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Lúıs Pedro Coelho1,2 and Robert F. Murphy1,2,3

1 Lane Center for Computational Biology,
2 Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in

Computational Biology,
3 Departments of Biological Sciences, Biomedical Engineering, and Machine Learning,

Carnegie Mellon University

Abstract. Our group has previously used machine learning techniques
to develop computational systems to automatically analyse fluorescence
microscope images and classify the location of the depicted protein.
Based on this work, we developed a system, the Subcellular Location
Image Finder (slif), which mines images from scientific journals for
analysis.

For some of the images in journals, the system is able to automat-
ically compute the pixel resolution (the physical space represented by
each pixel), by identifying a scale bar and processing the caption text.
However, scale bars are not always included. For those images, the pixel
resolution is unknown. Blindly feeding these images into the classification
pipeline results in unacceptably low accuracy.

We first describe methods that minimise the impact of this problem by
training resolution-insensitive classifiers. We show that these techniques
are of limited use as classifiers can only be made insensitive to resolutions
which are similar to each other. We then approach the problem in a differ-
ent way by trying to estimate the resolution automatically and processing
the image based on this prediction. Testing on digitally down-sampled
images shows that the combination of these two approaches gives clas-
sification results which are essentially as good as if the resolution had
been known.

1 Introduction

Fluorescent microscopy is one of the methods of choice for determining the sub-
cellular location of proteins. Methods for automatically analysing subcellular
patterns in fluorescence microscope images have been extensively developed,
allowing such determinations to be performed in a high-throughput, compre-
hensive manner (for reviews see [1,2]).

A very important property of a cell image is its pixel resolution (i.e., how
big the space represented by a pixel is). This depends on the imaging approach
used to collect the image (e.g., for widefield fluorescence microscopy using a
digital camera, it depends on the magnification of the lens(es) used and the
pixel spacing of the camera). Higher resolution images carry more information
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and detail. However, many considerations may lead to acquisition of images with
lower resolution.

As an outgrowth of our location proteomics work, we have developed a sys-
tem, the Subcellular Location Image Finder (slif), that analyses images (and
their associated captions) from scientific publications [3,4]. This system identifies
figure panels likely to contain fluorescence microscope images and then attempts
to analyse the subcellular patterns within. Of course, these images vary widely
in magnification, and are often annotated with a scale bar from which the pixel
resolution can be inferred. This approach has two problems. First, it relies on
successful identification of both the scale bar in the image and the caption text
that describes its size. We have obtained acceptable, but far from perfect, re-
sults for this task [3]. A more fundamental problem is that not all images are so
annotated, in which case the pixel resolution is unknown.

This work is focused on classifying images whose resolution is unknown. We
start by simply ignoring the problem and feeding images of unknown resolu-
tion into the classification pipeline. We next consider approaches to estimating
resolution from the images.

2 Methods

For the work described here, we used a publicly-available collection of two-
dimensional images of HeLa cells previously obtained by our group using wide-
field fluorescence microscopy [5]. It consists of immunofluorescence images of
9 proteins often used as markers for particular organelles or structures (one each
for the endoplasmic reticulum, lysosomes, endosomes, mitochondria, the actin
cytoskeleton, the tubulin cytoskeleton, and nucleoli, and two for the Golgi com-
plex) as well as parallel images of a dna-binding fluorescent probe to mark the
nucleus. The pixel resolution of the images is 0.23μm/pixel, and out-of-focus
fluorescence in each image was estimated and removed using nearest neighbor
deconvolution.

In order to investigate the effects of lowering the resolution, the images were
digitally down-sampled. All data and software used in this paper are available
from http://murphylab.web.cmu.edu/software.

2.1 Processing Images of Unknown Resolution

The first approach we used was to make the system insensitive to resolution,
either by using features that are insensitive to image resolution or by training
classifiers on examples from different resolutions so that they are able to classify
any incoming image. Our group has previously pursued this line of reasoning
with some success [6].

Some features can be designed in such a way as to make them roughly in-
dependent of resolution (e.g., slf7.5, the ratio of the largest to smallest object
in an image, which, discounting quantization effects, has the same value after
image resampling). However, some informative features cannot be transformed
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so that they become resolution independent. Haralick texture features [7], for
example, are both very informative and resolution dependent.

Whether a classifier can be trained to handle multiple resolutions is an em-
pirical question. We measured how gracefully a classifier degrades when tested
outside its training resolution and found that its performance drops very fast
as the difference between the training and the testing resolutions increases. For
example, a classifier trained on images with a high resolution of 0.23μm/pixel
achieves only 45% accuracy when classifying images at resolution 1.15μm/pixel.
Comparatively, a classifier trained at that resolution can achieve 83%. Thus,
ignoring the issue is not a viable procedure.

An alternative to building a resolution-independent classifier is to train it
on multiple resolutions by including, for each image in the training set, several
down-sampled copies of it. This approach showed better results (data not shown).
For classifiers trained in a small set of nearby resolutions, no accuracy is lost
when classifying images in any of those resolutions. In fact, there seems to be a
small boost from training with multiple copies of the same image, as previously
reported [3].

This approach, however, scales badly to a large set of resolutions. When train-
ing on resolutions which are very different, there is a performance cost. For ex-
ample, a classifier trained on images at both 0.23 and 3.68μm/pixel has only
71% accuracy on the low resolution images, while a classifier trained only on
those images obtains 79%. The classifiers thus obtained also degrade poorly to
resolutions which were not part of their training sets. Furthermore, the increase
in size of the problem has huge computational costs (training a classifier goes
from minutes to several hours).

2.2 Inferring Resolution

We propose a different approach for handling images of an unknown resolution:
infer the resolution, based only on the image. We shall see that this complements
the approach above.

If one was approaching this problem manually, without fast computers, one
could start by counting how many pixels wide the nucleus of the cell appears to
be. Given the knowledge that a real cell has a nucleus of around 20 μm, one can
obtain an estimate of how large a pixel is. This idea underlies the approach we
outline below.

For predicting resolution, we therefore define numerical features which at-
tempt to capture the size of the nucleus. We start by thresholding the image
by retaining only the pixels that are above average. To remove small objects,
which are likely to be noise, we smooth the binarized image with a majority filter
(implemented in Matlab by the bwmorph function). Finally, using the Matlab
function convhull, we compute the convex hull of the resulting binary image. On
the basis of this, we compute:

1. The number of pixels in the hull (the area).
2. The square root of the hull area.
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3. Its perimeter (measured as the number of pixels on the edge).
4. Number of pixels across its semi-major and semi-minor axes. This was cal-

culated as illustrated by Prokop and Reeves [8].

We also include the inverse of all of these features as the resolution scales
linearly with the inverse of the size. These features can be calculated on either
the protein channel or on the dna channel, if available. We refer to this feature set
as slf28 if calculated on the protein image and slf29 if calculated (separately)
on the protein and dna channels.

Algorithms. Starting with the description of the image given by the features,
we attempt to predict the resolution. There are two possible ways to handle this
as a machine learning problem: classification (by deciding on a few representative
classes, for example) or regression. Our initial trials in using classification showed
that, for a large number of classes, the learning algorithms took too long to
converge. Thus, we focus on regression, namely linear regression. Regression
parameters were learned by minimizing the squared error.

Initial tests revealed two properties:

– The range of of the training set is important. A set of parameters learned on
the downsampling values (1, 2, 3, 4, 5, 6) will do very well on test images of
those values, but performance downgrades extremely fast outside of it (e.g.,
an image down-sampled by a factor of 10 will often be predicted to have been
down-sampled by 15). On the other hand, inclusion of intermediate values
is not as important as the range (i.e., training on (1, 2, 3, 4, 5, 6) will do as
well at handling images down-sampled by 3, a class in the training set, as
training on (1, 2, 4, 6) which does not include it).

– Breadth of training data (i.e., the difference between the largest and smallest
resolution in the set) has a negative effect on accuracy.

This suggested a iterated regression scheme. We call Estimate(i; r) the predic-
tion for the resolution of image i given by the estimator trained on the set of
resolutions r. To process an incoming image, we first predict its accuracy on
the whole range of values (p1 = Estimate(i; 1, 2, . . . , N)). A second prediction is
defined by p2 = Estimate(i; p1 − 2, p1 − 1, p1, p1 +1, p1 +2)), where the first pre-
diction is used to lookup the correct parameters for a refined prediction. Finally,
we output the value p̂ = Estimate(i; p2 − 1, p2, p2 + 1).

2.3 Evaluation of Resolution Prediction Schemes

Figure 1(a) shows the results for predictions made using both the DNA and
protein channels for each image. As we can see, the error is very small for high
resolution images, but increases for low resolution ones. This is explained by
quantization effects. Even if the nucleus always measured a perfect 20μm, this
translates to 87 pixels at 0.23μm/pixel resolution, which can clearly be told
apart from the 43 pixels it takes when the images are down-sampled by 2 to
0.46μm/pixel resolution. However, at resolutions lower than 4μm/pixel, a 20μm
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(a) With dna channel
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(b) Without dna channel

Fig. 1. Resolution Inference Results. Each dot is the result obtained for one test image,
on the x-axis the original resolution is shown, on the y-axis, we show the output of the
system. The results have not been rounded. A perfect result would be on the diagonal.

object takes only 4 pixels. If we consider that the nucleus size has some varia-
tion itself, it becomes clear that low resolutions cannot be told apart, even in
principle.

When no dna channel is available, one expects the variation in the size of the
hull to be much larger (e.g., in the case of f-actin, the hull will probably contain
the whole cell, while a dna tag will only show the nucleus). To test this, we
measured the coefficient of variation (the observed standard deviation divided
by the standard mean, expressed as a percentage) of our measured features.

Table 1. Coefficient of Variation. The coefficient of variation of the features introduced
in this work, when calculated on the dna and protein channels.

σ
μ

dna
σ
μ

protein

Area 27% 126%
sqrt(Area) 13% 62%
Perimeter 14% 63%
Semi-Major Axis 16% 64%
Semi-Minor Axis 17% 66%

As Table 1 makes clear, the variation in features calculated on the protein
channel is much greater than that calculated on the dna channel. This explains
why the results of inferring resolution based on the protein channel, presented
on Figure 1(b), are not as good as those obtained using the dna channel. We
tested introducing slf7dna features into the regression model, followed by fea-
ture selection with stepwise discriminant analysis and regression on this set of
variables. This brought about a small improvement in the results, but not enough
to match the results with dna features.
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Looking at whether the iterated linear regression scheme makes a difference,
one finds that the errors at the second level are lower than those at the first
level, while the third level brings only a very minor improvement.

We tested the effects of removing half the resolutions used for training, while
still testing on every resolution. This procedure simulates a situation where the
image resolution was not in the training set. Results show that there is no accu-
racy penalty for this (data not shown).

2.4 Classification Pipeline

In the context of our work, the final goal of image processing is the classification
output and the system must be evaluated on its accuracy there. First, we bring
together the elements described above into an integrated classification pipeline.

For each image in our training set, we generated copies of it at lowered reso-
lutions. We trained a classifier for each downsampling level, but included images
from the level above and below it (to make it partially insensitive to resolution
changes). To process an image, we estimate its resolution, and classify it using
the classifier that was trained centred on the estimated resolution.

In order to evaluate our results, given that we expect classification accuracy to
decrease with resolution due to lowered image quality, we compared our system
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Fig. 2. Final Accuracy Results. The solid line shows the accuracy obtained in the
case where the images were processed with resolution known. The dashed line shows
the accuracy obtained when the resolution is inferred from the image, using only the
protein channel, and this estimate is used for further processing. The dotted line shows
the accuracy obtained when the resolution estimate is based on the dna channel.
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against a baseline where the image resolution is known. Figure 2 shows this
comparison. We conclude that our system is capable of overcoming the unknown
resolution problem.

3 Discussion

The slif system (which analyses images from published scientific journals) de-
veloped by our group needs to process images of differing and often unknown
resolutions. Thus, we needed to adapt the image processing pipeline to handle
such images.

We tackled the problem of handling images of unknown resolution by pre-
dicting it. Our solution was based on the calculation of simple features, which
tried to capture the size of the nucleus, when a dna channel was present, or
the size of the cell, when it was not. These features were used for iterated linear
regression. The resulting estimate predicted the resolution very well, if the dna

channel was available as the nucleus provides a known reference point in each
cell. On the basis of only the protein channel, the prediction error increases by
around two-fold.

For integration into the slif system, where images often contain multiple
cells, the images will have to be segmented as a preprocessing step. In the case
where a dna channel is available (usually represented by one of the image’s
color channels), segmentation is easier as nuclei tend to be separable. Since the
whole image is at the same resolution, results from different cells can be averaged
together to obtain the final prediction.
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Lúıs Pedro Coelho was partially supported by a fellowship from the Fulbright
Program and by the Portuguese Science and Technology Foundation (fellowship
sfrh/bd/37535/2007).

References

1. Chen, X., Velliste, M., Murphy, R.: Automated interpretation of subcellular patterns
in fluorescence microscope images for location proteomics. Cytometry 69 A, 631–640
(2006)

2. Glory, E., Murphy, R.: Automated Subcellular Location Determination and High-
Throughput Microscopy. Developmental Cell 12(1), 7–16 (2007)

3. Murphy, R.F., Velliste, M., Yao, J., Porreca, G.: Searching online journals for fluores-
cence microscope images depicting protein subcellular location patterns. In: BIBE
2001: Proceedings of the 2nd IEEE International Symposium on Bioinformatics and
Bioengineering, Washington, DC, USA, pp. 119–128. IEEE Computer Society, Los
Alamitos (2001)



242 L.P. Coelho and R.F. Murphy

4. Murphy, R.F., Kou, Z., Hua, J., Joffe, M., Cohen, W.W.: Extracting and structur-
ing subcellular location information from on-line journal articles: The subcellular
location image finder. In: IASTED International Conference on Knowledge Sharing
and Collaborative Engineering, pp. 109–114 (2004)

5. Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the
patterns of all major subcellular structures in fluorescence microscope images of
HeLa cells. Bioinformatics 17(12), 1213–1223 (2001)

6. Chen, X., Murphy, R.: Interpretation of Protein Subcellular Location Patterns in 3D
Images Across Cell Types and Resolutions. In: Lecture Notes in Computer Science,
pp. 328–342. Springer, Heidelberg (2007)

7. Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of the
IEEE 67, 786–804 (1979)

8. Prokop, R.J., Reeves, A.P.: A survey of moment-based techniques for unoccluded
object representation and recognition. CVGIP: Graph. Models Image Process. 54(5),
438–460 (1992)


	Introduction
	Methods
	Processing Images of Unknown Resolution
	Inferring Resolution
	Evaluation of Resolution Prediction Schemes
	Classification Pipeline

	Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


