
SYSTEMATIC DESCRIPTION OF SUBCELLULAR LOCATION FOR INTEGRATION WITH 

PROTEOMICS DATABASES AND SYSTEMS BIOLOGY MODELING 

 

Robert F. Murphy 

 

Center for Bioimage Informatics and Departments of Biological Sciences, Biomedical Engineering, and 

Machine Learning, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 
 

ABSTRACT 

 

Approaches for automatically analyzing subcellular location 

on a proteome-wide basis have been developed. This 

permits proteins to be grouped into Subcellular Location 

Families that share a statistically-indistinguishable pattern.  

This in turn creates a need for methods to connect these 

automatically determined locations to existing information 

in literature and databases, and to communicate the nature of 

the pattern for each family. The building of generative 

models is proposed to meet this need and their utility for 

simulations of cell behavior is discussed. 

 

Index terms -- Location Proteomics, Fluorescence 

Microscopy, Cluster Analysis, Generative Models 

 

1. INTRODUCTION 

 

A major paradigm in current biological research is the 

systematic, comprehensive collection of information about a 

particular biological process. As a result, a number of new 

fields have been born, each of which focuses on a particular 

process for one or more types of biological macromolecules. 

The large field of proteomics is concerned with study of the 

characteristics of all proteins, and location proteomics [1] is 

that subfield that focuses on the location of proteins within 

cells. A critical step towards the development of this field 

was the demonstration that machine learning methods could 

be applied to recognize subcellular patterns in fluorescence 

microscope images [2-5]. In fact, automated classifiers 

could perform better at distinguishing subtly different 

subcellular patterns than visual examination [6]. Perhaps 

most importantly, this work established that features drawn 

from a range of image analysis approaches could adequately 

capture the complex, highly variable location patterns 

displayed by proteins. 

 

Given these results, one possible approach to studying 

subcellular location on a proteome-wide basis would be to 

somehow collect images of the distributions of all proteins 

and then use automated classifiers to assign each each 

protein to one of the major subcellular patterns. This might 

be useful for gaining some initial insight into the roles of 

unknown proteins. However, most proteins are not 

homogenously distributed throughout a single organelle but 

rather are often found only in specific regions of an 

organelle (or in more than one organelle). Thus, the task of 

fully understanding subcellular location at the proteome 

level must include the task of identifying the set of possible 

patterns that proteins may display, with the expectation that 

some proteins will show novel patterns. 

 

2. COMPREHENSIVE DATA COLLECTION 

 

Dramatic advances in protein-tagging and microscopy 

technologies have made feasible the determination of the 

subcellular locations of all proteins expressed in a given cell 

type. Nonetheless, the rate-limiting step remains acquisition 

of the necessary images. A number of approaches that could 

be scaled to the whole proteome level have been described, 

including both transfection of tagged cDNAs [7] and 

random tagging of genomic DNA [8]. Large scale projects 

using different approaches for different organisms and cell 

types are currently being pursued. 

 

Once images have been collected, they must segmented into 

single cell regions so that numerical features describing each 

cell can be calculated. The general task of cell segmentation 

is a difficult one that is beyond the scope of this discussion, 

but a number of systems with reasonable performance have 

been described. 

 

3. IDENTIFICATION OF PROTEIN LOCATION 

FAMILIES 

 

Given a set of images of the subcellular patterns of a large 

number of proteins, identifying the set of statistically 

distinct patterns displayed is an unsupervised learning task. 

Cluster analysis methods can be used for this type of task, 

and the feasibility of applying these methods to subcellular 

patterns has been demonstrated [1, 9]. A critical issue in 

using these methods is establishing the criteria by which 

clustering results are to be evaluated. One criterion that is 

widely used is that results agree with all well-accepted prior 

knowledge. An alternative that does not require prior 

knowledge is that clusters formed from different samplings 

of available data agree with each other. We have obtained 

good results using this consensus clustering approach [10]. 
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We are currently using automated microscopy to collect 

images for thousands of tagged proteins in NIH 3T3 cells 

and plan to apply consensus clustering methods to identify 

Subcellular Location Families [10]. Of course, if this 

process is repeated for a different cell type (or the same cell 

type under different conditions, such as in the presence of a 

drug), we may expect that the some proteins may be found 

in different clusters or that new clusters may appear. Thus 

the definition of Subcellular Location Families can be either 

local to a specific cell type and condition or global. 

Determining the global families will require data collection 

on an unprecedented scale. However, we can expect that 

results from a well-chosen set of cell types/tissues and 

conditions can provide a reasonable approximation to the 

global families. 

 

4. REPRESENTATION OF PROTEIN LOCATION 

FAMILIES AT MULTIPLE RESOLUTIONS 

 

Regardless of whether a grouping of proteins into location 

families is local or global, an important issue is how to 

relate them to results from other sources. Comprehensive 

experiments that could provide data for clustering are 

typically taken under well-defined conditions so that images 

of different proteins can be readily compared. These may be 

different between large scale experiments for different cell 

types. To address this problem, we have obtained 

preliminary encouraging results on using log-linear 

transforms to map numerical features between different cell 

types and conditions, assuming that a group of calibration 

proteins is present in both sets (as would normally be the 

case) [11]. However, data from smaller scale projects or 

individual papers in the literature are likely to have been 

acquired under widely varying conditions and calibration 

data would not typically be available for each source. In 

particular, such data will typically vary in spatial resolution 

(i.e., magnification). Reconciling image-derived locations 

with annotations in databases is even more difficult, since 

they will typically use vocabularies that do not capture the 

full range of possible location patterns. 

 

One approach to this problem is to create a hierarchical tree 

that shows location clusters for images of increasing 

resolution (magnification). Starting from high-resolution 

images, such a tree can be generated by cycles of two-fold 

downsampling and clustering followed by linking the 

clusters containing the same proteins [11]. An example is 

shown in Figure 1. Note that there is an implicit root node at 

the top of the tree since at some point downsampling would 

make all patterns appear the same. Note also that the 

topology of this tree does not have to match that of 

hierarchies such as the Genome Ontology Consortium’s 

Cellular Component Ontology. This is because the former 

links organelle patterns that appear to be the same at a 

particular magnification (e.g., lysosomes and mitochondria 

might appear the same at low magnification), while the 

latter links organelles that are specializations of the same 

root organelle (which lysosomes and mitochondria are not). 

 

5. GENERATIVE MODELS FOR REPRESENTING 

PROTEIN LOCATION FAMILIES 

 

We next consider how we can communicate results on 

protein patterns for automatically determined subcellular 

location families. One approach, of course, is to simply 

report the number of the node in a hierarchical tree to which 

that protein is assigned. If queried about the nature of the 

pattern at that node, one possible response is the names of 

all other proteins at that node - hoping that one of them will 

be known to the questioner! Another is to return one or 

more images (such as the most typical image from that 

node). It is difficult by this approach, however, to 

communicate the often extreme variability within one 

pattern, or to emphasize what differentiates a particular 

pattern from the patterns of proteins at other nodes. This 

requires some model of the pattern, created either 

automatically or by hand. Such a model could be purely 

descriptive, which would enable recognition of future 

examples of the pattern, or generative, which would enable 

synthesis of new images of the pattern. Statements from 

descriptive models might include statements about the 

amount of edge content in a pattern or that it has objects of 

approximately 1 micron in diameter, while generative 

models would contain parameters describing shape 

distributions learned from training images. 

 

We have obtained encouraging results on learning 

generative models of subcellular distribution from images of 

Figure 1. Coalescence of subcellular patterns 

upon downsampling. The labels across the 

bottom show the classes of tagged proteins in 

the 3D HeLa dataset. Note that seven patterns 

can still be distinguished even after seven-fold 

downsampling of the original images. From 

[11]. 
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HeLa cells (Zhao, T., and Murphy, R.F., in preparation). 

The starting point is a three-color image in which one 

channel reflects DNA content, one channel reflects total 

protein content, and one channel reflects the amount of a 

specific protein of interest. We use the DNA channel to 

build a model that captures the shape and chromatin texture 

of the nucleus, and then build a cell shape model that is 

conditional on the nuclear model. (This ensures that the 

nucleus is always contained with the cell.) Lastly, we learn 

models of the shape of each protein-containing organelle 

and their distribution in space relative to the nucleus and cell 

membrane. The parameters of the generative model can be 

stored in a compact XML file. The principle is illustrated in 

Figure 2. Such XML files are built in a fully automated 

manner from each cluster and can be readily downloaded to 

permit local viewing of generated images and other uses. 

 

Generative models are useful not only for capturing and 

communicating the essence of a location family, but also for 

use in simulations of cell behavior. A number of 

sophisticated systems have been described for such 

simulations, such as Virtual Cell [12]. Such systems can 

utilize an empirical compartment geometry (typically in the 

form of a binary image for each compartment in the model) 

to provide simulation results that take subcellular location 

into account. The generative models of subcellular location 

we have developed can be used to create many such 

compartment geometries in a manner that reflects the 

statistical variation observed in the original image data. This 

allows simulation conclusions to be based on the full range 

of observed distributions (Figure 3). 

 

Generative models can also potentially be combined so that 

simulations can include accurate distributions for many 

proteins, even more than could simultaneously be imaged. 

This requires some mechanism for specifying the correlation 

between the synthesized distributions for different proteins. 

One approach would be to obtain experimental data on the 

colocalization of all pairs of proteins (or enough pairs that 

the remaining correlations could be inferred). This would 

appear impractical for tens of thousands of proteins using 

conventional microscopy. While technology for cyclical 

imaging of as many as a hundred proteins in the same 

sample has been described [13], it cannot be applied to 

living cells. We therefore propose the operational definition 

that all proteins in an automatically determined subcellular 

location family have effectively perfect correlation between 

their distributions. This permits the models for different 

proteins to be combined into a single simulation (Figure 4). 

The assumption of perfect correlation can be relaxed by 

including noise in the generation process. 

 

6. CONCLUSION 

 

The combination of approaches for proteome-wide tagging 

and high throughput microscopy is expected to provide 

detailed information on the subcellular distribution of 

proteins. Automated methods can be used to group proteins 

by their subcellular location pattern. Generative models can 

then be used as an effective means of communicating the 

patterns displayed by these groups and using them in 

systems biology simulations. This promises to permit for the 

Figure 2. Creation of generative model. The 

parameters of a three-component model can 

be learned from a set of images and captured 

in an XML file. This can be used to 

synthesize new images in three steps. 
Figure 3. A generative model can be used to 

synthesize a collection of images reflecting 

variation in the underlying pattern for 

subsequent use in simulations. 

Figure 4. A set of generative models learned 

from separate images of multiple proteins can 

be used to synthesize an image containing all 

of them. This assumes that the correlations 

can be inferred. 
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first time the creation of simulations in which thousands of 

proteins are properly localized inside a virtual cell (or cells) 

and observed variation in their locations can be accounted 

for in the simulations. 
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