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Many proteins or other biological macromolecules are localized to
more than one subcellular structure. The fraction of a protein in
different cellular compartments is often measured by colocaliza-
tion with organelle-specific fluorescent markers, requiring avail-
ability of fluorescent probes for each compartment and acquisition
of images for each in conjunction with the macromolecule of
interest. Alternatively, tailored algorithms allow finding particular
regions in images and quantifying the amount of fluorescence
they contain. Unfortunately, this approach requires extensive
hand-tuning of algorithms and is often cell type-dependent. Here
we describe a machine-learning approach for estimating the
amount of fluorescent signal in different subcellular compart-
ments without hand tuning, requiring only the acquisition of
separate training images of markers for each compartment. In
testing on images of cells stained with mixtures of probes for
different organelles, we achieved a 93% correlation between
estimated and expected amounts of probes in each compartment.
We also demonstrated that the method can be used to quantify
drug-dependent protein translocations. The method enables auto-
mated and unbiased determination of the distributions of protein
across cellular compartments, and will significantly improve
imaging-based high-throughput assays and facilitate proteome-
scale localization efforts.

automated microscopy | fluorescence microscopy | location proteomics |
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Eukaryotic cells are organized into a number of distinct sub-
cellular compartments and structures that play critical roles

in cellular functions. Therefore, protein localization is a tightly
regulated process whose failure may lead to severe pathologies
(1). Nuclear translocation is well-known example of a regulated
subcellular compartmentalization event, and it has been the
subject of many studies uncovering its association to human
pathologies, such as cancer (1–4). Because the nucleus is a large
and easily distinguishable structure, such translocation can
readily be measured in an automated fashion. Unfortunately,
detecting and quantifying the amount of macromolecules in
smaller organelles are much harder tasks to perform using tra-
ditional techniques, and they are not readily automated. The
problem is made more difficult by the fact that proteins (and
other macromolecules) are often found in more than one
subcellular structure.
The traditional approach to determining the amount of a

macromolecule in specific compartments is measuring colocali-
zation of that molecule with organelle-specific markers labeled
with a different fluorophore. This approach is often used for one
or a few proteins whose possible locations are known a priori,
and recent work has described methods for automatically
measuring the fraction of colocalization (5, 6); however, it is
difficult to apply on a proteome-wide basis because it requires

the availability of probes for all possible compartments and the
collection of separate images of each protein in combination
with each marker. An exciting automated approach that builds
on the basic colocalization method is the MELK technology,
which uses robotics to carry out successive rounds of staining for
different macromolecules on a given cell sample or tissue (7).
However, this approach is restricted to fixed samples and cannot
be used for analysis of dynamic pattern changes in living cells.
Hand-tuned algorithms for distinguishing particular subcellular
regions are also widely used as an alternative to colocalization in
high-content screening (8), but they typically are only able to
distinguish major cellular regions and are not easily transferred
to the analysis of other regions or cell types.
Beginning with the demonstration that automated recognition

of subcellular patterns was feasible (9, 10), our group and others
have created systems that are able to classify all major sub-
cellular location patterns, and to do so with a higher accuracy
than visual analysis (11–14). Automated systems can also learn
what subcellular patterns are present in large collections of
images without prior knowledge of the possible patterns (13, 15).
However, such pattern-clustering approaches have two major
limitations. First, they treat each unique combination of major,
fundamental patterns as a new pattern because they cannot
readily identify the fundamental patterns of which it is com-
posed. Second, they are not designed to handle cases where the
fraction of mixing between two patterns can vary continuously,
because such continua are either considered as one large pattern
or arbitrarily divided into subpatterns.
Thus, we sought to develop tools to quantify the amount of

fluorescence in each compartment for images containing a mix-
ture of fundamental patterns, assuming that sets of images
containing each fundamental pattern are available. We have
previously proposed an object-based approach (16) to this
problem that consisted of two learning stages: learning what
object types are present in the fundamental patterns, and
learning how much fluorescence is present in each object type in
each pattern. The fraction of fluorescence in each fundamental
pattern for a mixed image was then estimated by determining the
mixture coefficients that were most likely to have given rise to
that image. This method was tested on synthetic images created
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from known amounts of many patterns, which permitted the
accuracy of unmixing of a given image to be determined by
comparison with the mixture coefficients used to synthesize it.
However, the effectiveness of this approach on real images with
multiple patterns was not determined because of the lack of
availability of real images for which mixture fractions were
known. In this study, we used high-throughput automated
microscopy to create an image dataset for cells labeled with
varying mixtures of fluorescent mitochondrial and lysosomal
probes containing essentially the same fluorophore. This con-
trolled experiment mimics typical cases, such as a protein that
distributes among different organelles or that changes its loca-
tion upon drug stimulation. Therefore, these data offer the
perfect conditions to test our algorithm in the context of auto-
mated image acquisition. We were able to unmix the two dif-
ferent patterns and quantify the relative amount of probes in the
two organelles. We were also able to show that the method can
identify objects and patterns that are distinct from those used for
training. This work should therefore open the door to a more
comprehensive approach to subcellular pattern analysis for
automated microscopy. In part, the strategy described here
should help quantify subtle translocation and localization defects
that could not be readily measured previously. To assess the
usefulness of this methodology in automated screening, we
applied our algorithms to quantify autophagocytosis by mon-
itoring the distribution of microtubule associated protein light
chain 3 (LC3) into autophagosomes upon Bafilomycin A1
(BAF) treatment.

Results
In this article, a “pattern” designates the subcellular distribution
of a protein, or of a set of proteins whose distributions are
statistically indistinguishable. We define a “fundamental pattern”
as a pattern that cannot be represented as the sum of the pat-
terns of other proteins, while a “mixed pattern” refers to a dis-
tribution consisting of two or more fundamental patterns. A
pattern is characterized by a collection of fluorescent objects
whose shape, size, and intensity vary within cells. For example,
nuclei are typically large ellipsoidal objects, while lysosomes are
small and generally have spherical shapes. The method we
describe here seeks to estimate the components in a given mixed
image based on two assumptions. The first is that the set of
discrete object types resulting from segmentation of images
containing a mixed pattern is essentially the same as the union of
the sets of object types found in images of each of its funda-
mental patterns (i.e., that any new object types that might be
found only in mixed images do not contain a significant amount
of fluorescence and can be safely ignored). The second is that the
amount of fluorescence in each object type in a mixed image is
approximately the sum over all fundamental patterns of the
product of the fraction of total protein in that pattern and the
number of objects of that type in images of that pattern (i.e., that
any differences between the actual and expected sums are suf-
ficiently small and uncorrelated with the mixture fractions that
they do not systematically affect estimates of the fractions). The
approach is illustrated in Fig. 1 for mixtures of two patterns, but
it generalizes to any number of patterns. The details for each
step of this process are described in Materials and Methods. We
assume that we are provided with a collection of images of cells
containing varying combinations of fluorescent probes, such as
for the multiwell plate of pure and mixed samples depicted in
Fig. 1A. The two probes are assumed to be imaged using filters
that do not distinguish between the probes. Wells containing
pure probes are symbolically represented along the outer row
and column (with example images shown in Fig. 1 B and C), and
the other locations represent mixed conditions (a mixed image is
shown in Fig. 1D). The starting point for unmixing is finding all
objects in each image by thresholding (Fig. 1E). Each object is

described using a set of numerical features that measure char-
acteristics such as size and shape. The two sets of fundamental
patterns (pure probes) are used to learn the types of objects that
can be found (Fig. 1F). Given this list of object types, the dis-
tribution of object types across each fundamental pattern is then
learned as a count of the number of objects in each object type
(Fig. 1G). Given this, the distribution of fluorescence in each
object type in a mixed image (Fig. 1H) can be used to estimate
the fraction of probe in each fundamental type.
In prior work, we demonstrated that this approach could give

reasonable estimates of mixture fractions for images synthesized
by combining objects from images of pure patterns (average
accuracies of around 80% were obtained) (16). These synthetic
tests were carried out using a collection of high-resolution
images of HeLa cells (11), but left open the question of
whether this approach could be used for real images containing
mixed patterns.
To address this question, a dataset of mixed patterns is needed

in which the mixture fractions are known (at least approx-
imately), so that estimates obtained by unmixing can be com-
pared with expectation. We have therefore constructed such a
dataset using high-throughput microscopy. We chose two fluo-
rescent probes (Lysotracker green and Mitotracker green) that
stain distinct subcellular compartments (lysosomes and mito-
chondria) but that contain similar fluorophores, so that they can
be imaged together. The dataset contains images for cells incu-
bated with each probe separately (at different concentrations) as
well as images for cells incubated with mixtures of the probes.
We refer to the single probe images as “training images,” and the
mixed images as “testing images.”We assume that the amount of
probe fluorescence in each compartment is proportional to the
concentration of that probe added. This represents a good sim-
ulation of the images expected for a protein that can be found in
varying amounts between two compartments.

Object Extraction and Feature Calculation. As outlined above, the
starting point is to identify each fluorescence-containing object in
all images. We use an automatically chosen global threshold for
each image, as this approach does not require segmentation of
the image into individual cell regions. Each object is then
described by a set of 11 features that characterize its size, shape,
and distance from the nearest nucleus (see Materials and Meth-
ods). If more than one image (field) is available for a given
condition, the objects from all fields are combined.

Object-Type Learning. Having identified the individual objects, we
next determine how many types of objects are present. We define
an object type as a group of objects with similar characteristics.
Rather than specifying the object types a priori, we used cluster
analysis to learn clusters from the set of all of objects in all of the
training images.Althoughmanydifferent clusteringmethodsmight
be used for this step, we have used k-means clustering because of
the large number of objects in the training set. The optimal number
of clusters kwasdeterminedbyminimizing theAkaike Information
Criterion, which specifies a tradeoff between complexity of the
model (number of clusters) and its goodness (compactness of the
clusters). As shown in Fig. S1, this value declines with increasing
k until reaching a minimum at a k value of 11.

Learning the Object Composition of Fundamental Patterns. Once k is
known, each fundamental pattern p can be represented as a vector
fp of length k consisting of the frequency of each object type. As
shown in Fig. 2, the frequency of each object type is quite different
between the lysosomal and mitochondrial patterns.

Estimating Unmixing Fractions. The type of each object in the
training images is known (because all objects in the training
images were used for clustering); however, the type of objects in
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the testing images is not. Each protein object in a testing image
was therefore assigned to the cluster whose center was closest to
it in the feature space. The frequency and the total fluorescence
of all objects belonging to the same type were calculated for each
test image.
The average fraction of mitochondrial and lysosomal patterns

in each well was then estimated by three different approaches
using both the object types and object features (see Materials and
Methods). Two of these methods use the number of objects of
each type to estimate mixing fractions. The third uses the
amount of fluorescence in each type, which depends on the
assumption that this amount is linearly dependent upon the
concentration of each probe (Fig. S2).
The results for the three methods are compared with those

expected from the relative probe concentrations in Fig. 3. The
correlation coefficients between estimated and expected frac-
tions are 0.73, 0.77, and 0.83. An example of the correlation
between estimated and actual concentrations is shown in Fig. S3.
Analysis of the effect of removing nondiscriminative object types
is shown in Fig. S4.

Removing Outliers. The unmixing method can be applied without
any restrictions to any test images. However, if the mixed pat-
terns in test images contain additional fundamental patterns not
present in the training sets, the estimates of mixing fractions will

be incorrect. Our solution consists of two steps. The first step is
to exclude objects in test images that do not appear to belong to
any of the object types found in the training images (outlier
objects). The second step is to flag as outlier patterns those test
images that during unmixing have large fitting error (i.e.,
rejecting images that cannot be successfully decomposed into the
specified fundamental patterns). Because we cannot know a
priori what kinds of new objects might be encountered, both
steps use hypothesis-based tests to find thresholds that retain
high accuracy for unmixing the training patterns. To test this
approach, we used images in which either the nucleus or the
endoplasmic reticulum (ER) was marked. Our results show that
this methodology can completely remove nuclear objects during
the first level outlier detection (Fig. 4A). For the more difficult
case of ER staining, the second level detection recognizes most
of the ER-containing images as outlier patterns but retains high
accuracy of fundamental pattern unmixing (Fig. 4B).

Application Example: Unmixing Drug-Treated Cell Images. To further
test the usefulness of our unmixing algorithms, we tested whether
these tools could correctly estimate the accumulation of the
microtubule associated protein LC3 into autophagosomes upon
BAF treatment. BAF, an inhibitor of the vacuolarATPase (17, 18),
can inhibit autophagy and promotes autophagosome accumulation
by preventing vesicular acidification (19). In this experiment, an

Fig. 1. Subcellular pattern unmixing approach. (A) The starting point is a collection of images (typically from a multiwell plate) in which various concen-
trations of two probes are present (the concentrations of the Mitotracker and Lysotracker probes are shown by increasing intensity of red and green,
respectively). Example images are shown for wells containing just Mitotracker (B), just Lysotracker (C), or a mixture of the two probes (D). The steps in the
analysis process are shown: finding objects (E), learning object types (illustrated schematically as objects with different sizes and shapes) (F), learning the
object type distributions for the two fundamental patterns (G), and unmixing a mixed object type distribution (H).
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RT112 cell line stably expressing eGFP-LC3 was treated with
various amounts of BAF for 4 h before being fixed and imaged.
To establish the fundamental patterns, the model was trained

on images of cells treated with the maximum concentration of
drug and of cells that did not undergo any treatment. Unmixing

using different methods resulted in a sigmoid-like transition
between the two patterns as a function of the drug concentration
(Fig. 5). This example illustrates how our unmixing analysis can
be applied to provide a quantitative analysis of protein dynamics.

Discussion
Our group has previously described approaches to cluster pro-
teins based on their subcellular distribution (13, 15). A logical
extension of this work is to create tools to estimate the dis-
tribution of fluorescently labeled macromolecules between dis-
tinct compartments, and we have previously demonstrated such
approaches provide good results for synthetic images (16). Here
we show that this approach works well on real images obtained
from mixed patterns and is suitable for high-throughput micros-
copy, technology that would arguably benefit the most from such a
strategy. Our test mimicked the case of a tagged protein whose

Fig. 3. Expected and estimated pattern fraction for three unmixing methods
for the U2OS dataset. The balance between lysosomal and mitochondrial pat-
tern (either expected or estimated) is represented as the fraction of the total
pattern (black, 100%mitochondrial; white, 100% lysosomal). For the expected
fraction, this is estimated as linearly proportional to the ratio of the relative
concentration of the mitochondrial probe to the sum of the relative concen-
tration of the lysosomal and mitochondrial probes (where relative concen-
tration is defined as fraction of the maximum subsaturating concentration).

Fig. 4. Effectiveness of outlier removal methods. (A) Nuclear images were
used as outliers. Unmixing accuracies for both inliers (squares, mitochondrial
and lysosomal objects) and outlier objects (triangles) with first-level outlier
exclusion were approximated by cross validation under different chosen
accuracy levels for the U2OS dataset. Nuclear fluorescence was totally
removed at all accuracy levels. (B) ER pattern images were used as outliers.
Average outlier recognition testing-accuracies for both inliers (squares,
mitochondrial and lysosomal images) and outlier images (triangles) with sec-
ond-level outlier exclusion were approximated by cross validation under dif-
ferent chosen accuracy levels for the BEAS2B dataset. The best separation is
obtained using a 75–80% inlier confidence level.

Fig. 5. Application of pattern unmixing to drug effects. Cells were treated
with various concentrations of Bafilomycin a1 (BAF) and images from sam-
ples receiving the highest dose and images from untreated cells were used
to train an unmixing model. The fraction of drug treated pattern as a
function of concentration of drug was estimated using linear unmixing
(squares), multinomial unmixing (circles), and fluorescence fraction unmix-
ing (triangles). eGFP-LC3 showed a gradual relocation between the two
patterns as a function of BAF concentration.

Fig. 2. Distribution of object types within fundamental patterns. The
average number of objects of each type is shown for the combination of all
images of U2OS cells stained with either Mitotracker (black) or Lysotracker
(white). The object types are sorted according to the difference between the
numbers of objects in the two patterns. Thus, the lowest numbered object
types are primarily found in Mitotracker-stained cells, while the highest
numbered object types are primarily found in Lysotracker-stained cells. The
model power is 0.448 when trained with object frequency distributions and
0.654 when trained with fluorescence fraction distributions.
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distribution varies between two organelles. Because we controlled
the amount of both dyes applied to a given cell sample, it was easy
to verify whether or not our predictions about the proportion of
mitochondrial or lysosomal labeling were accurate. The successful
results described here validate the effectiveness of the two-stage,
object-based unmixing method on real image data. They also
validate our assumption that new object types that might arise do
not drastically inhibit unmixing accuracy.
The tool we have described requires only a set of images for

each of the pure patterns (for varying levels of expression, if
desired) and a set of images for mixed patterns acquired under
the same conditions. Incorporation of outlier tests and accuracy
estimates makes the approach robust to unanticipated pheno-
types. It is also important to note that the fluorophores used for
training and testing need not correspond. For example, a system
trained on GTP-tagged proteins could be used to unmix an
image of an RFP-tagged protein (assuming that the tags do not
alter the protein localization). However, because most cell types
show different morphologies, it is unlikely that a system trained
for one type could be applicable to others.
The success of the experiments described here should provide

the capacity to better describe what may be complex effects of
drugs or disease on protein location. The tool offers a previously
unexplored method to determine a precise and objective sub-
cellular distribution of gene products for various physiological
contexts and genetic backgrounds. This approach can also
aid large-scale projects, such as proteome-wide localization
studies, because it has been tested for images acquired using
automated microscopy.

Materials and Methods
Tissue Culture. U20S cells were grown in D-MEM (Invitrogen), containing 10%
FBS (HyClone). The BEAS2B cell line was grown in a F12/D-MEM[1:1] (Invi-
trogen) containing 10% FBS (HyClone). All media were supplemented with
100 μg/mL of Penicillin-streptomycin and L-Glutamine. A total of 7,000 cells
per well were plated in 384-well plates in Phenol-red free Optimem (Gibco)
containing 2% serum. After 24 h, Phenol red-free Optimem containing
various concentrations (see Fig. 1) of either Mitotracker green or Lysotracker
green (Molecular Probes), as well as 2.5 μg/mL Hoechst 33342 (Molecular
Probes), was added. In some cases, ERtracker green (Molecular Probes) was
added to test the outlier removal algorithm. A total of six replicas of an 8 × 8
matrix of various concentrations of Mitotracker and Lysotracker were dis-
pensed in each plate. After a 30-min incubation, the living cells were imaged
by high throughput microscopy.

For experiments analyzing drug effects, RT112 cells were plated in a 1,536-
well plate at 500 cells per well and grown for 24 h before being treated with
various amounts of BAF. After 4 h, cells were fixed with 1× Mirskys fixative
and stained with Hoechst as above.

High-Content Imaging. Images were acquired using an Opera automated
microscope equipped with Nipkow confocal spinning disks (Perkin-Elmer).
Cells were kept viable by a built-in incubation chamber. The Hoechst stain,
whichmarks the nuclei, was detected using 405-nm laser excitation and a 450/
50-nm emission filter, while Mitotracker, Lysotracker, ERtracker, and eGFP
(enhanced GFP) were detected with 488-nm laser excitation and a 535/50
emission filter. To minimize fluorescence cross-talk, the two channels were
collected sequentially. To provide a sufficient spatial resolution for the
analysis, images were collected using a 40×, 0.9 NA water immersion
objective. For each well of the 384-well plate, 35 adjacent fields with 1.5%
overlap organized in a 7 × 5 rectangle were collected. Each field usually
contained about 20 cells; a small number of out-of-focus images in some
wells were automatically discarded.

Image Analysis. Preprocessing. Images containing no nuclei and out-of-focus
images were removed by thresholding on total Hoechst fluorescence.
Shading and skew corrections were performed on remaining images to
compensate for nonhomogeneous illumination and differences in registra-
tion between channels. Background fluorescence was removed by sub-
tracting the most common pixel value from each pixel.
Object detection.An automated threshold method (20) was used to distinguish
probe-containing from nonprobe-containing pixels. In the resulting binary

images, each set of connected above-threshold pixels (an object) was iden-
tified. Objects containing fewer than 5 pixels were ignored. The same
approach was applied on the DNA channel to identify DNA objects.
Object feature calculation. To describe the properties of each object, a set of
subcellular object features, SOF1, was calculated as described previously (16).
This set is composed of nine features based on morphological properties of
the object and two features describing the spatial relationship between
objects and the cell nucleus. However, because in the experiments described
here images were not segmented into single cells, feature SOF1.2 was
replaced by the average distance between each object and the nearest
nucleus. All features were normalized to zero mean and unit standard
deviation calculated using the training data (Z-scores).
Object-type learning. The features for all objects fromthe singly-stained samples
were clustered using the NetLab k-means function. The quality of the clus-
tering was assessed using the Akaike Information Criterion as described pre-
viously (16). For test images, objects were assigned to the cluster whose center
was the smallest Euclidean distance from it.
Linear unmixing. Once the k-object types are defined, each image can be
represented as a vector y ¼ ðy1; . . . :; ykÞ of the frequency of each object type
in that image. We define u as the total number of fundamental patterns. For
u = 2, a mixture of pattern 1 (lysosomal) with n1 objects of a specific object
type and pattern 2 (mitochondrial) with n2 objects of the same object type is
assumed to generate a mixed pattern with n1+ n2 objects of this type.

We assume that mixed pattern object frequencies are linear combinations
of fundamental pattern object frequencies fp as follows:

y ¼ ∑
u

p¼1
αpfp

∑
u

p¼1
αp ¼ 1

8>>><
>>>:

where αp represents the proportion of fundamental pattern p in the com-
position of the mixture. Therefore, a mixed pattern can be represented by a
vector of coefficients a ¼ ðα1; . . . :; αuÞ, containing the fraction of funda-
mental patterns of which it is composed. Unmixing the mixture pattern
consists of solving the linear equation above. Because we have k equations
for all object types and only two fundamental patterns (u = 2), a reasonable
solution is to minimize the squared error SE ¼ ∑k

i¼1ðy
_

i − yiÞ2 under
constraint ∑k

i¼1αp ¼ 1 . Because the contribution of any fundamental pat-
tern cannot be negative, nonnegative constraints αp ≥ 0 are included. The
solution was found using quadratic programming methods (the Matlab
lsqlin function).
Multinomial unmixing. An alternative method for unmixing is based on the fact
that the number of objects of each type varies between cells even within the
samepattern (e.g., thenumberof small lysosomescanvary fromcell tocell).We
can reasonably assume that if we learn the distribution of the number of
objects per cell of a given type for a given fundamental pattern that it will also
apply to thedistributionof thatobject type inamixed sample. Inamultinomial
distribution, each object belongs in exactly one of the k possible object types
with the probabilities ðθ1; . . . ; θkÞ (so that θ1 ≥ θk and ∑k

i¼1θi ¼ 1 ). Therefore,
each fundamental pattern is represented by a multinomial distribution
ðθp

1 ; . . . ; θ
p
k Þwhere θp

i is the probability that an object from pattern p belongs
to the object type i. This can be estimated by the maximum likelihood
estimator of a multinomial distribution:

θ
_ p

i ¼
npi

∑k
i¼1 n

p
i

where np
i corresponds to the number of objects of pattern pwhich are of type

i. Mixed patterns are represented by a multinomial distribution composed of
a linear combination of fundamental pattern distribution parameters,

θ ¼
�

∑
u

p¼1
αpθ

p
1 ; . . . ; ∑

u

p¼1
αpθ

p
k

�

To reach a distribution which best fits the data of mixed pattern conditions,
we adjust the coefficients αp to maximize the likelihood of the object fre-
quency for all k types:
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α_ ¼ max
α

∏
k

i¼1

�
∑
u

p¼1
αpθ p

i

�
∑u

p¼1 n
p
i

An equivalent problem would be to maximize the log likelihood. We have
previously deduced closed forms of the first-order derivative and the Hessian
matrix, and proved concaveness of the log likelihood function (16). There-
fore, Newton’s method was adopted to solve the optimization problem.
Fluorescence fraction unmixing. In addition to using the number of objects of
each object type to estimate pattern fractions, we can also use the amount of
fluorescence in each object type. To do this, we first find the average fraction
of fluorescence fpi within each object type i for each fundamental pattern p.
We also determine a constant Lk for each probe that relates the concen-
tration of that probe to the expected amount of total fluorescence in all
objects of the pattern k labeled by that probe. We combine these to cal-
culate λpi as the amount of fluorescence within each object type that is
expected per unit of probe added (assuming that fluorescence is roughly
linear over the range of probe concentrations added). The fluorescence
expected in each object type Fk is then given by

 F1
⋮
Fk

!
¼ ∑

u

p¼1
Cp

 λp1
⋮
λpk

!

where Cp is the concentration of probe that labels pattern p. We used the
pseudoinverse approach to estimate this amount.
Outlier detection. To address the possibility that a particular pattern being
unmixed is not a mixture of the fundamental patterns used during training
(that is, that it might contain other patterns as well), we developed a two-
level outlier detection method. The unmixing results were expressed as
ðα0; α1; . . . ;αuÞT , where α0 is the fluorescent fraction of any unrecognized
pattern (outliers) and u is the total number of fundamental patterns. Both
levels use statistical hypothesis tests to determine outliers. First, we used a χ2

test to remove outlier objects that were not similar to any of the object types
learned from the fundamental pattern images. The χ2 statistic is defined as
x2 ¼ ∑m

i¼1 x
2j, where xj is the jth feature of an object and m is the total

number of features. Statistics of test object x2T were tested under every χ2

distribution learned from each object type in the training images to see if it
was from that distribution. An object was considered an outlier if it was
rejected by all tests at a specified confidence level α. Because a proper value
for α is hard to determine a priori, we chose it by a linear search using
unmixing of the fundamental patterns. The fundamental pattern images
were split into training and test sets and the accuracy was reported as the

fraction of objects that were associated with the correct pattern. For various
α, we used cross validation to get averaged accuracies. Accuracy improves
with decreasing α cut-offs, in other words, with a stricter criterion, more
objects are excluded as outliers. We chose an arbitrary acceptable accuracy
level and its associated level α to remove outlier objects in testing images.

Similarly, we performed a hypothesis test to exclude mixed patterns that
had large fitting errors when decomposed into fractional combination of
fundamental pattern fluorescence fractions. This fitting error statistics was
defined as:

E ¼
�����F− ∑

u

p¼1
αpΔp

�����;F ¼ ðF1; . . . ;FkÞT and Δp ¼ ðλp1; . . . ; λpkÞ

Statistics of a test-pattern fluorescence fraction ET was compared with the
empirical distribution of the fitting error. Pattern was rejected to be a
mixture of fundamental patterns if ET was beyond a certain threshold
T2ðET > T2Þ. A large T2 value tolerates more possible real mixture patterns
but also risks accepting more unknown patterns. We defined the accuracy of
this level as the fraction of training images not rejected. We next learned
the empirical distribution of the fitting error on the training set. We then
chose T2 corresponding to an appropriate accuracy level.
Unmixing result evaluation. The significance of the unmixing result of a mixture
pattern can be evaluated by its distinctiveness to the composing fundamental
patterns. We defined the model power as a quantitative evaluation of
unmixing results obtained by applying our trained model on fundamental
pattern images.

MP ¼ 1
KðΔÞ ¼

σmin½covðΔÞ�
σmax½covðΔÞ�

Δ is a matrix where every column represents the object frequency or fluo-
rescence fraction of a fundamental pattern. KðΔÞ is the condition number of
Δ. σ is the eigenvalue of the covariance matrix (the singular value of Δ). The
model power range is 0≤MP ≤ 1, and a larger value corresponds to a more
powerful model.
Data and code availability. All code and software used for the work described
here is available from http://murphylab.web.cmu.edu/software.
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