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ABSTRACT

The Human Protein Atlas is a rich source of location pro-

teomics data. In this work, we present an automated approach

for processing and classifying major subcellular patterns in

the Atlas images. We demonstrate that two different classifi-

cation frameworks (support vector machine and random for-

est) are effective at determining subcellular locations; we can

analyze over 3500 Atlas images with a high degree of accu-

racy, up to 87.5% for all of the samples and 98.5% when only

considering samples in whose classification assignments we

are most confident. Moreover, the features obtained in both

of these frameworks are observed to be highly consistent and

generalizable. Additionally, we observe that the features re-

lating the proteins to cell markers are especially important in

automated learning approaches.

Index Terms— Image classification, microscopy, loca-

tion proteomics, machine learning, feature selection

1. INTRODUCTION

The Human Protein Atlas is a rich source of location pro-

teomic data [1]. As it grows in size, automated tools are

needed to annotate and characterize the many proteins and

their conditions across cell types. Supervised learning meth-

ods, in which classifiers are trained to recognize different pro-

tein patterns, have been proven effective at analyzing subcel-

lular patterns [2]. More recent work shows that classification

can be scaled to analyze patterns across a proteome [3].

One feature of the Human Protein Atlas is that it contains

proteins that have been imaged in various different cell lines

and tissues. Recently, the Atlas has been significantly aug-

mented by the addition of confocal microscope images for

many antibodies [4]. In this work, we seek to extend subcel-

lular pattern recognition across different cell types via devel-

opment and evaluation of new features.

2. METHODS

2.1. Image Collection

The HPA confocal images were analyzed in the form of un-

compressed, 8-bit TIFFs, with each file a single data chan-

nel, and four such files comprising a single image field. The

channels are: protein, nucleus, microtubules, and endoplas-

mic reticulum (ER). The protein channel was obtained by

immunofluorescence labeling with monospecific antibodies,

while the other channels were acquired using standard stains

[5]. Up to two image fields were taken for each protein in

three different cell lines, A-431, U-251MG, and U-2 OS, us-

ing a confocal microscope. 1902 proteins were imaged.

After images were acquired, they were visually inspected

for the amount of staining as well as the patterns depicted in

the images. Based on this, we ignored images with low levels

of staining. For classification analysis, we selected proteins

that localized specifically major subcellular locations.

2.2. Cell Segmentation

We sought to analyze protein patterns in single cell regions,

requiring the segmentation of images into single cell regions.

Because we had nuclear and whole cell references- in the

form of the DAPI and ER stains- we used seeded watershed

for segmentation, based on earlier work [6]. Our seeding pro-

cedure specifically involved thresholding the nuclear image;

the threshold was determined as the intensity of the most com-

mon pixel in the image. Next, the binary nuclear image was

eroded and very small objects were removed. Then, objects

whose areas were outside an acceptable range were labeled

1023978-1-4244-3932-4/09/$25.00 ©2009 IEEE ISBI 2009



as erroneous seeds. Finally, the ER channel was used to de-

termine background seeds; large areas in the ER image that

were filled with pixels with zero intensity were set as back-

ground seeds. The seeds, along with an inverted ER image,

were then used in the seeded watershed algorithm, and result-

ing regions corresponding to background or erroneous seeds

were removed.

2.3. Feature Extraction

We extracted various types of features from both multicell,

whole images and segmented cell regions. Haralick texture

[7], edge [8], threshold adjacency statistics [9], non-object

fluorescence [10], and object features [8] were chosen as they

have been used in subcellular pattern recognition in the past.

Additionally, we calculated overlap, mutual information, and

correlation features between the protein and three reference

channels, as such features were thought to be useful in distin-

guishing between the nuclear, microtubule, and ER locations.

Additionally, skeleton features [10] and object features in re-

lation to the three references were calculated on the single cell

regions.

2.4. Support Vector Machine Classification

Support vector machine (SVM) classification with a radial

basis function kernel was evaluated using N-fold cross-

validation. For each fold, stepwise discriminant analysis

(SDA) was performed in order to select informative fea-

tures. SVM parameters g, the kernel parameter, and C, the

slack penalty, were set to 64 and 0.25. A five-fold cross

validation routine was used to determine the top K SDA

ranked features which gave the best classification on the

training fold. To account for the unbalanced class mem-

bership across multiple classes, class weighting was used.

Classification was implemented using the LIBSVM toolbox

(http://www.csie.ntu.edu.tw/ cjlin/libsvm/).

Since the classifiers output the probabilities that each sam-

ple belongs to a class, we boosted classification accuracy for

the segmented data by summing class probabilities for all

samples that originated from the same image field, and then

assigning all of these samples the label corresponding to the

resulting maximum value.

2.5. Random Forest Classification

As a alternative approach to classification we used a ran-

dom forest (RF) classifier, which makes its decision over

an aggregate of several classification trees [11]. We used

500 trees and on each tree used 11 features at each deci-

sion node. RF is a bootstrapping method, which allowed

us to evaluate the classifier on each of the image samples.

Moreover, since the variables selected for optimal parti-

tioning over class-labels can be examined from a variable

importance plot which indicates which variables are most

discriminatory between various classes [11], we used RF as

a feature selection approach as well. The output of this clas-

sification system is thus a classifier, series of discriminative

features, and– like SVM– probabilities that each sample be-

longs to each class. Classification was implemented using the

version 4.5-30 of the randomForest package (http://cran.r-

project.org/web/packages/randomForest/index.html).

2.6. Software

All image processing and analysis was performed in Matlab

7.4 with the exception of random forest, which was run in R.
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Fig. 1. Example of a segmented single cell region. A protein

(Atlas ID 1915) exhibiting a mitochondrial pattern (A), the

parallel nuclear (B), microtubule (C), and endoplasmic retic-

ulum channels (D). Unprocessed image fields consist of mul-

tiple cells.

3. RESULTS

3.1. Evaluation of Support Vector Machine Classification

We chose images that depict one of nine specific patterns (an

example of a pattern is shown in Figure 1.A). These pat-

tern classes are: centrosome, cytoskeleton, ER, Golgi ap-

paratus, punctate patterns- which includes lysosomes, per-

oxisomes, endosomes-, mitochondria, nucleoli, nucleus, and

plasma membrane (PM), and 834 proteins out of 1902 showed

just one of these patterns in this dataset. Each class has at least

10 proteins, and the total number of image fields in this result-

ing dataset is 3557 samples. Images from the three different

cell lines are considered.

We first classified images using field features with 10-fold

cross validation. Classification accuracies range from 30.0–

96.3% accuracy between the classes, with an overall accuracy

of 84.8% (Table 1, column 4). Classes with fewer samples

have lower accuracies. 19.4% of the nucleolar samples and

20.0% of the centrosome samples were confused with the nu-

clear class (data not shown), and the centrosome class was
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Classes #field img. #cell img. SVM field SVM cell SVM voting RF field RF cell RF voting

Centrosomes 40 289 30.0 11.4 7.5 45.0 29.4 40.0

Cytoskeleton 260 2035 61.2 58.2 67.8 67.3 66.5 70.3

ER 226 1818 77.9 71.6 81.3 81.9 78.9 85.5

Golgi apparatus 218 1800 66.1 57.8 74.5 68.3 66.4 75.5

Punctate patterns 180 1497 76.1 60.3 73.1 70.0 68.6 72.6

Mitochondria 612 4905 86.4 80.0 91.6 91.2 87.4 96.2

Nucleoli 247 2114 70.9 65.4 72.1 76.9 74.1 81.2

Nucleus 1720 14183 96.3 95.7 98.3 98.0 98.0 99.2

Plasma membrane 54 458 53.7 27.3 28.8 46.3 46.5 40.0

Overall accuracy — — 84.8 80.6 87.4 87.5 85.8 89.8

Table 1. Comparison of classification approaches.

also highly confused with the Golgi class. The cytoskele-

tal, ER, Golgi, and PM classes each had more than 10% of

their samples confused with the mitochondria class (data not

shown).

We next applied classification at the single cell level.

Since each image contains multiple cells, we first segmented

the images into single cell regions. This increased the number

of samples to 29099 regions. Classification of these samples

using 5-fold cross validation yielded an overall accuracy of

80.6%, and class accuracies ranged from 11.4–95.7% (Table
1, column 5). Using the classifier probability outputs to

choose a single, maximum probability label for all cells be-

longing to the same image, we found that we could boost

classification accuracy to 87.4%. In doing this, all class ac-

curacies save that of the centrosome class improved over the

single cell classifier (Table 1, column 6). Moreover, classifi-

cation accuracy improved over the simple field level analysis

for seven of the nine location classes.

We performed precision-recall analysis on these latter re-

sults. We sorted the labeled samples by the magnitude of the

maximum probability value for each sample. Generally, as

only more confident assignments are considered, classifica-

tion accuracy increases (Figure 2). At a recall of 60%, the

classification accuracy is 98.5%.

3.2. Evaluation of Random Forest Classification

We next applied the RF classification framework to analyze

the field and cell level images. The overall accuracy using

field features was 87.5%, with class accuracies ranging from

45.0-98.0% (Table 1, column 7). Compared to SVM using

field features, RF performs better on seven of the nine classes.

At the cell level, RF performs better than SVM on all classes

and achieved an 85.8% accuracy (Table 1, column 8). Fi-

nally, RF with voting performs better than SVM with voting

in overall accuracy and in eight of the nine classes (Table 1,

column 9). As more confident assignments are considered

using field features, classification accuracy increases (Figure
2). At a recall of 60%, accuracy is 98.5%.

3.3. Comparison of Feature Selection Methods

SDA has proved to be an effective method for feature selec-

tion in subcellular pattern recognition [12]. One drawback to

SDA, however, is that it is highly sensitive to training sam-

ples; the addition or subtraction of a few samples can affect

the ranking and selection of features. RF is less sensitive to

this issue. We compared the features selected by RF to fea-

tures selected by SDA. Both RF and SDA were applied to all

of the field level data. RF identifies 16 features as especially

discriminative, while SDA returns 107 features. All of the 16

RF features appear in the top 64 ranked SDA features, and the

top ranked features in both selection methods match (Table
2). Of these 16 features, nine are related to the nucleus, ER,

or tubulin reference channels.
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Fig. 2. Precision-recall curve for cell labels with voting across

image field. The black profile denotes SVM, while gray

shows RF performance. At a recall of 60%, the precision for

both approaches is 98.5%.

4. DISCUSSION

We have proposed two different approaches for the location

classification of Human Protein Atlas immunofluorescence

images. Both work with accuracies greater than 80% for

over 800 proteins across three different cell lines. Moreover,

the images exhibited differing levels of staining (visually

assessed at the time of image collection). Taken together,

these indicate that our results are a promising approach to

analyzing subcellular patterns at a large scale.
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RF SDA Feature name

1 1 Corr. between prot. and nuc. channels

2 2 Corr. between prot. and ER channels

3 64 Prot. and ER obj. overlap int. ratio

4 30 Threshold adjacency statistic #13

5 29 Prot. and nuc. obj. int. overlap ratio

6 11 Threshold adjacency statistic #12

7 7 Prot. and nuc. obj. area overlap ratio

8 10 Prot. and tub. obj. int. overlap ratio

9 4 Non-object fluorescence

10 3 Texture #16: corr. (4x downsampling)

11 37 Variance of # of pixels per object

12 35 Texture #3: corr. (4x downsampling)

13 5 Corr. between prot. and tub. channels

14 16 Info. between prot. and nuc. channels

15 12 Info, between prot. and ER channels

16 28 Ratio of largest to smallest obj. size

Table 2. Comparison of feature selection methods on field

level features. The first two columns show rankings by dif-

ferent selection methods. RF returned 16 features while SDA

with SVM classifier tuning returned 107 features.

Our results indicate that the RF approach generally per-

forms better than the SVM classification with SDA for fea-

ture selection. However, in our current implementation with

SVM we have shown that the SVM can achieve high accura-

cies when only confident images are considered.

Moreover, a simple comparison between the feature selec-

tion methods shows that they are both finding similar features.

Both methods show that the features related to reference chan-

nels are very important in classification. This highlights the

benefit of acquiring multiple data channels during proteomic

studies.

We have analyzed over 3000 images in the Atlas. How-

ever, there are over 4000 more images that exhibit mixed pat-

terns. As we have shown our features to be informative in

identifying nine major subcellular patterns, we can now turn

to unsupervised learning approaches to analyze the rest of the

Atlas using these selected features.
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