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� Abstract
To build more accurate models of cells and tissues, the ability to incorporate information
on the distributions of proteins (and other macromolecules) will become increasingly im-
portant. This review describes current progress towards determining and representing
protein subcellular patterns so that the information can be used as part of systems biol-
ogy efforts. Approaches to decomposing an image of the subcellular pattern of a protein
give critical information about the fraction of that protein in each of a number of funda-
mental patterns (e.g., organelles). Methods for learning generative models from images
provide a means of capturing the essential properties and variation in those properties of
cell shape and organelle patterns. The combination of models of fundamental patterns
and vectors specifying the fraction of a protein in each of them provide a much better
means of communicating subcellular patterns than the descriptive terms that are cur-
rently used. Communicating information about subcellular patterns is important not
only for systems biology simulations but also for representing results from microscopy
experiments, including high content screening and imaging flow cytometry, in a trans-
portable and generalizable manner. ' 2010 International Society for Advancement of Cytometry
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STRUCTURED information on subcellular location in protein databases, such as

Uniprot (1), currently consists only of terms from a restricted vocabulary. These are

usually drawn from the Cellular Component portion of the Gene Ontology (GO)

(2). The guiding principle behind this approach is that each protein can be assigned

to one, or at most a few distinct subcellular structures whose names are given in the

ontology. Assignments may be based on experimental determinations, unsupported

assertions in articles, or predictions based on sequence analysis. Some databases,

such as LOCATE (3), provide links to articles describing experimental evidence for a

given assignment. Most protein databases have at least some GO terms associated

with most proteins.

There are three major considerations that currently limit incorporation of infor-

mation on protein subcellular distributions into spatially realistic cell simulations.

The first is the need for accurate models of the structure (and variation in structure)

of each subcellular component. The second is the need for information on the distri-

bution of proteins across different components. The third is the need for information

on how protein locations change between different conditions or cell types. This

review summarizes progress towards addressing these goals through direct analysis of

images. The various approaches are depicted for reference in Figure 1.

A word on the terminology used here. The terms subcellular component or struc-

ture are used below rather than organelle since the latter term usually implies the pre-

sence of a limiting membrane and many distinguishable components are not mem-

brane bound. Furthermore, a component is considered to be a collective noun, namely,

that it can consist of more than one distinct element or object within a given cell.

The discussion below is intended to capture the current state of a field that is in

its infancy and hopefully to stimulate the extensive further work that is needed.

1Lane Center for Computational Biology
and Department of Biological Sciences,
Carnegie Mellon University, Pittsburgh,
Pennsylvania
2School of Life Sciences, Freiburg
Institute for Advanced Studies, Albert
Ludwig University of Freiburg, Freiburg
im Breisgau, Germany

Received 19 May 2010; Accepted 24 May
2010

Grant sponsor: National Institutes of
Health; Grant numbers: R01 GM068845,
R01 GM075205; Grant sponsor: National
Science Foundation; Grant number:
EF-0331657.

*Correspondence to: Robert F. Murphy,
Carnegie Mellon University, 5000 Forbes
Ave, Pittsburgh, Pennsylvania-15213,
U.S.A

Email: murphy@cmu.edu

Published online 15 June 2010 in Wiley
InterScience (www.interscience.
wiley.com)

DOI: 10.1002/cyto.a.20933

© 2010 International Society for
Advancement of Cytometry

Review Article

Cytometry Part A � 77A: 686�692, 2010



PROTEIN DISTRIBUTIONS ACROSS

SUBCELLULAR COMPONENTS

Boolean Vectors: Gene Ontology Terms

and Classifiers

Assignments of GO terms can be represented as a Bool-

ean vector describing whether or not a particular protein is

found in each subcellular component (which we can also think

of as fundamental patterns). For example, if only the compo-

nents plasma membrane, endosome, lysosome, Golgi appara-

tus, endoplasmic reticulum, cytoplasm, and nucleus were

being considered, [0,1,0,1,0,0,0] would represent a protein

present in both endosomes and the Golgi apparatus.

Given that a number of proteins change their distribution

between components, and that such changes can play an im-

portant role in cell behavior, simply identifying which compo-

nents a protein is (or may be) contained in is not sufficient for

understanding the characteristics and function of that protein.

Of course, the primary reason for using Boolean vectors to

represent subcellular location is that in most cases the specific

distribution of a protein across components is not known.

Boolean vector representations are frequently used in systems

that attempt to predict subcellular location from sequence

(4,5). In principle, a different vector could be used for each

protein for different cell or tissue types, for different condi-

tions, or for different time points within the cell cycle. Very lit-

tle information on such differences is available, and it is rarely

captured in databases.

Fractional Distributions: Pattern Unmixing

Ideally, the subcellular distribution of a protein could be

represented as a vector containing the fraction of that protein

that is found in each distinguishable component or funda-

mental pattern. These fractions must sum to one. Thus, the

example Boolean vector given above would be represented as

[0, 0.5, 0, 0.5, 0, 0, 0] if the protein were equally distributed

between endosomes and Golgi, but [0, 0.2, 0, 0.8, 0, 0, 0] if it

was only 20% in endosomes. This approach well represents

cases where a protein is in equilibrium between a soluble cyto-

plasmic form and a form bound to a cytoskeletal structure

(like a microtubule) or a membrane compartment (like an

endosome). It also can easily represent more complex cases,

like a protein that traffics between the endoplasmic reticulum

and Golgi via transport vesicles. In this case, transport vesicles

would best be considered as a distinct component (especially

if the fraction of the protein in them is large), but considering

them to be part of the source or destination component may

be an acceptable approximation.

As with Boolean vectors, a different fractional distribu-

tion could be used for each cell type, condition or cell cycle

stage. The important question becomes how these fractional

distributions can be determined. Recent work addresses this

issue for microscope images of fluorescently tagged proteins

(see Fig. 1a, lower path). Only determinations for images of a

single cell type and condition are considered in this section.

Supervised Pattern Unmixing

As mentioned above, many, if not most, subcellular com-

ponents can be viewed as consisting of distinct elements or

objects. These objects may all be quite similar to each other

(such as is the case for peroxisomes in many cells), or they

may be of two or more distinguishable types. (As with any

categorization, this distinction may break down if the objects

form a continuum spanning two or more types.) We have

therefore previously described a three step process for testing

how well subcellular components could be represented using

objects (6). This consists of first learning the object types from

a set of training images, learning to recognize those object types

in new (test) images, and then counting the number of each

object type present in each test cell. Representing each cell in

this way enabled all eight major subcellular components in our

3D HeLa collection to be distinguished with good accuracy (6).

The finding that components can be well represented as a

distribution over object types suggested that the distribution

of a protein over more than one component can be repre-

Figure 1. Overview of approaches to communicating subcellular

distributions. (a) When examples are available of each of the pat-

terns expected to be present, supervised approaches can be used.

The top path shows a traditional classification approach: the

example images are used to train a classifier and then the image

to be analyzed is assigned to one of the classes. The lower path

illustrates representing the image by a vector showing the frac-

tion of each of the classes it contains. (b) When a large collection

is available, unsupervised unmixing can find the fundamental pat-

terns that they contain and a vector of pattern fractions for each

image. Models of each of the fundamental patterns can then be

built for each of the fundamental patterns. Synthetic images can

be created using the models and vectors (not shown). [Color fig-

ure can be viewed in the online issue, which is available at

www.interscience.wiley.com]
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sented as a linear combination of distributions of object types.

More formally, we can define

y ¼
Xm

i¼1

aif i

where fi is a vector of length k containing the number of

objects of each type for component i, ai is the fraction of pro-

tein in component (fundamental pattern) i, m is the number

of components, and y is a vector of length k containing the

number of objects of each type in the mixture. Alternatively, fi
and y can be defined as the amount of fluorescence in each

object type rather than the number of objects.

Given for each component, a set of images for proteins

that are solely found in that component (images of the fun-

damental patterns), we can directly learn k and fi using the

three step process described above and averaging over many

images. Then, for any image that might contain a mixture

of components, we can measure y and use various estima-

tion methods to learn a vector a containing the ai [for

details on unmixing methods see references (6,7)]. This

approach was initially tested using the 3D HeLa collection

by creating synthetic images with various randomly chosen

values of a for eight different components (m 5 8). An aver-

age agreement of 83% was observed between the values esti-

mated for these synthetic images and the values used to

synthesize them (6).

While encouraging, this test on synthetic images did not

address potential problems that could be encountered with

real images of mixed patterns. To test the method on a set of

real images required a collection of images containing mixed

patterns but where the mixing fractions were at least approxi-

mately known. Such as collection was created by Ghislain

Bonamy, Sumit Chanda, and Dan Rines at the Genomics

Institute of the Novartis Foundation using two fluorescent

probes that localize primarily to different organelles. Auto-

mated microscopy was used to collect a large number of

images for a multiwell plate stained with varying combina-

tions of Mitotracker green and Lysotracker green (including

wells containing each probe separately). Our group then

applied the unmixing method just described to these images

(7). An average of 93% correlation was obtained between the

fractions estimated by unmixing and those expected based

on the ratio of probes added. The method was extended to

include tests so that the system could also assign a fraction to

an ‘‘unknown’’ component that did not match the ones used

for training.

The unmixing method was further validated by applying

it to images of cells expressing GFP-tagged microtubule asso-

ciated protein LC3 in the presence of various concentrations

of Bafilomycin A1. Bafilomycin A1 is an inhibitor of the

vacuolar ATPase that causes trapping of LC2 in autophago-

somes. Using images of untreated cells and cells treated with

a high drug concentration as the ‘‘pure’’ components, the

fraction of protein in the two components was estimated for

various drug concentrations (Fig. 2). The results confirm the

utility of the method.

Unsupervised Pattern Unmixing

This unmixing method may be described as supervised

since it requires the provision in advance of images of each of

the fundamental patterns. This may be entirely feasible in

many cases, but when considering proteome-wide application

of this method it is not at all clear if all fundamental patterns

are known. One solution to this problem is to start with what

is thought to be a complete set of fundamental patterns but

add to that set if unmixing results for a particular protein sug-

gest that it contains a high fraction of unknown pattern. Alter-

natively, we can attempt an unsupervised approach in which

we attempt to learn both the set of fundamental patterns and

the unmixing fractions at the same time (8) (see Fig. 1b, upper

path).

We have used the Lysotracker/Mitotracker images to eval-

uate two approaches to this task (out of many possible). In

both cases, the entire collection of images was provided to the

algorithm without specifying the combination of probes that

they received (but specifying which images were from the

same well). The first approach was a basis pursuit method that

assumes the same linear mixing model described above. The

idea is to search for two or more wells whose object type dis-

tributions can be combined to generate all of the other wells.

The second uses a Latent Dirichlet Allocation (LDA) method

in which a process for generating mixtures is created and then

the parameters corresponding to a real mixture are estimated

from random trials. The methods must estimate the number

of components and their composition. Good results were

obtained with both methods, with the LDA method perform-

Figure 2. Application of pattern unmixing to quantify drug effects

on autophagy. Images were collected of cells expressing eGFP-

LC3 in the presence or absence of various concentrations of bafi-

lomycin A1 and used to train an unmixing model as described in

the text. The fraction of drug treated pattern as a function of con-

centration of drug was estimated using linear unmixing (squares),

multinomial unmixing (circles), and fluorescence fraction unmix-

ing (triangles). eGFP-LC3 showed a gradual relocation between

the two patterns as a function of BFA concentration. [From refer-

ence (7)].
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ing a bit better. The basis pursuit method found two compo-

nents that corresponded closely to the pure Lysotracker and

Mitotracker patterns. The LDA method found three compo-

nents, two of which corresponded well to the pure patterns

and one of which was a minor pattern consisting of new object

types created by overlaps between objects from the two pure

patterns. A correlation of 91% was observed for the LDA

method, and a comparison of estimate and expected mixing

fractions is shown in Figure 3. This correlation is even better

than for the supervised methods.

Limitations

Note that to be strictly accurate, this approach assumes

that all molecules of a given protein that are in a given struc-

ture are indistinguishable (that is, that they are randomly dis-

tributed within that structure). This is rarely the case, since

proteins may prefer to bind to specific regions on an organelle,

or a protein in equilibrium between a bound and soluble cyto-

plasmic state may be in higher concentration near its binding

partner. The unmixing methods described above do not cap-

ture such distinctions, but one can readily imagine extensions

to them that would.

MODELS OF SUBCELLULAR ORGANIZATION

Given methods for learning the fundamental patterns

and estimating how much of a given protein is associated with

each of them, we now turn to the question of how to commu-

nicate the nature of each of those patterns. At a conceptual

level, the most complete model of subcellular organization is

probably the GO Cellular Component ontology. We can ima-

gine easily associating GO terms with most (but perhaps not

all) fundamental patterns by checking which organelle mar-

kers are assigned to each. However, such a conceptual model

does not provide a spatially accurate representation of each

fundamental pattern (including how that pattern varies from

cell to cell).

To be useful for spatially realistic modeling, ontology

terms must be associated with a representation of things like

the number of objects in a component and their structure and

distribution within cells. Currently, such representations are

abstract and implicit rather than concrete and they often leave

unspecified how the organelle would look in different cell

types. For example, the abstract concept of a mitochondrion is

well understood by biologists but most would be hard pressed

to describe how mitochondria vary in number, size, shape,

and distribution from cell type to cell type or organism to

organism.

Of course, one approach is simply to represent each pat-

tern with an example image containing it. This can be

extended by representing a pattern by all (or a subsampling)

of its images. This leaves open the question of how to integrate

the information into other systems, especially when it is desir-

able to know how large numbers of patterns would look in the

same cell. We have proposed that the learning of generative

models of each pattern is a solution to this problem (9) (see

Fig. 1b, lower path). In this context, we define a model as gen-

erative if it can produce synthetic images that are by some spe-

cified criteria statistically indistinguishable from real images

used to train it.

A key issue in building generative models of cells is that

they need to contain pieces that depend on each other. For

example, synthesizing an image showing the distribution of

lysosomes is dependent on having a cell boundary within

which to place them, and the position of the cell boundary

and the nuclear boundary must be dependent on each other

so that the nucleus is inside the cell. We have chosen to

address the latter issue by starting with a model of nuclear

shape and making the cell shape model dependent (condi-

tional) on it, but the opposite approach is also feasible.

Nuclear Models

Another important issue in building models is choosing

an appropriate level of complexity with which to represent

instances (examples) of the model. For example, we can con-

sider everything from modeling all nuclei as ellipsoids (10,11)

to making a detailed tracing or mesh representation of the sur-

face of each nucleus. For building models of 2D subcellular

patterns, we considered a compromise in which 11 parameters

were used to describe a medial axis representation of each nu-

cleus. This process is illustrated in Figure 4. The advantage is

that the model is compact but still captures much of the varia-

tion in length, width, and curvature. The disadvantage is that

it cannot represent forked shapes, which were not observed in

the images of unperturbed HeLa cells used in our initial work,

but can be observed under other conditions.

To address this, we have developed an alternative, diffeo-

morphic approach to describing and modeling nuclear shape

(12–14). A related approach was first described by Yang et al

(15) for the purpose of registering nuclear images. The princi-

Figure 3. Results from unsupervised pattern unmixing. The esti-

mated fraction of each probe in a given component is plotted as

a function of the expected fraction (points for both the lysosomal

and mitochondrial components are shown together). The dotted

line shows agreement between the two fractions. [After refer-

ence (8)].
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ple is that the variation in shape among a population of nuclei

can be represented by a measure of the pairwise differences in

their shapes (12). This measure is found by determining how

much work must be done to morph one of them into the

other. The result is a square, symmetric matrix of dimensions

corresponding to the number of nuclei. Using multidimen-

sional scaling, this matrix can be converted such that each

nucleus is represented by a vector in some Euclidean space.

The higher the dimension of that space, the closer the

approach comes to perfectly capturing the original distance

matrix (it is perfect to within numerical accuracy when the

dimension equals the number of nuclei). Figure 5 shows redu-

cing the dimension to just two. Remarkably, variation along

the first dimension corresponds to nuclear elongation and var-

iation along the second dimension corresponds to bending.

This gives a very compact representation of the shape variation

in the nuclear population (12,13).

However, this approach does not directly give a means of

generating new shapes. This limitation was overcome by recur-

sively interpolating shapes at points in the shape space chosen

according to a probability density function estimated from the

original nuclei (14). This permits the diffeomorphic approach

to be used in a generative model, but requires that the original

nuclear shapes be saved along with the reduced shape space

coordinates of each and the probability density function. The

amount of storage required can be reduced by saving a smaller

Figure 4. Illustration of medial axis model fitting for nuclear shape. The original nuclear image (a) was processed into a binarized image

(b), in which the nuclear object consists of the white pixels. The nuclear object was rotated so that its major axis is vertical (c) and con-

verted into the medial axis representation (d). The horizontal positions of the medial axis as a function of the fractional distance along it

are shown by the symbols in (e), along with a B-spline fit (solid curve). The width as a function of fractional distance is shown by the sym-

bols in (f), along with the corresponding fit (solid curve). Scale bar 5 lm. [From reference (9)].

Figure 5. Plot of the first two components of the low-dimensional

representation of the nuclear shape computed by the diffeo-

morphic method discussed in the text. Each small circle corre-

sponds to one nuclear image. Images associated with specific data

points are shown on the left (diamonds) or across the bottom

(squares). Each dark square corresponds, to each image shown in

the horizontal bottom series of images. Likewise, each light triangle

corresponds to each image stacked vertically. Note that the method

separates different modes of shape variation (bending and

elongation) into separate coordinates. [From reference (12)]. [Color

figure can be viewed in the online issue, which is available at

www.interscience. wiley.com]
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number of examples (e.g., just examples at peaks in the proba-

bility density function).

We can now consider a single generative framework for

storing models of nuclei and other cell components in which

the first ‘‘slot’’ of the framework specifies which type of nu-

clear model to use and the parameters for that model. In the

case of the diffeomorphic model, the parameters are very

extensive. Other types of generative models of nuclear shape

can be used (16,17), although our overall philosophy is to pre-

fer models whose parameters are automatically learned from

images.

Cell Shape Models

The next ‘‘slot’’ of the generative framework is filled by a

cell shape model. While approaches that model cell shape

alone have been described (18–20), we focus on building a cell

shape model that is learned directly from images and condi-

tional on the nuclear shape. This is to ensure that the two

shapes are compatible with each other (e.g., that the nucleus is

inside the cell!) and that any relative orientation of the two is

captured. For this we use a simple approach in which a cell to

be modeled is first rotated so that its major axis is pointing in

a defined direction and flipped (if necessary) so that the side

(relative to the major axis) with the larger area is also

matched. The ratio between the distance from the center of

the nucleus to the nearest point on the plasma membrane and

the distance from the center to the nearest point on the nu-

clear membrane is then measured at angles from 08 to 3608
relative to the major axis. This set of relative coordinates is

reduced to a small number (10) of principal components.

New cell shapes can then be synthesized (after synthesizing a

nuclear shape) by randomly choosing values for the principal

components and using the synthesized ratios to mark out the

cell boundary. Conditional, diffeomorphic models of cell

shape can also be made.

Models Of Subcellular Components

We now turn to the most difficult part of building cell

models, representing subcellular components. Much work

remains to be done in this area. Two distinct but preliminary

approaches for representing a subset of protein patterns are

described here.

Object-Based Models: Direct Learning. The first is building

object-based models (6). This approach is most suited to or-

ganelles such as endosomes, lysosomes, and peroxisomes that

largely exist as discrete vesicles. As a first approximation, these

can be modeled as Gaussian objects, that is, as circles (or

spheres in 3D) whose intensity decreases with distance from

its center (as expected if its intensity in a given pixel was pro-

portional to the volume that underlies that pixel). Since cell

images often have two or more vesicles touching or overlap-

ping, we estimate the number and sizes of the vesicles that are

most likely to have given rise to a particular image using non-

linear fitting. Doing this for many cells allows distributions to

be learned for the number of objects per cell and their size var-

iation in each cell. The position of each object relative to the

nearest point on the nucleus and the nearest point on the cell

membrane is then calculated and used to create a 2D (or 3D)

position probability density function. The synthesis of new

patterns is then quite simple. For each cell, a number of

objects is drawn from the number distribution, and a size and

position are sampled from the size distribution and the posi-

tion probability density function, respectively. These are used

to place the objects into the nuclear and cell shape model

described above. An example of a synthesized image showing

a lysosomal pattern is shown in Figure 6.

Network Models: Inverse Modeling. The second approach is

designed for network distributions, such as the tubulin cyto-

skeleton, that are not appropriately modeled as objects. Since

elements of such networks frequently cross and pile up near

the center of the cell, it is difficult to estimate parameters of a

model from conventional microscope images. One solution is

to use specialized microscopic methods, such as speckle mi-

croscopy, that image only a portion of the network at a time

(21). Excellent models of actin polymerization in the leading

edge of a crawling cell have been obtained by this approach

(22). Speckle microscopy requires suitable polymerization and

depolymerization rates and may not be appropriate for all net-

work proteins. An alternative for extracting model parameters

from wide-field microscope images is to use inverse modeling.

The principle is that the parameters that describe the state of a

network in a real image can be estimated using a model that

can synthesize images for many parameters values and a com-

parator that finds the synthetic image whose appearance is

closest to the real one. One of the earliest uses of this approach

Figure 6. Example synthetic image generated by a model learned

from images of the endosomal protein transferrin. The DNA distri-

bution is shown in red, the cell outline in blue, and transferrin-

containing objects in green.
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was to estimate spindle dynamics (23). We have recently

described a simple but justifiable model of microtubule poly-

merization in interphase cells and demonstrated that it can be

used to make reasonable estimates of the number, length dis-

tribution, and degree of growth direction persistence of HeLa

cells (24).

Combining Component Models: Independent or Conditio-

nal. A major goal of the model building described here is to

be able to create cell models containing spatially realistic dis-

tributions for many different proteins. Since the number of

different proteins that can be measured in the same living cell

is currently less than 10 [although the number in fixed cells is

at least 100 (25)], it is difficult to imagine using multicolor

images directly for this purpose. An alternative is to combine

subcellular models learned from separate sets of images. This

can be done by constructing a single nuclear and cell shape

and then adding objects or networks in turn for each addi-

tional component. This assumes that these distributions are

independent of each other. If this is not the case, the place-

ment of one component can be made conditional on that of

another. For example, endosomal positions can be preferen-

tially placed along microtubules.

USE OF MODELS FOR TESTING ALGORITHMS

Much of the work from other groups described above for

constructing models of cells and nuclei has been motivated

not by a desire to learn parameters from real images but rather

to create synthetic images whose underlying cell or nuclear

shape is known so that they can be used to test analysis soft-

ware. When used this way, models can be considered as digital

‘‘phantoms’’ by analogy to the test samples of known proper-

ties frequently used to test imaging hardware. All of the meth-

ods described in this article can be used for this purpose, espe-

cially methods than can generate combinations of patterns.

FUTURE DIRECTIONS

While the focus of this article has been on building mod-

els of static images, cell behaviors are clearly dynamic. One of

the first next steps is therefore to extend these methods to time

series images. The goal would be to have a model that can gen-

erate not only an object or network distribution, but also how

it changes over time. Similarly, it will be important to model

how patterns vary between cell types and conditions, especially

with the goal of being able to construct a general model for a

given component that can then be instantiated in a given cell

type. Lastly, the possibility of differences in subcellular location

for different splicing isoforms from the same gene has been

given relatively little attention and will need more. While much

work remains to be done, it is hoped that the approaches

reviewed here suggest that all of these goals are attainable.
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