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Dramatic advances in methods for protein tagging and the development of fully automated micro-
scopes enable collection of unprecedented volumes of image data on the subcellular location of pro-
teins in live cells. Combining these approaches with machine learning methods promises to provide
systematic, high-resolution pattern information on a proteome-wide basis.
Introduction
To understand the intricate pathways that regulate biolog-

ical processes at the cellular level, we need to be able to

capture data about the subcellular distributions of proteins

and how these vary within cell populations. Automated

analysis of fluorescence microscope images provides

a powerful way of acquiring such information. The high

specificity of fluorescent probes for labeling components

of interest and the availability of advanced light micro-

scopes permit high spatial and temporal resolution imag-

ing of living cells. The determination of accurate protein lo-

cation provides valuable information for understanding the

molecular mechanisms that underlie the functions of cells

(Ehrlich et al., 2002; Suzuki et al., 2002; Wu et al., 2003).

Knowledge of the localization of proteins within cellular

compartments is critical to understanding their function

for many reasons. Each compartment is defined by its own

chemical and physical characteristics, such as the acidic

pH in the lysosome, the viscoelasticity of the cytoskeleton,

or the hydrophobicity of membrane. Thus, location can

provide useful information for improving predictions of pro-

tein conformation. Besides, since organelles are the loca-

tion of specialized functions in the cell, such as oxidative

metabolism in mitochondria, transcription of ribosomal

RNA in nucleoli, and maturation of newly synthesized pro-

teins in the endoplasmic reticulum, the determination of

subcellular location for a protein can yield hypotheses

about the metabolism in which it is involved and the pro-

teins with which it interacts. Changes in location over

time are also critical to cell behavior. For example, in a sig-

nal transduction pathway, the transportation from the cy-

toplasm to the nucleus induced by the activation of the

protein is characterized by the location of the protein be-

fore and after its activation, the activation moment, and

its duration. Lastly, once the subcellular distribution of a

protein is defined for healthy adult cells, comparison with

diseased or developing cells can yield important insights

that can lead to improved diagnostics and therapeutics.

Information on the subcellular location of proteins is in-

creasingly being collected in parallel for large numbers of

proteins (Hoja et al., 2000; Jarvik et al., 2002; Koroleva

et al., 2005; Rolls et al., 1999; Simpson et al., 2000) or even
for entire proteomes (Huh et al., 2003). As for many previ-

ous studies of individual proteins, the primary means of

analyzing and annotating images depicting subcellular lo-

cation in these large-scale studies has been visual exam-

ination. Over the past decade, however, the feasibility of

using machine learning methods to automate the determi-

nation of subcellular location from fluorescence micro-

scope images has been demonstrated convincingly (Bo-

land et al., 1997, 1998; Boland and Murphy, 2001; Huang

and Murphy, 2004b). In fact, these methods can perform

better than visual examination (Murphy et al., 2003). Over

the same time period, automated systems for performing

cell-based assays were developed and used by pharma-

ceutical companies to screen for drugs with desired effects

(Taylor et al., 2001; Zhou and Wong, 2006). These systems,

variously referred to as high-content screening or high-

throughput microscopy systems, are increasingly being

used for basic research on biological pathways (Pepperkok

and Ellenberg, 2006; Perlman et al., 2004; Price et al., 2002;

Sigal et al., 2006; Starkuviene et al., 2004; Yarrow et al.,

2005). This article reviews the methods currently available

for automated, large-scale determination of the intracellu-

lar location of fluorescent-labeled molecules within cells.

Approaches to Systematic Analysis of Subcellular
Location
Proteins can display highly specialized locations within

cells, such as being present in just the mitochondrial inner

membrane, just the rims of a particular Golgi cisterna, or

just specific regions of a chromosome. However, the num-

ber and resolution of locations considered in subcellular

location classification varies greatly between studies.

The simplest location studies are interested in three com-

partments (nucleus, cytoplasm, and extracellular environ-

ment), while more accurate studies have considered 7 to

22 different subcellular structures (often depending on

the organism).

Knowledge Capture

Systematic efforts to catalog the subcellular locations

of proteins typically use either knowledge capture or

data-driven approaches. The first seeks to collect and or-

ganize information on location that has been collected
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over many years and published in the archival literature. A

critical starting point for these efforts is the development

of a standard vocabulary to describe location. While

many vocabularies have been used over the years, the

creation of the Cellular Component ontology by the

Gene Ontology (GO) Consortium (Harris et al., 2004) has

had a major impact. This ontology describes locations at

the levels of subcellular structures and macromolecular

complexes. It has been widely used to create manually cu-

rated databases, such as SGD (http://www.yeastgenome.

org) and Wormbase (http://www.wormbase.org), that con-

tain assignments of specific GO terms to known proteins.

While extremely valuable, this approach has a number of

limitations. Perhaps foremost is the inherent limitation of

using words to describe complex subcellular patterns. An-

other is the difficulty of capturing differences in location for

a given protein, whether due to discrepancies between

published results or changes in location due to a difference

in conditions, cell cycle phase, or cell type. Other limita-

tions include possible inconsistencies between annotators

(assignment of different sets of terms for the same pattern

or the same set of terms for different patterns) and the typ-

ical absence of traceable justifications for assignments.

Automated approaches have the potential to address

some of these limitations. For example, automatic analy-

sis of text documents has been used to associate a protein

name with its location (Stapley et al., 2002). As a further

step, systems such as SLIF (http://slif.cbi.cmu.edu) can

associate fluorescence microscope images from figures

in online journal articles with the protein name and location

described in the captions (Murphy et al., 2001, 2004).

Since this approach links directly to a published image,

the assignment of subcellular patterns is not limited to

the caption content and can be refined at any time by

automated reinterpretation of the image (without needing

to repeat the experiment).

Prediction

In contrast to most knowledge-capture approaches, data-

driven approaches seek to directly associate location

assignments with raw data, typically using well-character-

ized automated tools. These approaches can be sub-

divided into two categories: computational prediction and

experimental determination. Prediction approaches are

typically based on the analysis of nucleic acid and amino

acid sequences to seek sorting or signal peptides, se-

quence profiles, and similarities with known protein fami-

lies (Chou and Shen, 2006; Lu et al., 2004; Yu et al., 2006).

Naturally, prediction systems are inherently limited by

their training data. They cannot properly assign proteins

with previously unseen location patterns, are typically

only trained to predict locations with low resolution (i.e.,

only major organelle classes), and are not able to predict

differential localization (e.g., changes in location due to

cell cycle phase or developmental state).

Determination

Thus there is a strong need for additional experimental de-

termination of protein subcellular location. Although both

subcellular fractionation and electron microscopy have

been used to analyze location, fluorescence microscopy
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currently is the most powerful approach since it can pro-

vide high-resolution images of protein distributions in liv-

ing cells. A major bottleneck of this approach has been

the slowness and subjectivity of human examination of

the images to determine protein distribution patterns. For-

tunately, automated image interpretation methods have

been developed to recognize subcellular location pat-

terns, initially by our group (Boland et al., 1997, 1998;

Boland and Murphy, 2001; Murphy et al., 2000) and then

by others (Conrad et al., 2004; Danckaert et al., 2002).

These approaches combine objective feature extraction

and machine learning algorithms. They have been shown

to be as robust as a human annotator for recognizing

major protein location patterns, and even more sensitive

for discriminating subtle pattern variations not distinguish-

able by visual examination (Murphy et al., 2003). In the re-

mainder of this review article we will describe methods for

automatically acquiring and analyzing images of protein

subcellular location.

Image Acquisition Considerations for Automated
Analysis
Comprehensive, systematic determination of subcellular

location from fluorescence microscopy images requires

automation and coordination of several steps, such as

cell preparation, image acquisition, image preprocessing,

quantitative feature extraction, pattern classification, da-

tabase storage, and finally statistical analysis and data

modeling. Automated microscopes originally designed

for drug screening are rapidly evolving and becoming suit-

able for fundamental biological research. A number of

factors affecting the systematic collection of images for

later automated interpretation of subcellular location are

described below.

Labeling

A range of methods have been developed for visualizing

protein distributions within cells using fluorescence mi-

croscopy, and the advantages and disadvantages of

each approach have been discussed in detail in a recent

review (Giepmans et al., 2006). Briefly, immunofluores-

cence methods have the advantage that they do not re-

quire modification of the target protein, but they have the

disadvantages that they require specific antibodies, are

subject to potential disruption of cell architecture during

fixation, and cannot be used to observe dynamic patterns

in living cells. Genetic methods involve creating a chimeric

protein that includes all or part of a protein fused with either

the coding sequence of a fluorescent protein (such as

green fluorescent protein) or an amino acid sequence

that can be specifically bound by an externally added re-

agent (such as the membrane permeable biarsenical re-

agent FlAsH). The genetic approaches can be further sub-

divided into those that tag cDNA sequences and those that

tag genomic DNA sequences. The tag can either be added

at one of the ends of the protein coding sequence or at

an internal site. The genome approaches have the advan-

tage that endogenous regulatory sequences are typically

retained. A particularly powerful approach to genomic

tagging is CD tagging, which can create internal tags at
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exon-exon boundaries (Jarvik et al., 1996). It has been

combined with retrovirus-mediated random insertion to

identify subcellular locations for previously uncharacter-

ized proteins (Jarvik et al., 2002; Sigal et al., 2006).

Magnification and Resolution

High-throughput microscopes are typically equipped with

103 or 203 magnification for applications limited to

screening large populations of cells with coarse compart-

ment distinctions into nucleus, cytoplasm, and extra-

cellular. Higher magnification is needed in order to be

able to distinguish intracellular structures, and some

high-throughput microscopes can provide it. Since oil-

immersion objectives are not well-suited to multiwell plate

screening, most systems can use only air objectives (which

limits the numerical aperture). The choice of objective for

a high-throughput application is ultimately determined by

the types of high-throughput systems available, the size

of the cells and structures of interest, and the desired

time of acquisition (acquiring multiple fields of a multiwell

plate with a 633 objective can take many hours).

The specific microscope objective being used deter-

mines the spatial resolution that can be achieved using it.

Spatial resolution is defined as the smallest separation be-

tween two point sources that permits them to be resolved.

This is given by the Rayleigh limit, 1.22l/2NA (where l is the

wavelength of emitted light and NA is the numerical aper-

ture of the objective). For 520 nm light and a 1.3 NA objec-

tive, this corresponds to 244 nm. When using digital imag-

ing, one would ideally sample the image formed by the

microscope at twice this resolution (this is referred to as

Nyquist sampling). The pixel size of the camera often de-

termines whether this can be achieved (the diameter or

width of each pixel in the camera chip divided by the mag-

nification gives the size of each pixel in the sample plane).

Of course, any binning of camera pixels (i.e., summing of

a two-by-two set of pixels to give one value) increases

the pixel size in the sample plane. For a 1003 objective

and a camera with 2 micron-wide pixels, the pixel size

(with no binning) in the sample plane would be 200 nm.

This discussion applies generally to fluorescence imag-

ing using a digital camera, but there are a number of

approaches that can provide better resolution (so-called

super-resolution). These typically require that imaging be

conducted under conditions where individual fluorophores

can be resolved. A particularly exciting variation on this

approach is photoactivated localization microscopy, which

builds up distributions of molecules by repeated rounds of

photoactivation and bleaching (Betzig et al., 2006).

To provide some insight into the pixel size required to

distinguish subcellular patterns, the performance of auto-

mated classifiers has been compared for images originally

collected with a 1003 objective after downsampling to

varying degrees to simulate using lower magnification

(Murphy et al., 2003). The results demonstrated that the

classifier was robust to these changes for identifying the

major organelles, with the loss of only several percentage

points when the spatial resolution was divided by 2 or 3.

However, pairs of similar patterns (such as two Golgi pro-

teins or an endosomal and a lysosomal protein) that could
be distinguished at the highest resolution showed signifi-

cantly lower classification accuracies at the lower magni-

fications. The results confirmed the notion that the choice

of resolution has to be in accordance with the context of

the study. For studies of the location of unknown proteins,

the results provide a strong argument that the highest

possible resolution should be used.

Dimension

The new generation of fluorescent microscope systems

allows the acquisition of images of higher dimension (time

and space) than traditional 2D epifluorescence micro-

scopes. Confocal, two-photon and spinning disc micro-

scopes provide images with high spatial and/or time

resolutions for studying 3D phenomena by live cell, multi-

spectral, time-lapse imaging. The comparison of 2D im-

ages and 2D time series showed that subcellular patterns

were more accurately identified when temporal infor-

mation was involved (Hu et al., 2006). Since cells are not

flat, similar conclusions were drawn for 3D images com-

pared with 2D images (Huang and Murphy, 2004b; Velliste

and Murphy, 2002). It remains to be determined for which

applications 3D imaging is required and when, for exam-

ple, large numbers of 2D images can suffice.

Channels

Traditional determination of subcellular location has relied

heavily on comparison with the patterns of previously

characterized proteins, especially by labeling the known

and unknown proteins with different fluorescent probes

and acquiring parallel images (referred to as colocaliza-

tion). This approach worked reasonably well for investiga-

tions of single proteins in which an iterative approach

could be used to determining location (initial imaging to

suggest candidate compartments, followed by double la-

beling with markers of those compartments). It is much

less feasible when considering thousands of proteins.

Fortunately, results from our group strongly suggest

that if sufficient images are acquired, automated ap-

proaches can distinguish very similar patterns without us-

ing colocalization (Chen and Murphy, 2005; Murphy et al.,

2003). Nonetheless, automated analysis is aided by the

inclusion of some simple reference channels, such as

a DNA probe to provide a frame of reference (Huang and

Murphy, 2004b) or plasma membrane or total protein

markers to facilitate cell segmentation (De Solorzano

et al., 2001; Velliste and Murphy, 2002).

Number of Images

The number of images that need to be acquired for each

unknown protein depends on the minimum accuracy de-

manded and whether it is desired to be able to identify

new patterns or just assign new proteins to known pat-

terns. From previous experiments, anywhere from one to

ten images can give nearly perfect accuracy for the latter

task, but 50 to 100 images per protein are needed to allow

discovery of new patterns and/or for training a new classi-

fier to recognize them.

Subcellular Location Feature Extraction
Having discussed image acquisition considerations, we

now turn to the task of numerically describing location
Developmental Cell 12, January 2007 ª2007 Elsevier Inc. 9
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Figure 1. The Image Database Depicted Contains Images with Related Biological Protocol, Acquisition Parameters,
and Subcellular Location Features
These numerical descriptors are computed at different semantic levels of the image content. The field-level features are calculated on the whole im-
age, while cell- and object-level features require segmentation. The subcellular location features characterize the number, shape, gray-level distri-
bution (texture, moments, and frequency), and relative size and position of the objects, in some cases relative to a reference channel. Some specific
features are added for describing 3D and 2D+t stacks of images to improve the description by taking into account higher dimensions. As the number
of dimensions increases by sampling in 3D or over time, more complex and informative features can be calculated.
patterns. The goal is to identify numerical features that

capture the intrinsic properties shared by cellular organ-

elles, while being insensitive to variations in cell shape, ori-

entation, and position in images. Significant effort has

been devoted to characterization of candidate features

for this task, and the various feature types have been

reviewed previously (Huang and Murphy, 2004c). Some

of the descriptors are intuitive, such as the mean intensity

or the shape of objects, while others are less intuitive,

such as spatial frequency analysis or time variations.

Computers can outperform human observations by

capturing features not perceived by the eye (such as

3D distances, frequencies, and high-order statistical

moments).

Microscope images of cultured cells can be described

at different levels: an entire field of cells, individual whole

cells, or individual fluorescent objects within cells (see Fig-

ure 1). Specific features can be defined as appropriate for

each level, and lower-level descriptors can be aggregated

to define upper-level descriptors (e.g., object features can

be averaged to define cell-level features). The following

sections present the various types of Subcellular Location

Features that have been used to describe protein dis-

tribution patterns. Most of the features have 2D and 3D

versions, which are computed as appropriate given the

dimension of the available data. 3D measures take into
10 Developmental Cell 12, January 2007 ª2007 Elsevier Inc.
account the fundamental difference between distance

along the microscope axis (z) and distance in the focal

plane (x,y) by separating the two components (Velliste

and Murphy, 2002).

Subcellular Object Features

An important step in describing subcellular patterns is de-

fining individual fluorescently labeled objects within cells.

The most frequent starting point for this task is finding

a threshold to distinguish between negative (background)

and positive pixels in the image. This can be done using

methods (Otsu, 1979; Ridler and Calvard, 1978) that are

suitable for fully automated processing. Objects are then

defined as groups of contiguous above-threshold pixels.

Each object can be described by a variety of features

that reflect their size, shape, and position relative to

a DNA reference channel, if available. These features

can be used directly to recognize some subcellular pat-

terns (Zhao et al., 2005) and can also be aggregated to

form cell-level features (as described below).

Single-Cell Features

The elementary entity studied to localize proteins within

the cell is the cell itself. Analysis at this level therefore re-

quires a segmentation step that divides each image into

subregions containing individual cells on which the

single-cell features are computed. This is a critical step

of image analysis because its accuracy determines the
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accuracy of the resulting cell measurements, and, unfortu-

nately, there is no universal method to tackle this problem

in all possible conditions. The most common methods to

segment fluorescent images are described below.

The most commonly used approach for generating

single-cell regions is Voronoi segmentation. It involves

finding the positions of nuclei in an image of a DNA probe

and then creating polygonal regions that separate the

nuclei. This approach is frequently used in high-content

screens that do not require accurate cell boundaries. To

get more accurate boundaries, additional information

beyond the DNA image is needed. This can take the

form of a parallel image in which the cell membrane or total

protein is labeled. Nuclear positions can be found as

above and then active contour methods (De Solorzano

et al., 2001), the seeded watershed algorithm (Velliste

and Murphy, 2002), or a modified Voronoi method (Jones

et al., 2005), can be used. However, errors in finding nuclei

can lead these algorithms to over- or undersegment an

image (i.e., create regions containing partial or multiple

cells).

This problem has led to the development of a number

of approaches for improving cell segmentation by jointly

considering nuclei finding and boundary finding. These

include using parametric and geometric active contours

(Coulot et al., 2006; Dufour et al., 2005; Zimmer et al.,

2002), a combined filtering and watershed algorithm

(Adiga et al., 2006), and graphical models (Chen et al.,

2006). A drawback of these more complex segmentation

approaches is that it can be difficult to find optimal values

for free parameters in the algorithms. The methods are

also quite computationally expensive for large data set

applications.

Once individual cell regions have been identified, a

range of features can be calculated to describe the fluo-

rescence distribution within each region. Perhaps the

most intuitive features are morphological features derived

by calculating various quantities for the set of subcellular

objects within each cell. For each object descriptor, cell-

level morphological features can be calculated by finding

means, variances, minima, and maxima. Edge features

are derived by first finding those pixels in an image that

are in regions where the intensity changes dramatically.

Features that can then be calculated include how much

of the total fluorescence is in the edge pixels and whether

there is a preferred angle of the edges within a cell. The lat-

ter feature can be useful for distinguishing between pat-

terns that show circular symmetry (such as microtubules

radiating outward like a star) and those that don’t (such

as oriented stress fibers). Texture features are very power-

ful for distinguishing subcellular patterns. They are based

on measurements of the frequency that any particular gray

level is observed adjacent to any other gray level. A num-

ber of statistics can be calculated from these frequencies.

The purpose of these statistics is to determine whether

the overall pattern in a cell is more like a checkerboard

than a solid or more like random speckling than a solid.

Other types of more complex features include geometric,

moment, and wavelet features. Detailed procedures for
calculating all of these have been described (Huang and

Murphy, 2004c).

Field Features

When automated microscope acquisition is used, images

are taken independently of their content and generally

contain cells truncated by the boundary of the image. Field

features describe multicell fields without requiring cell

segmentation, and they are expected to be insensitive to

the number of cells in the field. Assuming that a field con-

tains a homogeneous population of cells expressing a sin-

gle labeled protein, most of the morphological features

and all of the texture features used at the cell level can

be used at the field level with good classification perfor-

mance (Huang and Murphy, 2004a).

Temporal Features
Dynamic cell population studies are becoming more and

more important in understanding pathways and networks.

Therefore, the addition of temporal parameters such as

the change of size and shape of nuclei and the duration

between the different stages are important indicators of

the cell division cycle (Zhou and Wong, 2006). There is

also extensive work on analyzing the behavior of specific

labeled proteins (especially cytoskeletal and chromo-

somal proteins) by tracking individual objects in time se-

ries images (Meijering et al., 2006). This approach can

yield exquisitely detailed models of how the target pro-

tein’s distribution changes in space and time.

Tracking methods, however, require some description

(model) of the type of object or structure to be tracked in

a time series. This would be difficult to obtain when ana-

lyzing proteins on a proteome-wide basis (especially since

many previously uncharacterized proteins would be pres-

ent). An alternative is to use temporal versions of the tex-

ture features described above (Bouthemy and Fablet,

1998). Temporal textures measure overall patterns in the

changes in pixel intensities in an image over time and do

not require tracking of objects. This approach has been

demonstrated to be able to distinguish protein patterns

better than can be distinguished using features calculated

from static images (Hu et al., 2006).

Major Computational Questions in Subcellular
Pattern Analysis
The subcellular location features described above are

numerical descriptors that can characterize the distribu-

tion of proteins within cells. These features have been

integrated in most of the advanced high-throughput image

analysis systems (Carpenter et al., 2006; Conrad et al.,

2004) and can be used for a number of different goals.

However, among the hundreds of features, some are

redundant while others are irrelevant to distinguishing a

particular set of protein distribution patterns. Therefore,

a significant increase in the quality of results can be

achieved by selecting a specific set of discriminatory fea-

tures before applying certain algorithms. A comparison

between different feature reduction methods concluded

that step-wise discriminant analysis is the most useful

(Huang et al., 2003).
Developmental Cell 12, January 2007 ª2007 Elsevier Inc. 11
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Figure 2. This Schematic Describes the Two Steps of the Supervised Classification for Determining the Subcellular Location
Pattern of a Protein
The first step requires a set of images which represents the different classes of subcellular location patterns to be recognized. The feature extraction
provides a numerical description for each image. The classifier is trained to distinguish the subcellular location patterns given the values of a selected
set of the most discriminative features. The second step determines the subcellular location class of a target protein from its fluorescent microscope
images. The selected features are computed and used as inputs of the trained classifier. The classifier assigns one of the known classes to the protein
in each image. The accuracy is improved when 3D stacks, 2D time sequences, or several images are used.
Statistical Tests: Comparison

By defining a reference pattern from a protein under spe-

cific conditions, a screening application can compare it

with the pattern of other proteins, known or unknown, to

see if they share the same profile. This method is useful

in identifying proteins likely to be involved in the same

pathway, potential interacting proteins, or two compo-

nents of the same protein complex. Another approach is

to compare the reference of a protein distribution pattern

with patterns found under modified conditions (e.g., a dif-

ferent stage of differentiation, pathology, or drug addition).

In both examples, two sets of images have to be com-

pared with a statistical test to determine if the difference

between the two patterns is significantly different. That

task can be automatically carried out by the SImEC (Sta-

tistical Image Experiment Comparator) software, which

can determine whether two sets of images are likely to

have come from the same distribution using various mul-

tivariate hypothesis tests (Roques and Murphy, 2002;

Zhao et al., 2006). To refine the interpretation of the re-

sults, the software displays the features ranked from the

most to the lowest degree of difference (calculated with

the t test) between the two image sets.

An impressive high-throughput comparison study used

a different approach to compare the effects of drugs on

the distributions of a marker protein for various pathways
12 Developmental Cell 12, January 2007 ª2007 Elsevier Inc.
(Perlman et al., 2004). A large number of features were

calculated, and a series of univariate tests of the degree

to which the histograms of those features differed be-

tween control and drug-treated samples were performed.

The results formed a vector describing the responses

for each drug, and these were clustered to identify cate-

gories of drugs that shared the same basic mechanism

of action.

Supervised Learning: Classification

Assuming that a protein is found in only one subcellular

compartment, the determination of that compartment

can be obtained by using the previous tool, SImEC, to

compare the image set of the target protein with image

sets of proteins with known subcellular locations. This

is an inefficient process because it requires as many

statistical tests as there are classes of known subcellular

locations.

In the field of machine learning, this can be solved in one

step with a supervised classifier. A supervised classifier is

designed to assign a class to an unknown input, given

a previous training set consisting of examples of each

class. The input is the set of subcellular location features

extracted from a fluorescent microscope image (see Fig-

ure 2). The performance of a classifier is measured by its

accuracy in giving the correct class for known inputs

that were not used in training. It can be easily estimated
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by repeated splitting of the collection of known protein lo-

cation images into one part for training and one for testing.

Many different types of classifiers exist, including linear

classifiers, decision trees, k-nearest neighbor classifiers,

one- and two-hidden-layer backpropagation neural net-

works, modular topology neural networks, and support

vector machines (SVM). SVM have been observed to pro-

vide the best performance on two large image datasets

(Huang and Murphy, 2004b). Most of these classifiers

are readily available within image databases or statistical

packages.

Comparison of the results on a dataset of 2D images of

HeLa cells using an automated classifier (Huang and Mur-

phy, 2004b) and visual examination (Murphy et al., 2003) is

shown in Figure 3. Each symbol represents the accuracies

for a different subcellular pattern. The overall accuracy for

the automated classifier is 92%, as compared to 83% for

visual examination. The computer’s performance is very

similar to the human performance for distinguishing the

major patterns, but it is better for similar patterns, like

those of endosomes and lysosomes or two Golgi proteins.

Performance of automated classifiers on 3D images of the

same patterns is even better, 98% (Huang and Murphy,

2004c).

Unsupervised Learning: Clustering

The inherent restrictions of the supervised classification

approach are the need for training set generation and

the limitation that images can be assigned only to prede-

fined classes. To tackle this problem, unsupervised learn-

ing methods, also called clustering methods, are able to

define classes based only on the distance between the

objects in the feature space. The distance between two

points in the feature space can be used to estimate the de-

gree of similarity between the two protein distributions

they represent in the real world.

Clustering approaches have been applied to fluores-

cent microscope images of a large collection of cell lines

Figure 3. Comparison of Classification Accuracies from an
Automated System and from Visual Examination
Accuracies for an automated classifier are presented versus the accu-
racies for the same images obtained by visual examination. Each sym-
bol represents a different pattern class. In increasing order of human
accuracy these are: gpp130, Giantin, LAMP2, TfR, ER, Tubulin, mito-
chondria, nucleolin, and DNA (both at 100% for human and 99% for
computer accuracy), and actin (100% for both). From Murphy (2004).
generated by CD tagging (Jarvik et al., 2002) in order to

create a subcellular localization tree which groups to-

gether similar protein location patterns (Chen and Murphy,

2005; Chen et al., 2003). The classes were autogenerated

by computing the Mahalanobis distance between images

and the mean vector for each class, while the connections

of the hierarchical tree were determined by calculating the

distance between each pair of classes. Since many im-

ages of each cell line (each expressing a different tagged

protein) can be collected, a particularly robust form of

clustering, consensus clustering (Thorley and Page,

2000), was used (Chen and Murphy, 2005). This ensures

that the clusters are not adversely affected by one or

a small number of atypical images. Clustering of proteins

by their location patterns on a proteome-wide basis will

enable the determination of the set of all possible (normal)

location patterns and the identification of protein location

families that share a given location.

Extending Single-Cell Methods to Tissues
In addition to systematic studies of single cells, initial ap-

proaches to automated analysis of subcellular patterns in

intact tissues have been described. Multicolor fluorescent

staining of tissue microarrays has been used to distinguish

tumor samples with different distributions of estrogen re-

ceptor or b-catenin (Camp et al., 2002). A powerful new ro-

botic technology for sequential fluorescent staining of as

many as a hundred proteins in fixed tissue samples has

been shown to enable discrimination of disease-specific

localization patterns (Schubert et al., 2006). In contrast

to these studies, the Human Protein Atlas project (http://

www.proteinatlas.org) has used immunocytochemical

staining to obtain images of over 700 monospecific anti-

bodies in 48 normal human tissues and 20 tumors (Uhlen

et al., 2005). Each image was evaluated by a pathologist to

identify the cell types and rough subcellular location of the

targeted protein.

These studies have utilized fixed tissues and immuno-

staining, and the approaches promise to provide impor-

tant information (especially for distinguishing various dis-

ease states). However, we can imagine that extensions

of the live cell methods discussed above may be needed

in order to understand the full dynamic behavior of all pro-

teins in living tissues.

Database versus File System Approaches
All of the methods described above can be implemented

as stand-alone applications that use the operating sys-

tem’s file system to organize image files or as an analysis

layer on top of an image database. Relational database

models are convenient and widely used to capture biolog-

ical information. Examples include the organism-specific

genome databases and LIFEdb (Localization, Interaction,

Functional assays and Expression of Proteins) (http://

www.LIFEdb.de). It is an example of a database that links

genomic information, protein sequences, experimentally

determined location, and predicted location with a se-

quence comparison tool (Mehrle et al., 2006). Another ex-

ample is OrganelleDB (http://organelledb.lsi.umich.edu),
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which gathers data from over a hundred organisms on the

organelle, subcellular structure, or protein complex in

which proteins are found.

Relational databases can also be used to associate im-

ages with their context. Two of the earliest image data-

base systems for fluorescence microscope images were

PSLID (Protein Subcellular Location Image Database)

(Huang et al., 2002) and OME (Open Microscopy Environ-

ment) (Swedlow et al., 2003). OME is a general purpose,

open source image database system that can be down-

loaded and installed in local imaging facilities. It includes

excellent support for importing images from many micro-

scope sources and contains tools for a wide range of

microscope applications. On the other hand, PSLID is

a specialized database dedicated to subcellular location

images. The open source PSLID system can be down-

loaded and installed locally, but the PSLID website

(http://pslid.cbi.cmu.edu) also provides public access to

large collections of tagged protein images. It also provides

access to tools to carry out all of the analysis described in

this paper. These are summarized in Table 1.

Tools that do not use a database architecture often can-

not provide the same level of sophistication of search and

archiving that database systems can, but they have the

major advantage that they can be significantly easier to

install and use. An example is the CellProfiler system de-

Table 1. Examples of Questions about Subcellular
Location Successfully Addressed by Computational
Methods Incorporated in Publicly Available
Fluorescence Microscope Image Databases

Questions Method

Can I find images of

a particular protein in this

database?

Context-based image

retrieval

How can images that look

like a specific image be

retrieved?

Content-based image

retrieval

Do these two proteins

have the same location

pattern?

Statistical tests

Does the modification of

the biological protocol

change the location

pattern of the target
protein?

Statistical tests

What is the most

representative image
of this experiment/set

of images?

Measuring distance in feature

space from population
mean

In what subcellular
compartment is this

protein?

Supervised classification

How can proteins that have
the same location pattern

be grouped together into

families?

Clustering (unsupervised
classification) and tree

generation
14 Developmental Cell 12, January 2007 ª2007 Elsevier Inc.
signed for analyzing changes in cell phenotypes during

RNAi screens (Carpenter et al., 2006).

Conclusions
The systematic analysis of protein location has received

far less attention than other characteristics of proteins,

such as structure and binding partners. The combination

of powerful protein tagging methods, automated micro-

scopes, and automated image interpretation methods

provides the ability to comprehensively and automatically

determine the location of tagged molecules within living

cells.

The automation of protein localization by automated

fluorescent microscopy image analysis is a powerful way

to identify and understand the actors of pathways involved

in the different stages of differentiation. Given the tools re-

viewed in this paper, it becomes possible to compare the

localization of a target protein in immature cells with local-

ization in cells engaged in different differentiation path-

ways. From these experiments, spatial and temporal

models can be created. A particular challenge is deciding

upon a strategy that specifies the numbers of proteins, cell

types, developmental stages, and genetic backgrounds

that should be acquired in order to build a comprehensive

understanding of the variation in protein subcellular loca-

tion during development.

The majority of available high-throughput microscope

acquisition systems have been optimized for fixed cell ap-

plications; however, there is growing interest in live cell

kinetic assays, and several systems have already suc-

cessfully penetrated this application area. The methods

presented in this article are completely adaptable to the

available information in the resulting images (various spa-

tial resolutions, 2D or 3D spatial information, and temporal

resolution). Such analyses provide valuable information

to feed standardized databases designed to tackle the

challenges of systems biology.
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