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� Abstract
Fluorescent-tagging and digital imaging are widely used to determine the subcellular
location of proteins. An extensive publicly available collection of images for most
proteins expressed in the yeast S. cerevisae has provided both an important source of
information on protein location but also a testbed for methods designed to automate
the assignment of locations to unknown proteins. The first system for automated classi-
fication of subcellular patterns in these yeast images utilized a computationally expen-
sive method for segmentation of images into individual cells and achieved an overall
accuracy of 81%. The goal of the present study was to improve on both the computa-
tional efficiency and accuracy of this task. Numerical features derived from applying
Gabor filters to small image patches were implemented so that patterns could be classi-
fied without segmentation into single cells. When tested on 20 classes of images visually
classified as showing a single subcellular pattern, an overall accuracy of 87.8% was
achieved, with 2330 images out of 2655 images in the UCSF dataset being correctly clas-
sified. On the 4 largest classes of these images, 95.3% accuracy was achieved. The
improvement over the previous approach is not only in classification accuracy but also
in computational efficiency, with the new approach taking about 1 h on a desktop com-
puter to complete all steps required to perform a 6-fold cross validation on all
images. ' 2009 International Society for Advancement of Cytometry

� Key terms
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GREEN Fluorescent Protein (GFP) and its variants are widely used in biological
imaging because they can be linked with virtually any protein to visualize loca-
tion in vivo. GFP-tagging is used both to confirm conjectured localizations and
to determine them for previously uncharacterized proteins (although the loca-
lization can potentially be altered by the tagging). Traditionally, the assignment
of a location is done by visual inspection. However, it is often difficult to insu-
late against the influence of prior experience or hypotheses on those assign-
ments to rely exclusively on the tagged protein images themselves. In addition,
visual inspection is not well suited to efficiently handling proteome-scale tasks
such as classifying thousands of different GFP-tagged protein images.

Automated classification of subcellular patterns in such images is a viable

alternative, and a number of systems for this task have been described (1–3). These

typically start by calculating numerical features from the microscope image that are

designed to capture essential characteristics of the pattern without being sensitive to

the position, orientation and brightness of individual cells. Machine learning

algorithms are then trained to predict subcellular location labels from the numerical

features. The classification problem generally consists of four steps: 1) image preproces-

sing, 2) feature extraction, 3) feature selection, and 4) classifier training and evaluation.

Among these steps, the first two steps are commonly most important because the steps

decide essential qualities of features that influence the entire process.
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To provide information on subcellular location for the

many proteins about which little is known, efforts to create

proteome-scale image collections have been described (4–7).

The most comprehensive coverage to date has been of the

yeast proteome, for which Huh et al. (4) collected images of

over 4,000 GFP-tagged proteins encoded by cDNAs (a more

recent collection for over 1,000 proteins was created by chro-

mosomal tagging with GFP by Hayashi et al. (8)). The Human

Protein Atlas (9) has collected images for over 6,000 proteins

to date using monospecific antisera.

The availability of such collections has permitted auto-

mated classification systems to be applied on a scale not pre-

viously possible. In the first such application, Chen et al. (10)

developed an automated system capable of recognizing the

patterns in the UCSF yeast image collection. The system used

a graphical model method (11) to segment each image into

single cell regions (using parallel images of differential image

contrast (DIC) and a DNA-binding probe). For each cell, a

feature set containing Zernike moment features, morphologi-

cal features, wavelet features, DNA overlap features, edge fea-

tures, and Haralick texture features was calculated. The system

showed 81% agreement with visual assignments for proteins

having a single location. Results using this approach depend

on the accuracy of cell segmentation, and additional methods

for segmentation of yeast cells have since been presented

(12,13). Systems for performing other kinds of analyses of

yeast images have also been described, including systems for

analyzing cell morphology (14), counting peroxisomes (15),

quantifying protein and RNA expression (16), and carrying

out image-based screens (17,18). Some approaches to classify-

ing subcellular patterns do not require segmentation into sin-

gle cell regions (3,19,20), but while these approaches offer

reduced computation time they often sacrifice some accuracy

of classification.

In this article, we present a framework for subcellular pat-

tern classification in yeast that shows both improved accuracy

and computational efficiency compared with the previously

reported results for this image collection. The approach does

not require segmentation of images into single cell regions,

eliminating the need for parallel DIC and DNA images. This

makes it applicable to datasets for which images of only a sin-

gle (protein) channel are available.

METHODS

UCSF Yeast GFP Fusion Localization Database

The UCSF yeast GFP fusion localization database con-

tains 4,156 sets of three 535 3 512 grayscale images (for DIC,

DAPI, and GFP) where yeast cells in each set express different

GFP-tagged proteins (4). The DAPI channel reflects the DNA

distribution, and the DIC channel shows the boundaries of the

cells. The original web site through which the images were

made available, http://yeastgfp.ucsf.edu, is not currently

online; therefore, the images are currently being made avail-

able at http://murphylab.web.cmu.edu/data.

One or more labels have been assigned to each GFP image

by visual examination (and in some cases using additional in-

formation) by two evaluators; a total of 22 labels were used

(4). As in the previous work (10), we restricted our automated

analysis to 2,655 images by selecting images assigned to a

single location but eliminating those labeled as ‘‘ambiguous’’

and ‘‘composite punctate’’ which do not correspond to any

particular subcellular location. In the resulting set, each image

belongs to one of 20 classes such as nucleus, cytoplasm, and

mitochondrion. The number of images in each class is uneven,

ranging from 6 to 823. The names and sizes of the 20 classes

are shown in Table 1. Example images are shown in Figure 1.

Intensity Adjustment

Due to the different levels of tagged protein expression

and varying positions of cells relative to the focal plane, the

intensities of yeast cells with the same class label can vary sig-

nificantly. Thus, we applied intensity adjustment to reduce the

intra-class variance. To do this, we first took the 0.05th per-

centile of intensity distribution as the lowest intensity and the

99.95th percentile as the highest intensity. Then, we linearly

adjusted each intensity between 0.05th percentile and 99.95th

percentile to the percentile of the entire intensity range. We

also mapped every intensity lower than 0.05th percentile to

the minimum value and every intensity higher than 99.95th

percentile to the maximum value of the entire intensity range.

The rationale for using the 0.05th percentile and 99.95th per-

centiles instead of maximum and minimum was to avoid out-

lier pixels (e.g., resulting from dust particles or fluorescent

debris).

Table 1. Images with a unique subcellular location in the UCSF dataset.

CLASS NUMBER OF IMAGES CLASS NUMBER OF IMAGES

Cytoplasm 823 Endosome 34

Nucleus 496 Late golgi 33

Mitochondrion 485 Actin 27

ER 267 Peroxisome 21

Vacuole 121 Lipid particle 19

Nucleolus 69 Golgi 15

Cell_periphery 57 Bud neck 15

Vacuolar_membrane 54 Early golgi 11

Nuclear_periphery 53 Microtubule 10

Spindle_pole 39 ER to Golgi 6
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After intensity adjustment, we smoothed each image with

a 3 3 3 rectangular average convolution filter (3 3 3 matrix

with all elements 1/9) without zero padding. We then sub-

tracted the most common pixel value as background and

applied a global threshold for each image using the Ridler-

Calvard method as described previously (1).

Rotation-Invariant Feature Extraction

Yeast cells float freely and thus it is possible for them to

rotate in the media. Different cells in a given field are therefore

expected to show different orientations. Features to describe

the patterns in such images should therefore be invariant to

local rotation. A simple approach to doing this is to calculate

texture features in different orientations and average them.

This approach was used in the previous automated analysis of

the yeast images. Several alternative methods to achieve rota-

tion-invariant features have been described.

For example, Varma and Zisserman (21) presented the

maximum response (MR) filter sets. The main idea of this fil-

tering method is to apply multiple orientation filters but use

only the maximum filter response across all orientations.

Though this method is computationally cheap and extracts a

small number of features, it achieved high classification accu-

racy on the Columbia-Utrecht reflectance and texture database

(21,22).

Another method to gain rotation-invariant features is to

use rotationally invariant filters such as Gaussian filters or

Laplacian of Gaussian filters (23). In recent work, Lazebnik

et al. (24), also introduced rotationally invariant descriptors,

i.e., SPIN and RIFT. Although these descriptors extract rota-

tion-invariant features, they sacrifice the spatial information

that may be important to distinguish different classes (25).

Lowe (26) suggested a method to find the dominant gra-

dient orientation of each patch or region. SIFT descriptors

with this method showed higher classification accuracies than

rotation-invariant descriptors (25); however, the method to

find the dominant gradient is computationally expensive (24).

To extract local patterns, we used Gabor filters that can

catch local frequency and orientation information in the given

image. We defined a nonbackground patch as a 7 3 7 pixel

region that does not include any background pixels and

applied Gabor filters with 20 scales and 16 orientations. We

obtained rotation-invariant features by applying the method

discussed in detail in the next paragraph. Then, we calculated

the mean and the variance of the energy distribution corre-

sponding to each filter. These means and variances are used to

construct 2 3 20 3 16 5 640 Gabor features for each image.

The patch size, the number of scales and the number of orien-

tations were determined empirically to obtain the highest

cross-validation accuracy, and the other variables of the Gabor

filter bank were set to reduce redundant information (27).

We added rotation invariance to the Gabor features as

follows. First, we find the first major orientation and the sec-

ond major orientation corresponding respectively to the

maximum value and the second maximum value among all

20 3 16 filtered values from each patch. After finding these

two major orientations, each patch is rotated to have its first

major orientation align toward the same direction as all the

other patches (Fig. 2a). Then, each patch is flipped along the

first major axis if needed, to align its second major orientation

to form an acute angle on the counterclockwise side from its

first major orientation (Fig. 2b).

Directly convolving all possible patches with Gabor filters

is often wasteful when a significant number of pixels belong to

background. Thus, we first partition the image into rectangu-

lar regions, and test whether each region contains any non-

Figure 1. Example GFP images from the four major classes in the UCSF yeast GFP fusion database. Each panel shows a 256 3 256 pixel

region in the center of the original image for a randomly chosen protein from a given class. From left to right, the proteins shown (and

their subcellular locations) are YNL267W (Cytoplasm), YPL011C (Nucleus), YDL120W (Mitochondrion), and YOR254C (Endoplasmic Reticu-

lum). The images were scaled and background-corrected as described in the methods.

Figure 2. Illustration of the orientation adjustment scheme. The

long thick arrows represent the major orientation and the short

thin arrows represent the second major orientation.
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background patches. Only when at least one nonbackground

patch is found, the rectangular region is convolved with Gabor

filters. We reduce the computation time significantly by using

303 30 rectangular regions.

To evaluate the performance of our rotation invariance

method, we implemented a MR method and a dominant gra-

dient orientation method as well. The MR method adopts the

main idea suggested by Varma and Zisserman (21). After con-

volving all 7 3 7 patches with 20 3 16 Gabor filters, we adopt

only the MR for each scale; then calculate the mean and the

variance of the energy distribution of the MR corresponding

to each scale. As a result, we obtain 40 rotation-invariant fea-

tures for each image.

For the gradient orientation method, we apply the same

203 16 Gabor filters, extract Gabor features, and apply an ad-

aptation of Lowe’s method used for SIFT features (26) to

obtain the major orientations with which orientation adjust-

ment is performed. We precompute the gradient magnitude

m(x,y) and orientation y(x,y) for each pixel as

mðx; yÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIðx þ 1; yÞ � Iðx � 1; yÞÞ2 þ ðIðx; y þ 1Þ � Iðx; y � 1ÞÞ2

q

hðx; yÞ ¼
tan�1ððIðx; y þ 1Þ � Iðx; y � 1ÞÞ=ðIðx þ 1; yÞ � Iðx � 1; yÞÞÞ

where I(x,y) is the intensity of a pixel. Then for each patch, we

form an orientation histogram that has 32 bins. Each sample

added to the histogram is weighted by its gradient magnitude,

and then a Gaussian circular weight is applied. We find the

orientation whose bin has the maximum weight and the second

maximum weight, and set them as the major orientation and

the second major orientation. Then, these two orientations are

applied to adjust the Gabor features’ orientation in the same

manner outlined above to obtain rotation invariance.

Feature Selection

To create a compact set of features for use in classifica-

tion, we used a state-of-the-art extension to Linear Discrimi-

nant Analysis, Spectral Regression Discriminant Analysis

(SRDA) (28). SRDA is known to save both time and memory

compared with other Linear Discriminant Analysis extensions.

We used the SRDA source code provided by Cai et al. (28)

with regularization and with the default value for the regulari-

zation parameter (0.1).

When the number of classes is small compared with the

number of images, SRDA tends to overreduce features so that

classification does not work well. Thus, when considering only

four classes, we did not apply feature selection.

Support Vector Machine Classification

We used the LIBSVM implementation of a support vector

machine (SVM) classifier (http://www.csie.ntu.edu.tw/�cjlin/

libsvm) with a radial basis function (RBF) kernel. Since SVMs

are binary classifiers, we adopted the one-against-one

approach (29) so that the most frequently predicted class from

all possible one-versus-one classifiers is selected to be the pre-

dicted class of each image. We evenly split the data into six

folds (since the smallest class contains only six samples). Using

each fold in turn as a test set, we used four of the remaining

folds for training and the last fold as an internal test set for

choosing optimal SVM parameters (the slack penalty and the

RBF kernel parameter) for the training folds by a grid search.

The test accuracy was calculated by aggregating the predictions

on all six test sets using the independently chosen parameters.

We measure the confidence of each prediction by calcu-

lating the sum of decision values of the prediction. For each

prediction, LIBSVM can generate a decision value that is pro-

portional to the distance from decision boundary, and each

prediction gets n-1 decision values in an n-class classification.

For each image, the n-1 decision values are summed up, repre-

senting how confident the prediction is. Varying values of a

threshold on this confidence were used to determine the de-

pendence of classification accuracy (precision) on confidence.

Implementation and Availability

All components of our approach were implemented in

Matlab except the LIBSVM package which was invoked

through a Matlab interface. The source code and data used in

this study will be made available upon publication at http://

murphylab.web.cmu.edu/software.

RESULTS AND DISCUSSION

Classification Performance

As described in the Methods, our approach consists of

image preprocessing (intensity adjustment, background correc-

tion), rotation-invariant feature extraction, feature selection,

and classification using a support vector machine with a radial

basis function kernel. We applied our approach to the 2,655

images from the UCSF collection that show proteins assigned

to a single location by visual examination. Our system classified

2,330 images correctly, an overall accuracy of 87.8%. This is a

6.8% improvement from our previous work that achieved

81.0% accuracy (10). The confusion matrix obtained from six-

fold cross validation is shown in Table 2. Table 3 shows the

comparison of the accuracies for each class with the previous

work. Significant improvement is observed for some of the

classes that were poorly recognized previously, and endosome,

late Golgi and actin are now recognized with greater than 50%

accuracy. As a result of improvements in the lower frequency

classes, the accuracy when weighting by class (rather than by

image) is significantly higher than it was previously.

We also report the accuracies of classifying just the four

major classes in Table 3. For the four-major-class task, both our

approach and the previous approach were configured slightly

differently compared with the 20-class task. In our approach,

we did not use SRDA because it induces over-reduction for

such a small number of classes. Our approach achieves a higher

accuracy, approximately halving the error rate.

Given that our approach does not involve segmentation,

it was of interest to determine whether classification accuracy

showed dependence on cell density. The number of cells per
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image (as determined using the graphical model segmentation

approach used previously) was as high as 51, with a mean of

18.7, and a standard deviation of 7.8. Images of all densities

were correctly classified, and the few incorrectly classified

images showed a similar distribution of cell density as the

whole collection.

Computational Efficiency

Table 4 reports the running time of each component on a

computer with a 2.66 GHz Intel CPU and 2 GB of RAM. As

can be seen in the table, our approach takes about 1 hour to

perform the entire process. This is a great improvement over

the previous system, which takes several days. The improved

speed is achieved primarily because segmentation of each

image to find cell boundaries is avoided and feature calcula-

tion is more rapid. In addition, SRDA significantly reduces

classification time through finding only 19 combinations of

features among 640 features in the 20-class task. For example,

after SRDA feature selection, SVM classification time was

reduced to approximately 1/25 of the time required for all fea-

tures. This computational efficiency allows investing more

effort to find proper parameters in the SVM classification so

that the classification accuracy can be improved.

Contributions of System Components to Overall

Accuracy

Table 5 shows the performance drops in terms of overall

accuracy in our method when each of three processes that

characterize our approach is disabled. Note that in this analy-

sis only one process is disabled, leaving the other two func-

tional. When the intensity adjustment process is disabled, the

overall accuracy drops from 87.8 to 80.1%, showing a per-

formance drop of 7.7%. In the cases that disable orientation

adjustment and linear discriminant analysis, 5.3 and 2.8% per-

formance drops are observed, respectively.

Rotation Invariance Comparison

The comparison of three different methods to achieve

rotation invariance is show in Table 6. As can be seen, our

method shows the best performance in terms of overall accu-

racy. The MR method may negatively impact the performance

because important spatial information is lost in the process of

achieving rotation invariance. In addition, the number of fea-

tures may be too small to distinguish different classes effec-

tively. The reason that the dominant gradient orientation

method performs poorly may be due to the incompatibility of

this method with Gabor features. The dominant gradient

orientation method is originally devised for the SIFT descrip-

tor which produces the gradient orientation histogram. The

resulting major orientations from the histogram are not likely

to correlate perfectly with the major orientations from the

Table 4. Running time of each component.

COMPONENT RUNNING TIME

Image preprocessing 646 sec

Rotation-invariant feature extraction 49 min

Feature selection using SRDA 15 sec

Classification using an SVM

with the RBF kernel

230 sec

Table 5. Contributions of system components to accuracy.

performance drop is calculated as the difference between the ori-

ginal accuracy (87.8%) and the accuracy when each part of the

approach is not applied.

PROCESS DISABLED

OVERALL

ACCURACY (%)

PERFORMANCE

DROP (%

POINTS)

Intensity adjustment 80.1 7.7

Orientation adjustment 82.5 5.3

Linear discriminant analysis 85.0 2.8

Table 6. Comparison of rotation invariance methods.

ROTATION INVARIANCE METHOD ACCURACY (%)

Local orientation 87.8

Maximum response 82.1

Dominant gradient orientation 82.4

No orientation adjustment 82.5

Table 3. Comparison of accuracy with previous results.

ACCURACY

CHEN

ETAL. 2007 (%)

ACCURACY

THIS WORK

(%)

Cytoplasm 94.4 97

Nucleus 88.6 93.5

Mitochondrion 90.9 94.2

ER 70.2 87.3

Vacuole 73.6 75.2

Nucleolus 73.5 82.6

Cell periphery 75.4 80.7

Vacuolar membrane 51.9 66.7

Nuclear periphery 77.4 81.1

Spindle pole 64.1 64.1

Endosome 47.1 61.8

Late golgi 12.1 57.6

Actin 22.2 55.6

Peroxisome 14.3 33.3

Lipid particle 0 31.6

Golgi 6.7 26.7

Bud neck 0 33.3

Early golgi 0 0

Microtubule 0 0

ER to golgi 0 50

Average by class for 20 classes 43.1 58.6

Average by image

for 20 classes

81.0 87.8

Average by image for

4 major classes

92.7 95.3
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Gabor filter responses. Also, using the gradient orientation

histogram to determine the major orientations does not reflect

relative spatial information found among the patches from the

same yeast cell. Therefore, rotations based on the dominant

gradient orientation method may jumble up the Gabor

features patch by patch.

Analysis of Prediction Confidence

It is possible to return the predictions sorted in terms of

confidence. Figure 3 shows the behavior of prediction accuracy

as predictions are made with varying threshold on that confi-

dence. Note that an accuracy of �92% can be achieved when

only the most confident 50% of predictions are considered.

CONCLUSION

In this article, we have introduced a framework for yeast

image classification that outperforms previously reported

results. We anticipate that this framework can also be success-

fully applied to other fluorescence microscope images depict-

ing subcellular patterns. In addition, utilizing more recent and

efficient descriptors such as SIFT might be expected to

improve classification accuracy. Future work will be required

to test these expectations.

The automated classification framework described here is

computationally efficient and reduces potential human biases

in making assignments. Therefore, we anticipate that its nat-

ural applications include proteome-scale high-throughput

analysis of subcellular location in which computational effi-

ciency may be an important consideration.
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Figure 3. Improved accuracy for high confidence predictions. The

overall accuracy of only those predictions with confidence above

a given threshold is displayed as a function of the fraction of

images whose confidence was greater than that threshold.
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