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ABSTRACT 

 
Location proteomics is concerned with the systematic 
analysis of the subcellular location of proteins. In order to 
perform comprehensive analysis of all protein location 
patterns, automated methods are needed. With the goal of 
extending automated subcellular location pattern analysis 
methods to high resolution images of tissues, 3D confocal 
microscope images of polarized CaCo2 cells immunostained 
for various proteins were collected. A three-color staining 
protocol was developed that permits parallel imaging of 
proteins of interest as well as DNA and the actin 
cytoskeleton.  The collection is composed of 11 to 21 
images for each of the 9 proteins that depict major 
subcellular patterns. A classifier was trained to recognize 
the subcellular location pattern of segmented cells with an 
accuracy of 89.2%. Using the Prior Updating method 
allowed improvement of this accuracy to 99.6%. This study 
demonstrates the benefit of using a graphical model 
approach for improving the pattern classification in tissue 
images.  
 

Index Terms— subcellular protein location, artificial 
tissue, machine learning, graphical model, prior updating 

 
1. INTRODUCTION 

 
Extensive work on automated methods for determining 

the subcellular location of proteins from microscope images 
has been described previously [1-3]. Most of the work in 
location proteomics has centered on single-cell analysis or 
sparse multi-cell images. This is the logical starting point for 
these types of analyses as it provides a simpler problem. 
Although the study of cell behavior in a single-cell 
environment is informative and useful, analysis of 
subcellular location is ultimately needed at the tissue level. 
Databases exist that contain images of tissues that have been 
stained for various proteins. The most notable of these is the 
Human Protein Atlas (HPA) [4]. It contains millions of 
images of various normal and cancerous human tissues. 
Immunohistochemistry was used to stain for various 
proteins and visual examination was used to annotate the 

images. Automating the annotation process is an important 
goal, since automated methods have the potential of 
performing as well as, or better than, visual examination [3]. 
In fact, encouraging results have been described for the 
automated classification of major subcellular location 
patterns in the immunohistochemically stained HPA images 
[5].  However, this work analyzed patterns at the level of the 
entire tissue (due to the difficulty of automatically 
segmenting tissue images into single cell regions) and 
therefore did not take full advantage of the methods that 
have been developed for single-cell images. Furthermore, 
there may be multiple cell types contained in one tissue 
sample and the subcellular location of the protein of interest 
may depend on the cell type. To develop and evaluate 
automated methods for such complex situations, tissue 
images in which the boundaries of each cell and its true cell 
type and subcellular pattern are known can be expected to 
be of great utility.  

 
Graphical models are algorithms of growing interest, 

particularly to design machine learning algorithms for 
complex systems. They are particularly well suited to 
analyze tissues where multiple cells are organized in 
structures capable of fulfilling a function determined by the 
physical proximity and phenotype of cells. We therefore 
sought to distinguish major subcellular protein patterns in 
individual cells of a tissue using graphical models. Our first 
step was to use a supervised classifier to estimate the pattern 
probabilities for each cell (using the Random Forest 
algorithm). Then, we determined whether the classification 
accuracy could be improved by allowing these probabilities 
to be influenced by the probabilities of neighboring cells. 
We have previously showed that the implementation of 
graphical models can significantly improve classification 
performance on multi-cell synthetic images [6]. In 
particular, an approximation of loopy belief propagation 
with a novel voting potential (a combination termed Prior 
Updating) was observed to be much faster than other 
approaches while achieving high accuracies [7]. We present 
here, for the first time, to our knowledge, the application of 
a graphical model to improve the determination of the 
subcellular pattern in tissue images.  



2. ARTIFICIAL TISSUE GENERATION
 
We chose to use CaCo2 cells as a model system to 

extend current single-cell methods to tissue. CaCo2 is a 
human colon cancer cell line which grows in a tight 
monolayer that simulates the density of tissue. 
allowed to grow several days past confluency, CaCo2 cells 
will form tight junctions between cells and
polarized morphology. The protocol used for plating, fixing,
permeabilizing, and staining CaCo2 cells wi
elsewhere [8]. Table 1 summarizes the 9 subcellular 
for which we collected images, along with their
antibodies or probes. 

 
Table 1. Description of dataset composed of 9 subcellular 
protein patterns. 

Target Antibody or Stain 

Mitochondia 
mouse anti-mitochondrial 

inner membrane 

Endosomes mouse anti-CD71 

Lysosomes mouse anti-LAMP2 

Endoplasmic Reticulum mouse anti-ERp57 

Golgi Apparatus 
mouse anti-Golgi 58K 

protein 

Nucleoli mouse anti-nucleolin

Tubulin 
mouse anti-ß Tubulin 

I + II 

DNA DRAQ5 

Actin FITC-Phalloidin 

 
3. IMAGE ACQUISITION

 
Imaging was performed on a Zeiss LSM 510 Meta NLO 
Confocor 3 Inverted Spectral Confocal Microscope using a 
63x/1.4NA oil-immersion objective. Three-color, 3D images 
were acquired simultaneously using 488 nm (FITC
Phalloidin, actin channel), 543 nm (Alexa
channel) and 633 nm (DRAQ-5, DNA channel) exci
and appropriate emission filters (see Figure 1). Images were 
acquired in 1024x1024 pixels each with a resolution of 0.09 

µm/pixel. The z-slices were separated axially by 0.33 
The number of images and segmented cells of each pattern 
are reported in Table 1.  
 

4. SEGMENTATION 
 

The determination of subcellular patterns for each cell in 
3D tissue images requires a delineation of the volume 
occupied by each cell. Taking advantage of the monolayer 
structure of the epithelial tissue formed by CaC
confluent but non-overlapping polarized cells elongated 
orthogonally to the filter plane, the segmentation was 
performed by projecting (average intensity) 
from the middle of each 3D stack into 2D images
central slices were used to avoid the regions of 
networks found in the apical and basal extremities
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Phalloidin, actin channel), 543 nm (Alexa-568, protein 
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and appropriate emission filters (see Figure 1). Images were 
acquired in 1024x1024 pixels each with a resolution of 0.09 
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The determination of subcellular patterns for each cell in 
s requires a delineation of the volume 

occupied by each cell. Taking advantage of the monolayer 
epithelial tissue formed by CaCo2, i.e. 

overlapping polarized cells elongated 
orthogonally to the filter plane, the segmentation was 

(average intensity) half of the slices 
into 2D images. Only the 

regions of dense actin 
found in the apical and basal extremities of CaCo2 

cells. The projection was performed independently for the 
DNA and the actin channels (see Figure 1). 

 
We used Ridler-Calvard thresholding on 

channels to generate nuclear seeds, as described previously 
[3]. The seeded watershed algorithm was performed on the 
projected actin channel using nuclear seeds
distribution gives an approximation to the
membranes. Finally, the extent of each cell was defined as 
the orthogonal projection in 3D of the 2D masks resulting 
from the watershed algorithm.  

 

Figure 1: The top left panel shows the central slices 
projection of the protein channel depicting a 
The top right and bottom left panels represent respectively 
the projected DNA and actin channels.
panel shows the seeds (segmented nuclei) in white and the 
regions delineated by the watershed in gray. The 
touching the image borders were discarded
analysis since their patterns are likely incomplete
 

5. FEATURE EXTRACTIO
 
For each segmented cell, the feature set SLF19 was 
calculated to describe the 3-dimensional distribution of the 
protein within cells [9]. SLF19 is composed of 14 
morphological features for 3D objects (number of objects, 
relative volume of objects, etc.), 14 DNA
(average distance from the nucleus, overlapping volume 
with the nucleus, etc.), 2 edge features, and 26 Haralick 
texture features. As a result, each cell is described by a 
vector of 56 features. 
 

6. CLASSIFICATION
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The top left panel shows the central slices 

protein channel depicting a Golgi pattern. 
The top right and bottom left panels represent respectively 
the projected DNA and actin channels. The bottom right 
panel shows the seeds (segmented nuclei) in white and the 
regions delineated by the watershed in gray. The regions 

re discarded from subsequent 
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6. CLASSIFICATION 



A supervised machine learning approach was used to train a 
classifier to distinguish the 9 major patterns (classes). We 
used a random forest implementation in R 
(http://www.stat.berkeley.edu/~breiman/RandomForests) 
[10] for this purpose.  The random forest is a collection of 
decision trees grown independently. Each tree is trained 
with a random subset of labeled samples (cells whose class 
is known) among the entire dataset. Each node of a decision 
tree uses a random selection of features in order to create a 
collection of decision trees with controlled variations. The 
remaining set of data (cells whose class is unknown), called 
the out-of-bag portion, is used to test the tree. Finally, a 
class is assigned to a cell by determining the majority voting 
of classes provided by individual trees for which the cell 
belonged in the out-of-bag portion. The agreement of this 
assignment with the true label can be reported in a confusion 
matrix and the overall accuracy of the random forest can be 
calculated. With this approach, there is no need of cross-
validation because each tree has unique training and testing 
sets.  
 

7. GRAPHICAL MODEL 
 
7.1. Physical and feature space models 
The first step of the graphical model consists of building a 
graph where nodes represent cells and edges link nodes that 
are allowed to exchange information. We created two 
versions of this graph. In the physical space model, cells 
were linked based on the Euclidean distance between their 
centroids in each image. Edges longer than a certain 
distance cutoff (dcutoff) were removed to limit the size of the 
graph. In the feature space model, a graph is created in the 
feature space where the Mahalanobis distance between 
features of every cell in the dataset determines the length of 
edges. 
 
7.2. Voting potential 
The voting potential function is designed to influence the 
evidence P(xi) of node i for every possible label x with a 

voting potential ϕ which reflects the evidence of all of the 
neighboring i’s into a summary vote. The overall probability 
of a vector of classes x is: 

∏=
inodes

mii vvvxxP
Z

xP ),...,,,()(
1

)( 21ϕ  

where Z is a normalizing constant to ensure the sum of the 
vector P(x)=1. The output of the random forest can be 
converted into probabilities P(xi) that classes x are assigned 
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where v1, v2, …vm are the m neighbors of i, n is the number 

of classes,  N(i) is the set of neighbors of node i, and λ is a 
smoothing parameter that controls the influence of the 

neighbor at each iteration. The smaller λ is, the more 
strongly neighbors will influence the cell classification. 
I(v_k,i) is a probability vector initialized to equal values for 
each class (as there are 9 classes, the initial probability 
I(v_k,i) of the class x for an arbitrary node i and its neighbor 
vk is 1/9). The probabilities I(v_k,i) are updated iteratively. 
The iterative updating is stopped when the probabilities of 
each node stay unchanged in two successive iterations. 
 

8. RESULTS 
 

To classify individual cells, we set the size of the random 
forest to 500 trees and the number of random features used 
to generate the decision of each node to 8. The overall 
accuracy of the random forest was 89.24% with a large 
disparity between classes, from 76.5% accuracy for 
predicting tubulin to 100% accuracy for predicting nuclei 
(see Table 2).  
 
To improve this accuracy, we tested various graphical 
model variations.  The two parameters in the graphical 

model, λ and dcutoff,, were optimized through a grid search. λ 
was varied from 0 to 1.2 with an increment of 0.2, and dcutoff 
was varied from 0 to 1200 pixels with an increment of 100 
in the physical space and from 0 to 1.2 with an increment of 
0.1 in the feature space. A 5-fold cross-validation was used 
to optimize the parameters. We observed that variations in 

λ had almost no effect on the accuracy (data not shown). 
During the optimization, the highest accuracies were 

reached  for λ=0 and  dcutoff=800 for the physical space. This 
gave an overall accuracy after updating labels of 99.57% 
(Table 2). By contrast, the graphical model tested in the 
feature space gave an overall accuracy of only 89.5%.    
 
The graphical model in the physical space improved the 
accuracy by 10 percentage points over the random forest 
classifier (see Figure 2 for illustration). The approach does 
not seem to be as effective in the feature space, probably 
because the cells which are mislabeled by the random forest 
already have atypical features for their class. Linking these 
cells with cells which have similar features does not help in 
updating labels. 
 
The graphical model built in the physical space mimics the 
situation of a tissue composed of different cell types which 
are organized in such a way that similar cells are close to 
each other to fulfill their function. Several variations can be 
tested to build the graph, for example by linking only cells 
which have the same cell type in a tissue or considering only 
touching cells. 
 



 
Figure 2. Illustration of graphical model updating for an 
image stained for ER. The first panel shows the output of 
the random forest where the red regions represent cells 
correctly assigned the ER pattern, while the blue and gray 
regions represent cells misclassified as lysosomes and 
tubulin, respectively. The propagation of the class 
probabilities along the edges of the graph (middle panel) 
modifies the labels to give the correct labeling (right panel).  
 
The approach described here can easily be extended to the 
study of 3D tissues by building the graph using distance in 
three-dimensional physical space without changing anything 
else. 
 

8. CONCLUSION 
 
This work illustrates a new application of graphical models 
for the determination of subcellular protein patterns in real 
tissue from fluorescence confocal microscopy images. It 
shows a significant improvement over a random forest 
classifier allowing an 99.57% accuracy in distinguishing 9 
major subcellular patterns. This work also provides a 
complete collection of 3D fluorescent images of artificial 
tissue with 3 channels, DNA, actin and immunostained 
protein which represent the major subcellular compartments. 
The dataset and code used in this paper are available from 
http://murphylab.web.cmu.edu/software.  
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Table 2. Confusion matrices of classes assigned by the computer (columns) versus the true pattern (rows). The first number corresponds to 
the accuracy of the random forest classifier (overall accuracy=89.24%) and the second number represents the accuracy of the graphical 
model (overall accuracy=99.57%). 

 Nucleus ER Golgi Lysosomes Mito. Nucleoli Actin Endosomes Tubulin 

Nucleus 100/100 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

ER 0/0 90.34/99.1 0.91/0 0.27/0 2.73/0.18 0.27/0 0.09/0 5.01/0.73 0.36/0 

Golgi 0/0 1.21/0.23 83.28/99.77 2.19/0 2.65/0 0.08/0 .38/0 7.87/0.23 2.34/0 

Lysosome 0/0 .61/0.21 4.27/0.31 87.69/99.08 2.54/0 0.20/0 0.20/0 2.75/0.10 1.73/0.51 

Mitocho. 0/0 0.88/0 1.77/0 2.74/0 87.62/99.20 0.27/0 0.27/0 5.39/0.27 1.06/0.53 

Nucleoli 0.21/0 0.32/0 0.85/0 0.32/0 0.53/0 94.03/100 0.21/0 1.60/0 1.92/0 

Actin 0/0 1.41/0.19 0.56/0 0/0 0.19/0 0/0 96.43/99.81 0.66/0 0.75/0 

Endosomes 0/0 2.43/0 4.35/0 0.64/0 3.57/0.07 0.21/0 0.93/0 87.23/99.93 0.64/0 

Tubulin 0.18/0 3.91/0 6.41/0 1.60/0 0.53/0 1.78/0.71 3.20/0 5.87/0 76.51/99.29 


