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ABSTRACT

Motivation: Image analysis, machine learning and statistical
modeling have become well established for the automatic recognition
and comparison of the subcellular locations of proteins in microscope
images. By using a comprehensive set of features describing static
images, major subcellular patterns can be distinguished with near
perfect accuracy. We now extend this work to time series images,
which contain both spatial and temporal information. The goal is to
use temporal features to improve recognition of protein patterns that
are not fully distinguishable by their static features alone.
Results: We have adopted and designed five sets of features for
capturing temporal behavior in 2D time series images, based on
object tracking, temporal texture, normal flow, Fourier transforms
and autoregression. Classification accuracy on an image collection
for 12 fluorescently tagged proteins was increased when temporal
features were used in addition to static features. Temporal texture,
normal flow and Fourier transform features were most effective at
increasing classification accuracy. We therefore extended these three
feature sets to 3D time series images, but observed no significant
improvement over results for 2D images. The methods for 2D and 3D
temporal pattern analysis do not require segmentation of images into
single cell regions, and are suitable for automated high-throughput
microscopy applications.
Availability: Images, source code and results will be available upon
publication at http://murphylab.web.cmu.edu/software
Contact: murphy@cmu.edu

Received on November 20, 2009; revised on April 3, 2010; accepted
on April 27, 2010

1 INTRODUCTION
Subcellular distribution is an important characteristic of a protein
because location is intimately related to its function. The most
common method used to find a protein’s subcellular location is to
fluorescently tag the protein, take images by microscopy and then
visually analyze the images. Previous work has shown that automatic
image analysis can outperform visual examination, providing higher

∗To whom correspondence should be addressed.

sensitivity to subtle differences (Murphy et al., 2003). Proteins from
major subcellular locations can be differentiated from each other
with over 90% accuracy (Huang and Murphy, 2004). However,
previous work has been done using static images and the challenge
now is to extend these approaches to time series images that better
reflect protein behavior in living cells. One objective is to distinguish
proteins that have similar static but different temporal patterns. This
is of obvious biological importance since many proteins change their
location over time in order to carry out their functions. For example,
helicases localize to the nucleus during the G1 phase of the cell cycle
to repair endogenous DNA damage, and exit the nucleus during
S phase (Gu, 2004).

For automated analysis of protein subcellular locations, machine
learning tools for classification and clustering are well established
(Glory and Murphy, 2007). A key component is feature design: good
features are numerical representations of the patterns that capture
the differences between classes or clusters. The goal for temporal
pattern analysis is therefore to design good features from time series
images that distinguish different protein movements.

Automated analysis of biological time series images has received
significant attention in recent years, but most movies are of
low resolution at the organ or cell level (Liebling et al., 2006;
Souvenir et al., 2008), and only a few deal with high resolution
microscopy images that record protein movement within a single cell
(Danuser and Waterman-Storer, 2006; Sigal et al., 2006; Zhou et al.,
2009). We have carefully studied applicable theories and algorithms
from the computer vision field and adopted/designed five sets of
temporal features for application to subcellular pattern analysis for
microscopy images.

The first, and perhaps most straightforward, approach to
characterizing temporal behavior is to track individual objects in
a cell and calculate features to describe these tracks. For example,
speed, the most common numerical description of movement,
requires measuring the total distance the object travels along its
way. However, some proteins do not form rigid objects and it is
therefore unclear what the targets for tracking should be. The best
example is cytoplasmic proteins: even when they show changing
fluorescence distributions, there is typically no easily characterized
movement of objects. Such ‘complex and nonrigid’ motion that has
statistical regularity was defined as ‘temporal texture’ (Nelson and
Polana, 1992). In that work, the normal flow on each pixel was used
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to represent movement along the image gradient and compared to
uniform direction flow. The concept of ‘temporal texture’ has also
been applied to adapt Haralick texture features for static images
to movies (Bouthemy and Fablet, 1998) or to develop a series of
features based on temporal slices (Ngo et al., 2002). We therefore
chose co-occurrence based temporal texture features (Hu et al.,
2006) and normal flow features as our second and third temporal
feature sets. To design other temporal features without defining an
entity for tracking, we have also explored image intensity changes
in the frequency domain (Fourier transform features) and analyzed
static feature changes over time (autoregression features).

We evaluated the ability of these feature types to improve our
ability to discriminate protein patterns in a collection of 4D images
(three spatial dimensions over time) for 12 cell lines expressing
fluorescently tagged proteins.

2 METHODS

2.1 Image acquisition
NIH 3T3 cell lines previously generated as part of a proteome-scale tagging
project were used in this study (Chen et al., 2003; Garcia Osuna et al.,
2007; Jarvik et al., 2002). In each cell line, a particular protein is tagged
by CD tagging (Jarvik et al., 1996) which introduces a green fluorescent
protein (GFP) tag into the gene coding for the protein using self-inactivating
retroviral vectors.

Cells were plated on glass-bottomed culture dishes in Dulbecco’s modified
Eagle’s media. After 48 h, the media were changed to Opti-MEM to avoid
the interference by phenol red and provide pH stability. Three-dimensional
movies of GFP tagged proteins in 3T3 cells were taken by a spinning disk
confocal microscope. The imaging system consists of a LaserPhysics Reliant
100 s 488 Argon laser, a Yokogawa CSU10 Confocal Scanner Unit and an
Olympus IX50 microscope with a 60× 1.4NA objective. Images (1280×
1024) were collected with a Roper Scientific/Photometrics CoolSnap HQ
Cooled CCD camera, with a final resolution of 0.11 microns per pixel in the
sample plane. A stack of 15 images was collected using a 3 s exposure time
and a spacing of 0.5 µ between slices. Stacks were taken every 45 s, with
the total period of time for each movie varying depending on the extent of
fluorescence photobleaching. Before starting acquisition for each field, the
focus was manually adjusted using the GFP fluorescence channel to ensure
that cells were centered in the stack.

Time series images were taken for 12 cell lines, each having a
different protein labeled with GFP. The proteins (genes) were as follows:
cytochrome b-5 reductase (dia1) and annexin A5 (anxa5) in cytoplasm,
serum deprivation response protein (sdpr) in vesicles and cytoplasm, adipose
differentiation-related protein (adfp) in vesicles, ADP-ATP translocase
23 (timm23), ATP synthase (atp5a1) and mitochondrial stress-70 protein
(hspa9a) in mitochondria, catalase (cat) in mitochondria and vesicles, glucose
transporter 1 (glut1) in plasma membrane and t-complex testis expressed 1
(tctex1), alpha-actinin-4 (actn4), caldesmon 1 (cald1) in cytoskeleton.
Figure 1 illustrates their 2D static patterns and Figure 2 shows a sample
movie for ATP synthase. The full movies are available as described in the
Abstract.

2.2 Image preprocessing
Background fluorescence was removed by subtracting the most common
pixel value in the image. This was based on the assumption that an image
contains more pixels outside the cell than inside it and that background is
roughly uniform, both of which hold true for our images. Then a threshold
was chosen by an automated method (Ridler and Calvard, 1978), and pixels
below the threshold were set to zero. For simplicity, thresholded images
were used to calculate all features, although thresholding is not required
for calculating texture features. No segmentation was performed because no

Fig. 1. Sample fluorescence microscope images of 12 GFP-tagged proteins.
Each image is the most typical center slice at the first time point among
all 3D time series images of the protein, selected by TypIC (Markey et al.,
1999) which finds the image closest to the mean in feature space. Images
are preprocessed with background removal and thresholding. For display
purposes, only a rectangular region containing a single cell is shown.

Fig. 2. Movie of ATP synthase. The first 8 center slices across 315 s are
shown. Images are preprocessed by background removal, thresholding and
photobleaching correction. For display purposes, only a rectangular region
containing a single cell is shown.

nuclear channel image was available to provide a reference for automatic
segmentation algorithms.

A major problem with time series images is that photobleaching can occur
over time. To minimize the influence of photobleaching, pixel intensities of
images at each time point were stretched so that the 95% quantile (and above)
was set equal to 256. We chose to stretch the 95% quantile instead of the
brightest pixel, because this is less sensitive to noise from artifacts such as
fluorescent debris. Figure 3 illustrates the extent of bleaching and correction.
The original intensity (dotted line) dropped to 50% after 10 time points.
After photobleaching correction, the total intensity (solid line) at the 10th
time point is about 80% of the original. Although the correction cannot fully
restore the total intensity, it largely reduces the influence of photobleaching.
The other advantage of stretching the intensity to a fixed maximum for all
proteins is that effect of protein abundance or brightness of images is largely
removed.

1631

 at F
akultaetsbibliothek B

iologie II+
III on June 19, 2010 

http://bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org


[17:24 3/6/2010 Bioinformatics-btq239.tex] Page: 1632 1630–1636

Y.Hu et al.

Fig. 3. Comparison of total pixel intensity changes with (solid line) versus
without (dotted line) photobleaching correction. Intensities are normalized
to one at the initial time point.

2.3 2D and 3D static feature calculation
In order to set the reference for comparison, both 2D and 3D static features
were calculated. 2D Static features were calculated using the center slice
at the first time point. Twenty-one of the features from SLF21 (Huang and
Murphy, 2004) were used. They include 8 morphological (SLF21.3-SLF1.5
and SLF21.9-SLF21.13) and 13 texture features (SLF21.66-SLF21.78) that
are based on the whole image field and do not depend on cell segmentation.
Similarly, 3D static features were calculated by using the 3D image at the first
time point. Thirty-three features that also do not require cell segmentation
were chosen from SLF11 (Chen et al., 2003). They include 5 morphological,
2 edge and 26 texture features.

2.4 2D Temporal feature calculation
We collected 3D time series images, in order to have as much information
as possible on protein behavior. However, we started our exploration with
2D temporal patterns, by using the center slices over time. We used only the
first eight time points in each movie, limited by the shortest movie in our
image collection. The total period analyzed is therefore 6 min.

2.4.1 Object tracking features Calculating features based on object
tracking requires several steps. First, we identify all the objects in the image
at each time point, and then we compare and match these objects from one
image to the next. After solving the position of each object in different time
points, we have the trajectories of objects and we design features based on
these object trajectories.

Objects are defined as continuous pixels that are above threshold.
Over time, objects change their positions, shapes and total intensities.
The assumption of tracking is that although one object might change its
properties, the change is small. The similarity between an object at time
point t1 and itself in the next time point t2 is stronger than the similarity
between any other objects at t1 with this object at t2. Features are designed
to describe properties of objects and used to calculate similarities. They are
as follows:

Object center in the x coordinate (X)

Object center in the y coordinate (Y )

Object size in pixels (S)

Object total intensity (I)

The distance between the object j at time point t1 and the object k at time
point t2 is calculated by the distance of their features:√(

Xj−Xk
std(Xt1 −Xt2 )

)2
+

(
Yj−Yk

std(Yt1 −Yt2 )

)2
+

(
Sj−Sk

std(St1 −St2 )

)2
+

(
Ij−Ik

std(It1 −It2 )

)2

The distance is a normalized Euclidean distance so that features with large
values do not dominate the result. Distances were calculated between all
objects in each frame and all objects in the next frame, but object pairs that
exceeded a distance threshold of 4 were discarded.

The next step is to compare the distance between all object pairs across
neighboring images, and find the matching with the minimal sum of
distances. Assume there are N1 objects in the image at t1, and N2 objects
in the image at t2. N1 and N2 are not necessarily equal because objects can
appear or disappear due to movement. The matching is a bipartite matching or
an assignment problem: N1 people available for N2 jobs with different costs,
where each person can do only one job and each job only needs one person.
The best assignment is the one that minimizes the total cost. The naive way
to compare different matchings is to calculate total distance for all possible
matches, the computation of which is the factorial of the minimum of N1
and N2. We used the Hungarian Algorithm, a classic algorithm that reduces
the computation to complexity O((N1 + N2)3) (Kuhn, 1955).

After matching we know the position of each object in every time point
and we can build a trajectory of each object. From these, we calculated:

Speed: the distance traveled over adjacent time points, divided by the time
interval.

Velocity: the distance between an object’s position when it first appears
and its position when it disappears (or at the end of the movie), divided by
the total time. Velocity differs from speed in that it only reflects the absolute
distance that the object has traveled. If the object travels back and forth
around the same area, the speed is high but velocity is low.

Acceleration: the change of speed over adjacent time points, divided by
the time interval.

Angles between successive movements: the angle (0–180◦) between the
two directions the object travels in adjacent images.

We used the mean and variance of these four features across the time
series as the final features of the image (eight in total).

2.4.2 Temporal texture features Temporal texture features were calculated
as described previously (Hu et al., 2006). These were inspired by the Haralick
texture features, which capture the intensity correlation of neighboring pixels
in space (Haralick, 1979), and designed to capture the value correlation of
neighboring pixels in time. We build the temporal gray-level co-occurrence
matrix, whose element in row i and column j is the frequency that a pixel
with value i changes to value j in the same position at the next time
point. Co-occurrence matrices capture information of protein movement,
for example, for proteins that show no movement between the two time
points, the temporal co-occurrence matrix contains only zeros except on the
diagonal.

We calculated 13 statistics described by Haralick (Haralick, 1979) based
on the co-occurrence matrix for each pair of images separated by a certain
time interval. We used the mean and variance across the time series as
the final features of the image. By varying the time interval, we collected
130 features in total: means and variances of the 13 statistics for images
45, 90, 135, 180 and 225 s apart.

2.4.3 Normal flow features In a series of images taken over time, the
intensity of each pixel in each image I (x, y, t) is a function of position x, y
and time t. To understand the movement, we need to infer from the observed
I (x, y, t), the direction and velocity of each pixel. We use u to represent
the vector of movement in the x direction and v to represent the vector of
movement in the y direction.

u = dx/dt and v = dy/dt

Optical flow is a motion field with vectors (u, v) at each pixel. From the
definition, we know (u, v) is pointing to the direction that the pixel moves
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and the length of the vector is the speed. Let us consider a pixel I (x, y, t−1)
that moves to a new position at t. We here assume that the brightness of this
pixel does not change:

I(x,y,t−1) = I(x +u(x,y),y + v(x,y),t)

We further assume that the movement is not large. So the right-hand side
formula can be approximated with first order:

I(x,y,t−1)≈ I(x,y,t)+u(x,y)
∂I

∂x
+v(x,y)

∂I

∂y

Rearranging the equation we have:

u(x,y) ∂I
∂x +v(x,y) ∂I

∂y +[I(x,y,t)−I(x,y,t−1)]=0

uIx +vIy +It =0

This is the fundamental equation of motion. Ix and Iy are the components
of the gradient, which, together with the difference of the intensity It , can
be directly calculated from the two images. However we are left with one
equation with two unknowns (u and v). This is the aperture problem: motion
along the edge or perpendicular to the gradient can never be recovered.
Meanwhile the motion (u, v) along the gradient can be calculated:

u= −It Ix

I2
x +I2

y
, v= −It Iy

I2
x +I2

y

and the speed of a pixel along the gradient is

Un = It√
I2
x +I2

y

The flow field containing flows at the gradient direction is called normal
flow. Using it, the following 34 features were calculated:

1–13 Haralick texture features of Un
14 Mean of Un
15 SD of Un
16 Mean/SD of Un
17–29 Haralick texture features of binned direction
30 Difference of direction from uniform distribution
31 Mean positive divergence
32 Mean negative divergence
33 Mean positive curl angular velocity
34 Mean negative curl angular velocity

For the texture features of direction, directions were binned into eight
groups. We used 1–8 to represent vectors within the range of 0–44◦, 45–
89◦, 90–134◦, 135–179◦, 180–224◦, 225–269◦, 270–314◦ and 315–360◦,
respectively. Divergence and curl angular velocity are defined as:

div= ∂u

∂x
+ ∂v

∂y
cav= ∂v

∂x
− ∂u

∂y

These 34 features were then computed across all images separated by a
specific interval, and the mean and variance across the series were used as
the final features. This process was carried out for spacing of 45 s (adjacent
time points), 90 s (every other time point), 135 s, 180 s and 225 s. The result
is 34*2*5 = 340 features in total.

2.4.4 Fourier transform features The Fourier analysis is the classic
approach to studying signal changes over time. Studying signals in the
frequency domain is commonly used because of its convenience for signal
processing: complicated convolution in the spatial domain is just simple
multiplication in the frequency domain. The Fourier transform returns a
spectrum where each coefficient corresponds to the strength of a specific
frequency in the input signal.

To calculate the Fourier transform features for time series images, each
pixel at the same position over time for the first eight time points was
considered as one time series signal. The first five Fourier coefficients were

collected and eight basic statistics of each coefficient over the whole image
were calculated as the final temporal features (40 in total).

1 5% percentile of non-zero coefficients
2 25% percentile of non-zero coefficients
3 50% percentile of non-zero coefficients
4 75% percentile of non-zero coefficients
5 95% percentile of non-zero coefficients
6 Mean of non-zero coefficients
7 SD of non-zero coefficients
8 Mean/SD of non-zero coefficients

2.4.5 Autoregression features Three properties that define temporal
texture have been described: ‘complex and nonrigid’, ‘indeterminate spatial
and temporal extent’ and ‘statistical regularity’ (Nelson and Polana, 1992). A
direct way to calculate statistical regularity is to compute the characteristics
of images over time and build a regression model. A linear spatiotemporal
autoregressive model based on pixel intensities has been used to recognize
and build temporal textures (Szumme and Picard, 1996). Instead of modeling
pixel value changes, we chose to model the features of static images over
time. There are several advantages of doing this: features are less affected by
noise in pixel values, the feature vector (21) is much shorter than the number
of pixels (1280*1024), and combined with our understanding of the static
features, the nature of the motion can be better appreciated.

An autoregressive (AR) model depends only on the previous outputs of
the system. The following equation describes a linear AR model for feature
X at time t as a function of feature X at earlier time points:

Xt =c+
P∑

i=1

ϕiXt−i +εt

where c is a constant, P controls how many time points in the past are used
in modeling and ε is estimation error. The ψi are the parameters we seek to
estimate.

We choose to vary P-values from 2 to 4, yielding 2, 3 and 4 ψ values. AR
was done on each of the 21 2D static features, resulting in (2 + 3 + 4)*21 = 189
features.

2.5 3D temporal feature calculation
We expanded the three sets of 2D temporal features to 3D temporal features.
Again, only the first 8 time points in each movie were used.

3D temporal texture features were calculated in a similar way as for
2D, except voxels instead of pixels were used when building co-occurence
matrices. A total of 130 features that are based on mean and variance of 13
statistics for five different time intervals, the same as for 2D temporal texture
features, were calculated.

3D normal flow features are defined similarly to 2D. Normal flow on x, y
and z directions can be calculated with the following equations:

u= −It Ix

I2
x +I2

y +I2
z

v= −It Iy

I2
x +I2

y +I2
z

w= −It Iz

I2
x +I2

y +I2
z

where It is the voxel intensity difference across time points and Ix , Iy and Iz

are the gradient projected on the x ,y and z directions. The speed of a voxel
along the gradient is

Un = It√
I2
x +I2

y +I2
z

Thirty-three normal flow features were calculated for each pair of 3D images,
16 of which are based on Un, 13 based on Haralick texture features of binned
directions and 4 based on divergence and curl (extending the definitions
above to three dimensions). A total of 330 features, including mean and
variance of features for five different time intervals, were calculated,
similarly to the 2D normal flow features.

3D Fourier transform features were calculated similar as in 2D, except
that voxels at the same position over time were considered as one time
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series signal. Total of 40 features including 8 statistics of 5 coefficients,
same as 2D, were calculated.

2.6 Feature selection
The large numbers of features described above could potentially overwhelm
the ability of a classifier to identify meaningful decision boundaries.
Therefore, we used stepwise discriminant analysis (SDA) to select the
features that have the greatest power to discriminate the classes. While many
feature selection methods have been described, SDA has performed well in
previous studies of subcellular pattern classification (Huang et al., 2003).

2.7 Supervised learning (Classification)
A well established SVM package LIBSVM (Chang and Lin, 2001) was used
for classification. LIBSVM uses the pair-wise algorithm to classify multiple
classes and it has support for choosing optimal parameters. Ten-fold cross-
validation was used to evaluate the classification accuracy: the images for
each class were randomly divided into 10 groups of equal sizes. Nine of them
were used to train a classifier and the remaining one was used for testing.
Both feature selection and parameter tuning were done on the training set:
SDA selected features were used to adjust the parameters until the classifier
reached the best accuracy within the training set. The parameters were the
radius of the radial basis function kernel (which was varied from 2−5 to 23)
and the penalty for overlap between two classes (which was varied from
2−5 to 215). After training, the features for the test images were supplied to
the classifier, and prediction was made on each image. By comparing the
prediction with the class labels of the testing set, we obtain the classification
accuracy. This process was repeated for each test fold, and the final overall
accuracy is the average accuracy from the 10 tests. Since SVM can inherently
handle a large number of correlated features without overfitting, we also
repeated each classification without SDA feature selection.

3 RESULTS
By comparing classification accuracy using individual feature sets
and combinations of them, we achieved two goals: evaluating the
power of each feature set and finding the best way of differentiating
our 12 proteins of interest. Three-dimensional time series images are
4D images. Feature sets we have acquired are based on 2D (2D static
features of first center slice), 3D across z (3D static features), 3D
across time (2D temporal features of center slices) and 4D images
(3D temporal features).

3.1 Classification using 2D static features
To set a reference for comparison, classification results of proteins
in 3T3 cells were obtained using 21 2D static features. The overall
accuracy was 63% with SDA feature selection and 66% without
SDA. The confusion matrix without SDA is shown in Table 1. We
can see that Cald1 has the lowest classification accuracy (25%).

3.2 Classification using 2D temporal feature sets
To evaluate each temporal feature set, we trained classifiers using it
with and without the static feature set. When object tracking features
were combined with the 2D static features, the average classification
accuracies were 61 and 68%, with or without SDA, showing a very
small improvement over static pattern classification.

From previous work we know when calculating static Haralick
texture features, one can change the gray level or resize the
image to different resolution and get different classification results
(Murphy et al., 2003). Since the same effect would be expected
in the temporal domain, we evaluated temporal texture features
calculated using different pixel sizes and numbers of gray levels.
Classification accuracies are summarized in Table 2. Accuracies
fall within the range of 52–71% with SDA feature selection and
66–77% without SDA. The best accuracy of 77% was obtained for
64 gray levels and no downsampling. Apparently, accuracy is higher
without SDA, and SVM inherently handled redundancy of features.
To further test the power of temporal texture features, the same
classification procedure was done without static features. The overall

Table 2. Summary of classification accuracy of 21 static combined with
130 temporal texture features, with different gray level and resolution

Resolution (micron/pixel) Gray level

16 64 256

0.11 64, 77 71, 77 70, 76
0.22 68, 70 63, 70 67, 68
0.66 64, 67 58, 69 52, 69
1.1 66, 67 62, 70 64, 66

The number before comma is the accuracy in percentage with SDA feature selection,
and the number after comma is the accuracy in percentage without SDA.

Table 1. Confusion matrix for classification using only 2D static features

True classes Prediction by classification

Dia1 Anxa5 Sdpr Adfp Timm23 Atp5a1 Hspa9a Cat Glut1 Tctex1 Actn4 Cald1

Dia1 45 0 35 5 5 0 5 0 5 0 0 0
Anxa5 5 61 0 0 0 0 0 0 0 0 33 0
Sdpr 26 4 56 0 4 0 0 0 0 0 8 0
Adfp 0 1 0 90 1 1 0 3 0 0 0 0
Timm23 2 2 2 2 72 0 0 12 2 0 2 0
Atp5a1 10 0 5 0 0 65 10 0 0 0 0 10
Hspa9a 4 0 0 4 8 4 70 0 0 0 8 0
Cat 0 0 0 0 43 6 6 37 6 0 0 0
Glut1 0 0 5 11 11 11 0 5 52 0 0 0
Tctex1 0 6 0 0 0 0 0 0 0 93 0 0
Actn4 0 20 3 3 0 0 3 0 0 3 58 6
Cald1 0 0 0 0 6 12 12 0 0 6 37 25

The overall accuracy is 66%.
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Table 3. Confusion matrix for the best classification accuracy of 12 protein patterns

True classes Prediction by classification

Dia1 Anxa5 Sdpr Adfp Timm23 Atp5a1 Hspa9a Cat Glut1 Tctex1 Actn4 Cald1

Dia1 60 0 15 0 5 10 5 0 5 0 0 0
Anxa5 0 83 0 0 0 0 0 0 0 0 16 0
Sdpr 4 0 95 0 0 0 0 0 0 0 0 0
Adfp 0 0 0 96 0 1 0 0 0 0 1 0
Timm23 0 0 0 2 65 0 7 12 12 0 0 0
Atp5a1 10 0 5 10 0 75 0 0 0 0 0 0
Hspa9a 0 0 4 0 12 0 79 0 0 0 4 0
Cat 0 0 0 6 50 6 0 37 0 0 0 0
Glut1 11 0 0 0 11 11 0 0 64 0 0 0
Tctex1 0 0 0 0 0 0 0 0 0 100 0 0
Actn4 0 6 0 3 0 0 0 0 0 0 82 6
Cald1 0 0 0 0 0 0 6 0 0 6 31 56

Features used are 2D static, temporal texture, normal flow and Fourier transform features. The overall accuracy is 78%.

classification accuracy was 67% with SDA and 66% without SDA.
The results show that temporal texture features themselves capture
a significant amount of information.

We next evaluated the normal flow features. Three hundred
and forty normal flow features were combined with the 2D static
features. Since the normal flow features include texture features
calculated on Un and the normal flow direction, a similar exploration
of number of gray levels and resolution was done. Classification
accuracy ranged from 66% to 75% with SDA and 59% to 73%
without SDA (data not shown). The best accuracy of 75% was
achieved with the original resolution (0.11 µm/pixel) and 64 gray
levels, with SDA. When the same classification procedure was done
without static features, the overall classification accuracy was 75%
with SDA and 74% without SDA. This indicates that these features
were more informative than temporal texture features.

When 40 Fourier transform features were combined with the static
features, the overall classification accuracy was 69% with SDA and
67% without SDA, a slight increase over using static features alone
(data not shown). When using Fourier transform features only, the
overall accuracy was 60 and 57% with and without SDA (data not
shown).

We next combined 189 autoregression features with the static
features. The overall classification accuracy was 59% with SDA
and 48% without SDA (data not shown). These are both lower than
using static features alone.

From this analysis of each temporal feature set, we found
that temporal texture features, normal flow features and Fourier
transform features are capable of increasing classification accuracy.
We combined these 3 sets of temporal features to search for the
best way to differentiate the 12 proteins in 2D time series images.
If combined with 2D static features, the overall accuracy is 75%
with SDA and 78% without SDA. With temporal features only, very
good classification accuracy of 73 and 77% (with and without SDA)
can be achieved, proving again the power of the temporal features.
The confusion matrix of the best classification is shown in Table 3.
Comparing the results with Table 1, the overall accuracy is 12%
higher than using just 2D static features. Tctex1 was now classified
perfectly. The lowest accuracy of 25% for cald was increased to
56%, and accuracy for Sdpr increased from 56% to 95%. Two
other proteins, Anxa5 and Actn4, also have over 20% improvement

in accuracy. While the accuracy with SDA selection was lower
than without, it is interesting to note that SDA selected 7 static,
15 temporal texture, 13 normal flow and 4 Fourier transform
features, from the total of 531 features. This suggests that all of
these feature types provide useful information.

3.3 Classification using 3D static features
Static features based on 3D images capture information of images
with one more dimension than 2D images. Since we were not able to
perform automatic segmentation due to lack of nuclear channel, we
selected those features that do not compare to center of cells, thus
do not require segmentation. Classification accuracy using 33 field
level 3D static features was 74% with SDA, and 71% without SDA.
It is 6% higher than using 2D static features and 4% lower than using
combined 2D static and temporal features. When 3D static and 2D
static features were combined, classification accuracy was 73 and
70%, with and without SDA. As might be expected, the 3D features
apparently contain all of the information in the 2D features, and
adding redundant 2D static features only made classifier learning
more difficult.

3.4 Classification using 3D temporal feature set
Similar to the way we tested 2D temporal features, we combined 3D
temporal features with 3D static features to see if the classification
accuracy was improved. The result is disappointing. Classification
accuracies with or without SDA for 3D temporal textures were 74
and 75%, for 3D normal flow were 71 and 72% and for 3D Fourier
transform were 73 and 71%. Only 3D temporal texture features,
combined with 3D static features, performed slightly better than
using 3D static features alone. None of the accuracies were higher
than the accuracy we achieved combining 2D temporal features with
2D static features. It appears that calculating features over the full
3D images diluted the critical information in the central slices.

4 CONCLUSION AND DISCUSSIONS
Location proteomics as a branch of proteomics study has grown over
the last 10 years. To systematically analyze large amounts of data,
automatic algorithms have been developed. This article presented
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our effort to extend the analysis of static patterns with an additional
dimension: the temporal domain. Time series microscopy image of
12 proteins were collected, 5 sets of 2D temporal features and 3 sets
of 3D temporal features were implemented and classifications were
performed to validate their usefulness. The best 2D temporal feature
sets, in the order of their ability to improve classification accuracy,
were normal flow, temporal texture and Fourier transform features.
Combining 2D static features with 3 sets of 2D temporal feature
sets gave the best accuracy of 78%, compared with 66% for static
features alone. Accuracy using 3D static and/or temporal features
was lower than for 2D features.

If limited acquisition time requires deciding whether to collect
3D static images or 2D time series images, our results suggest that
2D time series images have higher potential of delivering better
differentiation.Although not all of the 2D or 3D temporal feature sets
improved classification accuracy for our dataset, we still presented
them here because they may be useful for future datasets.

While each protein in a proteome is unique, its location patterns
might not be. Thus while increasing accuracy of distinguishing
the 12 proteins is an indication of feature value, the ability to
distinguish them all perfectly is not expected. If proteins interact
or colocalize with each other, they cannot be differentiated either by
static or temporal pattern. In our dataset, alpha-actinin-4 (actn4) and
caldesmon 1 (cald1) both bind to actin, and over 30% of caldesmon
1 is misclassified as alpha-actinin-4. These two proteins are always
observed in the same cluster using cluster analysis (data not shown).
Similarly, ADP-ATP translocase 23 (timm23) and catalase (cat),
which have both been described as mitochondrial proteins, are
difficult to distinguish (50% of catalase is misclassified as ADP-
ATP translocase 23). The results suggest that there are only 10
distinguishable patterns in our 12 protein set, and this agrees with
prior knowledge about these proteins.

For each classification, we compared accuracy with or without
SDA feature selection, because SVM is known to be highly robust
with large number of correlated features. Our result shows when the
number of features is large, 340 normal flow and 189 autoregression,
SDA outperforms no feature selection. When the number of features
is small, 21 static and 130 temporal textures, SVM does well without
SDA feature selection. Many different feature selection algorithms
and classifiers could be tried in order to achieve higher classification
accuracy, but such an analysis is beyond the scope of this study.

Since temporal texture features and Fourier transform features
can be calculated within 25 and 50 s for each time series, they are
readily applicable to many high throughput applications. On the
other hand, calculating normal flow features, object tracking features
and autoregression features take 8, 22 and 2 min per time series,
respectively.

Given the dramatic increase in automated microscopy over the
past decade, we anticipate that methods for analyzing temporal
changes in protein patterns such as those we have described here will
be of significant utility both for basic research in systems biology
and for drug screening and development purposes.
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