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Abstract—Location proteomics is concerned with the sys-
tematic analysis of the subcellular location of proteins. In
order to perform high-resolution, high-throughput analysis
of all protein location patterns, automated methods are
needed. Here we describe the use of such methods on a large
collection of images obtained by automated microscopy to
perform high-throughput analysis of endogenous proteins
randomly-tagged with a fluorescent protein in NIH 3T3 cells.
Cluster analysis was performed to identify the statistically
significant location patterns in these images. This allowed us
to assign a location pattern to each tagged protein without
specifying what patterns are possible. To choose the best
feature set for this clustering, we have used a novel method
that determines which features do not artificially discriminate
between control wells on different plates and uses Stepwise
Discriminant Analysis (SDA) to determine which features do
discriminate as much as possible among the randomly-tagged
wells. Combining this feature set with consensus clustering
methods resulted in 35 clusters among the first 188 clones we
obtained. This approach represents a powerful automated
solution to the problem of identifying subcellular locations
on a proteome-wide basis for many different cell types.

Keywords—Protein subcellular location, Subcellular location

trees, Subcellular location features, CD-tagging, Fluores-
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INTRODUCTION

Current work in proteomics includes systematic
analysis of protein structure, expression levels, and
interactions. These projects will provide critical data
for understanding and modeling cell and tissue
behavior. Knowledge of the subcellular location of

each protein is equally important to this task.
However, this area has received far less attention.

There are two major ways of analyzing protein
subcellular location: prediction and determination. A
number of systems for predicting protein localization
from sequence have been described.5,8,14,17,18 The
limitation of these systems is that they can only assign
new proteins to the location categories with which
they have been trained. This means that proteins with
previously unseen location patterns cannot be prop-
erly categorized. In addition, since they have been
trained to recognize only low-resolution classes, they
are typically able to predict the organelle to which a
protein will be localized, but not the specific area of
the organelle. Due to lack of training data, they are
also unable to predict differential localization of
proteins in different cell types or under different
conditions.

Determination of Protein Location

Due to the limitations of prediction, there is a need
for projects that will collect data on subcellular loca-
tion for entire proteomes under a variety of conditions.
These projects determine protein location rather than
predict it. Although these projects are useful in their
own right, they also serve as a way to expand the
capabilities of prediction systems by providing training
examples for higher-resolution and complex patterns.

Fluorescence microscopy has been widely used for
determining protein subcellular location, and visual
examination has been the primary means of analyzing
the resulting images. Some large-scale projects have
used fluorescence microscopy to screen hundreds to
thousands or proteins for particular patterns or to
assign proteins to major location classes.11,13,20,22 A
particular ambitious and valuable project has been the
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tagging of all predicted protein coding regions in the
yeast Saccharomyces cerevisiae.11

Visual examination of images is not only inefficient
for high-throughput projects, but it is also subjective
and irreproducible. Fortunately, automated methods
of analyzing protein location have been described by
our group1–3,10 and more recently by others.6,7,21 These
methods have been shown not only to perform as well
as visual examination for distinguishing major sub-
cellular patterns, but also to be able to discriminate
patterns that a human observer cannot.16

There is not only a need for automated analysis of
images, but large-scale projects also require high-
throughput methods for acquiring images. Automated
fluorescence microscopes originally developed for drug
screening can meet this need.19,23 These microscopes
use multi-well plates, contain autofocus capabilities
and are capable of multi-color imaging as well as 3D-
time-series imaging.

CD-Tagging of NIH 3T3 Cells

In order to perform systematic analysis of protein
location by fluorescence microscopy, a high-through-
put means of tagging all (or most) proteins is also
needed. One such method is CD-tagging.12 This
method inserts a guest exon into genomic DNA. The
insert consists of an enhanced green fluorescent protein
(EGFP) coding sequence flanked by splicing signals.
Therefore, when the protein with the guest exon
insertion is expressed, it contains an internal fluores-
cent tag. Previous studies have shown that CD-tagging
has minimal impact on protein folding, function and
localization.13 Here, we combine CD-tagging, auto-
mated microscopy and automated analysis to identify
statistically distinguishable location patterns NIH 3T3
cells. We present the combination of high-throughput
methods from tagging to analysis as well as fully
automated methods of imaging and analysis.

METHODS

Production and Isolation of CD-Tagged NIH 3T3 Cells

The procedure described previously13 was followed,
with some minor alterations. A CD-tagging cassette
containing the EGFP coding sequence was packaged
into retrovirus using Phoenix-GP cells. Phoenix-GP
cells were seeded at a rate of 1.3� 106 cells per 75 cm2

flask in complete Phoenix media (Dulbecco’s Modified
Eagle’s Medium (DMEM) containing 10% fetal bovine
serum). The Phoenix-GP cells were transfected the next
day with 9 lg Stealth plasmid and 1 lg VSV-G plas-
mid per flask using Mirus Trans-IT-LT-1 lipofection

reagent as per manufacturer’s protocol. Briefly, 15 ll
Trans-IT-LT-1 was added to 500 ll serum-free media
and incubated for 5 min at room temperature. The
DNA was then added to this mixture, which was then
incubated for an additional 20 min at room tempera-
ture. The resulting DNA complexes were then added to
the Phoenix-GP cells in 10 ml fresh complete media
and the cells were incubated for 24 h at 37�C and 5%
CO2. After 24 h, the media was replaced with 10 ml
fresh media and the flasks were incubated at 32�C and
5% CO2 for 48 h. The resulting viral supernatant was
flash frozen in 1 ml aliquots in liquid nitrogen and
stored at )80�C. Viral supernatants were created using
three different versions of the Stealth plasmid, P19,
P20 and P21, which encode EGFP appropriately for
class 0, class 1 and class 2 introns, respectively. A
different virus was used each week so that introns of all
types could be sampled.

For infection, NIH 3T3 cells were plated at
2� 105 cells per well of a 6-well plate containing
complete media (DMEM containing 10% fetal calf
serum, 100 U/ml penicillin, and 100 lg/ml streptomy-
cin). Six hours later, the media was aspirated and viral
supernatant was added with 6 lg/ml polybrene (to
neutralize the charge on the cell surface so that viral
particles will not be repelled) and incubated for 24 h at
37�C and 5% CO2.

The cells were then trypsinized, expanded into a
10 cm dish and incubated for 48 h. EGFP-expressing
cells were sorted using a FACS Vantage SE using a
threshold set to include only 0.1% of untagged, control
cells. Positive, singlet cells were sorted into black
polystyrene, glass-bottomed 96-well plates (Whatman)
containing 200 ll of complete medium (Dulbecco’s
modified Eagles medium, 10% fetal calf serum, 100 U/
ml penicillin and 100 lg/ml streptomycin). Plates were
incubated for 8 days before adding 1� 104 untagged
and positive control cells to one well each in each row
(cells expressing tagged Procollagen Type I a2 were
used as the positive control).

On days 11–15, the media was aspirated and the
DNA-binding vital dye Hoechst 33342 was added at a
concentration of 0.5 lg/ml in OptiMEM (Invitrogen
Corporation, Carlsbad, CA, USA). Plates were then
incubated for 45 min at 37�C and 5% CO2 before
imaging.

Automated Fluorescence Imaging

Two color images (Hoechst 33342 and EGFP) were
acquired using an automated fluorescence microscope
(Beckman Coulter IC-100). Images were acquired with
a 40� 0.9NA objective and a Hamamatsu Orca-ERG
camera at a fixed camera gain and exposure time.
Twenty-five fields were imaged for each well using
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autofocus on the Hoechst channel. Images of empty
wells were discarded. The remaining images of EGFP-
positive cells were used for analysis.

Feature Calculation and Selection

The most common approach to describing subcel-
lular pattern is to use features calculated on single cell
images. This requires segmenting each image into sin-
gle cell regions, a task that can be quite error prone.
For the large number of images in this study, we
therefore used a new set of our Subcellular Location
Features that are not sensitive to the number of cells in
an image. The starting point for this set was SLF21,
which has previously been shown to provide good
performance for classifying subcellular patterns with-
out cell segmentation.9 It includes 3 morphological
features, 5 edge features and 13 Haralick texture fea-
tures. We augmented this set by calculating the 13
Haralick texture features after downsampling the
protein image from two to six fold and adding a new
feature which measures the percentage of pixels that
are above threshold in the protein (EGFP) image
which are also above threshold in the DNA (Hoechst)
image. (Thresholding is performed as described previ-
ously.9) These additional 66 features gave us a total of
87 features to describe each image. We define this set as
SLF25.

To assess the sensitivity of a given feature to
undesirable well-to-well and plate-to-plate variation,
t-tests were performed for all pairs of images (fields) of
positive control cells. Average p-values were calculated
for all pairwise tests for a given feature, and various
thresholds on this average were used for feature elim-
ination.

Step discriminant analysis (SDA) was then done for
the remaining features on the entire image dataset to
select those with good discriminating power: the fea-
tures that can differentiate the patterns.

Clustering of Protein Patterns

A three-step process was used to cluster the wells
that contained tagged proteins. First, k-means
clustering with a z-scored Euclidean distance function
was performed on the image varying k from 1 to 100.
Akaike Information Criterion (AIC) was then calcu-
lated to select an optimal k and corresponding clus-
tering of the images. Second, each well was allocated to
that cluster which contains a plurality of the images in
the well and only the images in this cluster were kept
for further analysis. If, however, the number of images
assigned to the plurality cluster was less than 1/3 of the
total number of images for a given well, that well was

considered not to have a unique pattern and it was
removed from the analysis.

Lastly, a consensus tree algorithm4 was applied to
the remaining images. In this algorithm, a hierarchical
cluster tree (dendrogram), was generated from a ran-
dom half of images of each well. This was repeated 200
times and a consensus tree was generated in which only
the branches of the trees that were present in at least
half of the trees were kept.

Visual inspection was also used to cluster the tagged
wells. During this process, descriptive terms were
assigned to each well by one of the authors (EGO)
after carefully examining the representative images of
each well (representative images were chosen as
described previously15). Whatever terms that were felt
to accurately describe the protein pattern were used,
and for the consistency, the same terms were used for
the same patterns. Wells were then grouped into those
that shared a unique combination of the descriptive
terms.

In order to measure the agreement of different
clustering results, we calculated Cohen’s j statistics on
each pair of clustering results A and B:

kðA;BÞ ¼ Observed agreement � expected agreement

1 � expected agreement

where expected agreement is that expected for two
random samplings from the same clustering.4

Software and Data Availability

All data and Matlab code used in this paper are
available at http://murphylab.web.cmu.edu/data and
http://murphylab.web.cmu.edu/software, respectively.

RESULTS

We have previously demonstrated the feasibility of
automated clustering of randomly tagged proteins by
their location pattern using high-resolution images
obtained with a spinning disk confocal microscope.
This required major efforts in three areas: time and
culture expense for isolating, expanding and main-
taining individual clones, large reagent costs for iden-
tifying the tagged gene by RT-PCR and sequencing,
and extensive time for individually plating and carry-
ing out 3D imaging for each clone. The results pro-
vided information about the location of each protein
but also about the number and type of patterns that
were observed. Given the expense of this approach, we
sought to evaluate a much less expensive alternative
for just determining the set of possible patterns: sorting
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individual tagged cells directly into 96-well plates and
imaging them without identifying the tagged gene. To
test the feasibility of this approach, we generated and
imaged ten plates per week for four weeks. After
eliminating edge rows and columns (which could not
be imaged due to interference by the plate skirt with
the 40� objective) and the negative and positive con-
trol wells (three each per plate), we obtained images for
54 randomly tagged wells per plate or a total of 2160
wells. Of these, 222 contained EGFP-positive cells.
Examples of these images can be seen in Fig. 1. After
removing those images which were overcrowded or
those for which valid features could not be calculated
due to low fluorescence signal, a total of 174 wells with
at least 10 images remained. These were used in clus-
tering analysis.

An important issue for any image clustering
approach is the nature of the features to be used. Given
that the images we wished to cluster were collected on
different days over many weeks (albeit under nomi-
nally the same conditions each day), one concern in
this respect is that features that are sensitive to day-to-
day variations might result in clustering proteins by
day of acquisition (or position within a plate) rather
than by protein pattern. The presence of the positive
controls wells in each plate allowed us to design a
strategy to minimize this concern. We sought to select
features that can tell the difference between the
different randomly tagged proteins but not be sensitive
to the variance among the positive controls from plate
to plate. As described in the Methods, we did extensive

t-tests on each feature for each pair of images from
control wells to eliminate features that were signifi-
cantly different between the controls. We used three
thresholds (0, 0.1 and 0.2) on the average p-values to
eliminate plate dependent features. The remaining
features were then subjected to stepwise discriminant
analysis (SDA) to eliminate features that did not pro-
vide any discriminating power between the randomly
tagged wells. A total of 76, 64 and 42 features were
retained for thresholds of 0, 0.1 and 0.2, respectively.

FIGURE 1. Example images from the dataset acquired in this study. The clones varied in protein expression level, and therefore
each panel was fully contrast-stretched to facilitate visualization (hence the background appears different in each panel).

FIGURE 2. Determination of the optimal number of clusters
using AIC. Three p-value thresholds were used (solid: 0,
dashed: 0.1, dotted: 0.2) to select a set of features and then
k-means clustering was performed for various values of k. AIC
was calculated to measure the goodness of each clustering.
The optimal values of k are 41, 35 and 70, respectively.
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FIGURE 3. A consensus subcellular location tree built from 126 wells of the randomly tagged 3T3 image dataset. A threshold of
0.1 was used on the average p-value of the statistic tests on control wells to select features. The first column of labels shows the
well name and (positive control wells are marked with an asterisk). The second column of labels shows the locations assigned by
visual inspection. In this tree, the sum of the lengths of the branches connecting two clones is proportional to the distance
between them in feature space.

Large-Scale Automated Analysis of Protein Location Patterns 1085



Using these features, we then performed k-means
clustering on all images for the 174 clones (plus 14
positive control wells) for various values of k (the
number of clusters). The goodness of these different
clustering runs was evaluated using the Akaike Infor-
mation Criterion (AIC), which balances tightness of
the clusters against the number of clusters. These AIC
values are plotted as a function of k in Fig. 2. The
results indicate that the optimal numbers of clusters
are 41, 35 and 70 for the feature sets selected using a
p-value threshold of 0, 0.1 and 0.2.

Consensus trees were then built for each feature set.
These can be viewed through a web interface at http://
murphylab.web.cmu.edu/services/PSLID that permits
display of representative images for each well. The
consensus tree built with a p-value threshold of 0.1 is
shown in Fig. 3.

Different feature sets led to different clustering
results. In order to measure how much they agree with
each other, the Cohen j statistics was calculated for
each pair of clustering results. Since different sets of
clones were retained in each final clustering, only the
common clones in both clustering results were con-
sidered in each calculation. Additionally, labels of
subcellular location patterns were assigned to each well
by visual inspection (shown in Fig. 3), and a clustering
was generated by grouping wells with the same labels.
The Cohen j statistics was also calculated between
visual inspection and all three automated clustering
results. The results are shown in Table 1. The agree-
ments between visual inspection and k-means cluster-
ing results are obviously lower than those between
different k-means clustering results. This indicates the
consistency of automated methods of cluster analysis.

DISCUSSION

We have described a high-throughput method of
analyzing randomly tagged NIH 3T3 cells. This
method is automated and results in clusters of protein
patterns that have similar distributions. This method
allows us to analyze images without any previous

knowledge of the protein subcellular location. The
work is distinguished from our prior work in that we
describe a higher throughput pipeline for infecting,
sorting and imaging tagged lines, the use of a internal
control and a modified feature selection procedure to
minimize the effects of variability during the imaging
process, and the use of a new set of field level features
that do not require segmentation into single cells.

It should be noted that in the work described here
only proteins for which a consistent location pattern
could be found were analyzed. Future work will extend
the analysis to identify proteins with variable patterns,
such as those that show cell cycle dependence. The
data collected in this study are being made publicly
available to facilitate development of methods for this
type of analysis.

The current results show that many, but not all, of
the positive controls were clustered together. This
suggests that additional effort is needed in the future
to ensure consistency between different runs. Incor-
porating a larger number of positive controls that
represent additional major subcellular locations
would therefore appear useful. We are adopting this
approach in our ongoing experiments to expand our
database to include thousands of tagged proteins.
Our goal is then to use cluster analysis as described
here to determine the number and types of subcel-
lular location families that are present in NIH 3T3
cells. Once the set of possible patterns is known, the
methods described here can be used to screen for
clones with particular patterns so that the tagged
gene can be sequenced. This will be useful for iden-
tifying novel patterns and proteins that display them
as well as providing new data for training location
prediction methods.
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