, one
could be interested in whether expression of a mutated
gene changes the targeted protein location pattern.

To address this problem, we can perform an appropri-
ate multivariate test between the distributions of the SLF
of the two image sets. For example, we have used the
Hotelling T2 test, which is a multivariate version of the stu-
dent t test to compare image sets (30). If the resulting F

value from the test is greater than a critical F value calcu-
lated from the degrees of freedom at a given confidence
level, we conclude that the image sets differ at the given
confidence level. By this method, all pairs of classes in
2DHELA dataset were shown to be statistically different at
the 95% confidence level, which is consistent with the
finding that a trained classifier could distinguish all 10
classes with relatively high accuracy. As a control, two sets
of images for cells labeled with different antibodies against
the same protein (giantin) were generated and compared.
The resulting F value of 1.04 was less than the critical F
value of 2.22 at the 95% confidence level (30), demon-
strating that this method is not overly sensitive to within
class variations.

SOFTWARE AVAILABILITY

Much of the software described above is available for
download as Matlab and C11 code from http://murphylab.
web.cmu.edu/software. Updated versions can be used
through the PSLID image database (http://murphylab.web.
cmu.edu/services/PSLID), where feature calculation is in-
tegrated into the database and inputs to analysis functions
are specified as the results of a text- or content-based
image query). The PSLID software is also available for local
installation.

CONCLUSIONS

Location proteomics is an important branch of proteo-
mics because protein location is an essential aspect of pro-
tein behavior. Computerized methods for image interpre-
tation are needed for location proteomics, since they are
efficient, cost-saving, objective, and sensitive to subtle dif-
ferences. In the current review, we have briefly discussed
the current advances in the development of subcellular
location features for both 2D and 3D protein fluorescence
images. We also discussed the automated interpretation
methods, including classifiers, clustering algorithms, and

FIG. 4. A consensus SLT generated on the 3D3T3 image dataset. The rows show the name of the tagged protein (where known), the description assigned
from visual inspection, and the subcellular location inferred from annotations in the Gene Ontology (GO) database. Names of proteins whose location from
visual inspection differs significantly from that inferred from GO annotation are preceeded with **. The sum of length of vertical edges connecting two pro-
teins represents the distance between them. From reference (26).
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other statistical analysis tools derived from these numeri-
cal descriptors of an image. Combined with advances in
random tagging and high-throughput imaging techniques,
these computational methods can generate a complete
view of the location patterns for most, if not all, proteins
expressed in an arbitrary cell type. Encouraging progress
in combining automated microscopy with pattern analysis
methods has been reported recently (7). While many chal-
lenges remain, the first comprehensive and objective
grouping of proteins by their high-resolution subcellular
location is within reach.

Finally, systems biology efforts to build bottom-up mod-
els of complex behaviors at the cellular level and higher
will require detailed information on the subcellular loca-
tion of all proteins. This information will need to be in the
form of generative, stochastic models that capture the
cell-to-cell variation in patterns within a location cluster,
and that can be combined to generate synthetic cell
images in which each protein is distributed in accordance
with all available data. The development of methods for
building generative models of highly variable subcellular
patterns will be an important challenge for the field over
the next few years.
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