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ABSTRACT
Image segmentation is an essential step in many image anal-

ysis pipelines and many algorithms have been proposed to

solve this problem. However, they are often evaluated sub-

jectively or based on a small number of examples. To fill this

gap, we hand-segmented a set of 97 fluorescence microscopy

images (a total of 4009 cells) and objectively evaluated some

previously proposed segmentation algorithms.

We focus on algorithms appropriate for high-throughput

settings, where only minimal user intervention is feasible.

The hand-labeled dataset (and all software used to com-

pare methods) is publicly available to enable others to use it

as a benchmark for newly proposed algorithms.

Index Terms— Biomedical image processing, Image seg-

mentation

1. INTRODUCTION

Nuclear segmentation is an important step in the pipeline of

many cytometric analyses. It forms the basis of many sim-

ple operations (cell counting, cell-cycle assignment,. . . ) and

is often the first step in cell segmentation. However, algo-

rithms are often evaluated subjectively or based on a few ex-

amples. In order to objectively evaluate nuclear segmentation

algorithms, we built a dataset of hand-segmented fluorescence

microscopy images.

We also evaluated some published algorithms for this

problem on our hand-labeled dataset. We were interested in

algorithms that were applicable to large-scale automated data

collection. Therefore, while parameter tuning for the proper-

ties of a given image collection was an acceptable burden on

the human operator, tuning for single images was not.

Bamford [1] undertook a similar effort in bright-field mi-

croscopy images of cell nuclei. Recently, Gelasca et al. [2]

made a available a series of ground truth assignments for dif-

ferent tasks in bioimage segmentation, but it did not include

a dataset of hand-labeled single nuclei. Our dataset is thus a

complement to their work.

U2OS NIH3T3

Pixel size 1349 × 1030 1344 × 1024
Nr. Cells 1831 2178

Avg. Cover 23% 18%

Min Nr. Cells 24 29

Max Nr. Cells 63 70

Table 1. Main Properties of the Two Collections. Avg. cover

denotes the percentage of pixels covered by cells. The mini-

mum and maximum are over all the images in each collection.

2. DATASET

The dataset is composed of two different collections (Table 1).

The first collection is of U2OS cells, originally created for a

study of pattern unmixing algorithms [3]. Figure 1 shows two

images from this collection. An initial set of 50 images from

this collection was chosen, but 2 images were rejected as con-

taining no in-focus cells.

The second collection is of NIH3T3 cells, collected using

the methodology reported by Osuna et al. [4]. Nuclei in this

group are further apart and there is less clustering. They are

also more homogeneous in shape and size (data not shown).

On the other hand, nuclei in single images vary greatly in

brightness and images often contain visible debris. There-

fore, we consider this a more challenging dataset for auto-

mated methods. Fifty images were initially chosen, but one

was rejected as containing no in-focus cells.

Manual segmentation was performed by outlining nuclei

with a computer mouse. Only the nuclear marker image was

used for this process. All images were segmented by one of

the authors (L.P.C.) and a subset of 10 images (5 from each

collection) were independently segmented by another (A.S.).

The hand-labeled dataset and all software necessary to

generate the results in this paper are available at

http://murphylab.web.cmu.edu/data and

http://murphylab.web.cmu.edu/software.
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(a) “Easy” image (b) “Difficult” image

Fig. 1. Two example images from the U2OS collection. (a) shows nuclei that are well separated. Automatic segmentation is

expected to do well. (b) has many clustered nuclei and is expected to challenge segmentation algorithms. Most images in the

collection lie in between these two examples.

3. METHODS

3.1. Segmentation

Due to space limitations, we will only describe the ways in

which our implementation was adapted to our images and re-

fer the reader to the original publications for detail.

3.1.1. Thresholding

We considered 3 thresholding methods: Ridler-Calvard [5],

Otsu [6], and mean pixel value. All above-threshold contigu-

ous regions are considered objects. To remove some noise,

we filter the thresholded image with a median filter (window

of size 5).

To remove small non-nuclear objects, we filter out objects

smaller than 2500 pixels, circa 64 square microns. This post-

filtering was applied to all segmentation results in this paper.

3.1.2. Seeded watershed

We implemented two versions of seeded watershed, both run

on a thresholded version of the image (using the mean as

threshold, which, as we show below, is the better thresholding

method for these images). One operates directly on a blurred

version of the image1, while the second one operates on the

gradient of the image. In both cases, seeds are regional max-

ima of the blurred image.

1We used a gaussian blur with a width of 12 pixels.

3.1.3. Active masks

Active masks are a recent proposal by Srinivasa et al. [7]. The

algorithm assumes that there are two classes of objects, fore-

ground and background. Its only parameters are the mean

value and standard deviation of the background region.2

Manual tuning led to the following semi-automatic proce-

dure for parameter setting: the value of the background mean

is assumed to be the histogram peak plus 3, while the back-

ground standard deviation is set to 0.5.

3.1.4. Merging Algorithm

Lin et al. [8] described an algorithm that is based on merg-

ing multiple regions obtained from watershed segmentation,

using shape information learned from a labeled dataset. We

have implemented a slight variation of their algorithm, but re-

tained the structure. In particular, we use the mean method

for segmentation, and as shape features: fraction of area that

is contained in the convex hull, roundness, eccentricity, area,

perimeter, semi-major, and semi-minor axes (all, except the

first, computed on the convex hull). Apart from these minor

changes, the algorithm is unchanged.

For the studies below, the set segmented by A.S. was used

for training and the set segmented by L.P.C. (except the im-

ages that are common to both segmentations) were used for

testing.

2The active mask framework is more general than this, but we restrict

ourselves to the original proposal.
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3.2. Evaluation

Several metrics have been proposed for evaluation of seg-

mentation results against a hand-labeled standard. Some ap-

proaches stem from viewing segmentation as a form of clus-

tering of pixels. This allows the use of metrics developed for

the evaluation of clustering results. From this family of ap-

proaches, we used the Rand and Jaccard indices [9, 10].

The disadvantage of such metrics is that they do not take

into account the spatial characteristics of segmentation. In

fact, the exact location of the border between foreground and

background is often fuzzy. An algorithm that returns a nu-

cleus which almost matches the gold-standard except for a

one-pixel-wide sliver around the border should be judged very

highly even if that sliver contains a large number of pixels.

Previous work on evaluation of bright-field microscopy im-

ages by Bamford [1] used the Hausdorff metric.

3.2.1. The Rand and Jaccard Indices

Let S be a (binary) segmented image and R be a (binary)

reference image. Let i and j range over all pairs of pixels

where i �= j, then each pair falls into one of four categories:

(a) Ri = Rj and Si = Sj , (b) Ri �= Rj and Si = Sj , (c)

Ri = Rj and Si �= Sj , (d) Ri �= Rj and Si �= Sj . If we

let a, b, c, d refer to the number of pairs in its corresponding

category, then the Rand index is defined as:

RI(R,S) =
a + d

a + b + c + d
. (1)

That is, the Rand index measures the fraction of the pairs

where the two clusterings agree. The Rand index ranges from

0 to 1, with 1 corresponding to perfect agreement.

Based on the same definitions for a, b, c, d, the Jaccard

index is defined as:

JI(R,S) =
a + d

b + c + d
. (2)

The Jaccard index is not upper-bounded, but higher values

correspond to better agreement.

3.2.2. Error Counting

Each object in the segmented image is assigned to the ob-

ject in the reference image with which it shares the most pix-

els. Based on these assignments, we can define the following

classes of errors: split: two segmented nuclei are assigned to

a single reference nucleus; merged: two reference nuclei are

assigned to a single segmented nucleus; added: a segmented

nucleus is assigned to the reference background; and missing:

a reference nucleus is assigned to the segmented background.

3.2.3. Spatially-Aware Evaluation Methods

We implemented two spatially-aware evaluation metrics.

Both are based on assigning segmented nuclei to reference nu-

clei as above, as they are computed between pairs of matched

objects.

For each pixel, we compute its distance to the reference

border. The normalised sum of distances is then defined as:

NSD(R,S) =
∑

i [[ Ri �= Si ]] ∗ D(i)
∑

i D(i)
, (3)

where the sum index i ranges over pixels in the union of both

objects and D(i) is the distance of pixel i to the border of

the reference object. From the equation, it is obvious that

NSD(R,S) ∈ [0, 1], with 0 corresponding to perfect agree-

ment and 1 to no-overlap. We note that the sum of distances

is not a metric as it is neither symmetric nor does it satisfy the

triangle inequality.

The Hausdorff metric is computed as described by Bam-

ford [1]. In the notation above it can be defined as:

H(R,S) = max {D(i) : Si �= Ri} . (4)

4. RESULTS

Table 2 summarises the results obtained.

Both manual segmentations are in general agreement.

Disagreements can be tracked down to an image where the

authors differed on whether some small bright objects should

be marked as nuclei or debris.

Both Otsu and Ridler-Calvard thresholding score poorly,

missing many cells, particularly in the NIH3T3 collection. In

this collection, the presence of very bright cells leads the algo-

rithm to set a threshold between the very bright cells and the

rest of the cells, instead of setting it between the foreground

and background. The mean thresholding is better suited for

these images, which consist mainly of background with ob-

jects of very different intensities.

Watershed results in less merges than mean-based seg-

mentation, but more split nuclei and spurious objects. Active

masks score poorly mainly due to nuclei over-segmentation

and missing objects. Lin et al.’s merging algorithm obtains

very good results, dominating other algorithms in almost all

metrics.

We also notice the Rand and Jaccard indices while distin-

guishing the alternative manual segmentation from the auto-

matic ones are not good measures for this data as they fail to

distinguish between the better and the worse algorithms. Both

the Hausdorff and the NSD measures capture the relationships

between the algorithms well.

5. DISCUSSION

We presented a dataset that can be used to evaluate nuclear

segmentation algorithms. This dataset consists of two collec-

tions, from different cell types and different microscopes.

We also implemented several published algorithms for nu-

clear segmentation and tested them against our standard. The
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Algorithm RI JI Hausdorff NSD (×10) Split Merged Spurious Missing

AS Manual 95%/93% 2.4/3.4 9.7/12.0 0.5/0.7 1.6/1.0 1.0/1.2 0.8/0.0 2.2/3.2

RC Threshold 92%/77% 2.2/2.1 34.8/26.4 1.2/2.6 1.1/1.0 2.4/2.4 0.3/1.9 5.5/22.1

Otsu Threshold 92%/74% 2.2/2.1 34.9/36.7 1.2/3.5 1.1/0.8 2.4/2.1 0.3/1.7 5.6/26.6

Mean Threshold 96%/82% 2.2/1.9 26.5/24.4 1.0/2.3 1.3/1.4 3.4/5.1 0.9/3.1 3.6/4.8

Watershed (direct) 91%/78% 1.9/1.6 34.9/19.3 3.6/3.7 13.8/2.9 1.2/2.4 2.0/11.6 3.0/5.5

Watershed (gradient) 90%/78% 1.8/1.6 34.6/21.7 3.0/3.8 7.7/2.6 2.0/3.0 2.0/11.4 2.9/5.4

Active Masks 87%/72% 2.1/2.0 148.3/98.0 5.5/5.0 10.5/1.9 2.1/1.5 0.4/3.9 10.8/31.1

Merging Algorithm 96%/83% 2.2/1.9 12.9/15.9 0.7/2.5 1.8/1.6 2.1/3.0 1.0/6.8 3.3/5.9

Table 2. Comparison of Segmentation Algorithms. Result of various segmentation approaches are compared against the hand-

segmented standard. Each entry contains two values corresponding to the statistic for two datasets used, U2OS and NIH3T3,

respectively.

approach of Lin et al. [8] emerged as the best scoring in most

tests. We also concluded that the Hausdorff metric and the

normalised sum of distances measure we propose captured

the quality of the algorithms better than the alternatives under

consideration.
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