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INTRODUCTION

THE TERM HIGH-CONTENT ANALYSIS (HCA) IS FREQUENTLY 

USED to describe the combining of approaches from 
image processing, computer vision, and machine learning to 
provide fast and objective methods for analyzing large amounts 
of bioimage data. It includes the image analysis methods used 
for high-content screening (HCS), which focuses on identify-
ing compounds or genes that can produce a desired cellular 
behavior. The field’s origins in the mid-1990s were in the 
development of automated microscope systems that included 
hand-constructed automated analysis algorithms1 and the 
successful application of machine learning methods to recog-
nize subcellular patterns.2 The algorithms behind HCA are 
firmly rooted in signal processing, providing a sound theoreti-
cal foundation for using machine learning techniques to extract 
meaningful information from large sets of bioimages. Spatio-
temporal events within a cell can be captured by microscopy 

and quantified through image processing and machine learn-
ing methods to produce meaningful conclusions about the data 
within the experimental context. HCS methods aimed at drug 
discovery include applications that are based on screening for 
chemicals and toxins in lead discovery3,4 and gene function 
discovery using RNAi screens.5 The focus is on the basic 
understanding of the physiology of target proteins (such as 
G-protein-coupled receptors or protein kinases) and target 
behaviors (such as cell motility or secretion) and on the 
screening of candidate compounds or genes to find those that 
selectively act on the target. Example applications of screens 
include cell assays characterizing significant cellular pheno-
types in response to small molecule or RNAi in areas such as 
stem cell differentiation, apoptosis, tumor biology, neurode-
generative disorders, arterial hypertension, and many others. 
The bioimage data for HCS are typically collected using fluo-
rescent tags or stains to identify points of interest within the 
cells being imaged. By combining high-throughput cell biol-
ogy and automated image analysis, a much larger number of 
experiments can be performed, and the subjectivity of the 
experimental observer can be minimized.

For example, HCS has had a tremendous impact on neuro-
science drug discovery, enabling researchers to examine large 
amounts of drug and neuronal cell interactions at different 
time intervals and at a spatial resolution. This permits levels 
of sensitivity and objectivity not previously possible with 
spectrophotometric experimentation. Automated image anal-
ysis methods such as tracing, which we discuss in this article, 
have proven to be advantageous over manual methods for 
studying phenotypic changes in neurite extensions in response 
to drugs.6
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The field of high-content screening and analysis consists of a set of methodologies for automated discovery in cell biology 
and drug development using large amounts of image data. In most cases, imaging is carried out by automated microscopes, 
often assisted by automated liquid handling and cell culture. Image processing, computer vision, and machine learning are 
used to automatically process high-dimensional image data into meaningful cell biological results. The key is creating auto-
mated analysis pipelines typically consisting of 4 basic steps: (1) image processing (normalization, segmentation, tracing, 
tracking), (2) spatial transformation to bring images to a common reference frame (registration), (3) computation of image 
features, and (4) machine learning for modeling and interpretation of data. An overview of these image analysis tools is 
presented here, along with brief descriptions of a few applications. (Journal of Biomolecular Screening 2010:726-734)
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Overview of the image analysis tools

This review focuses on the fundamental image analysis meth-
ods used in HCA. Figure 1 shows a general overview of the 
common steps in HCA pipelines. The reader is encouraged to 
frequently refer to this pipeline while reading this article. Images 
are typically first normalized by preprocessing and then proc-
essed by segmentation to identify single cell regions. Depending 
on the experiment, tracing or tracking may be required. Features 
are then extracted from each region of the segmented image and/
or from the results of tracing or tracking. Each cell is thus repre-
sented by a multidimensional feature vector. In some cases, fea-
tures may be calculated on the whole image field without 
segmentation. In either case, the features are then used for clas-
sification or clustering or both depending on the application.

NOTES ON DATA ACQUISITION FOR HCA

When optimizing an HCA process, multiple options must be 
weighed for their costs and benefits. One must consider the type 

of microscopy (transmitted light, widefield fluorescence, or 
confocal fluorescence), the number of imaging channels, the 
objective magnification and camera pixel size, whether to 
acquire 2D or 3D images, whether to acquire a single time point 
or a time series, and so on. The answers to these options lie in 
the biology of the cell assay and the trade-offs between speed 
and quality of the image acquisition. The number of imaging 
channels can have an effect on the segmentation methods used 
(see segmentation section) and on the ability to use colocaliza-
tion information. The objective magnification and camera pixel 
size should be determined based on whether the goal is to image 
small objects in cells or individual cells or populations of cells. 
The acquisition of 2D images can be more rapid than capturing 
3D images while yielding less information.

One challenge of HCS is to determine how many images 
should be acquired. The amount of information required can 
vary greatly from task to task. In general, it is best to be able to 
accurately characterize the variability for a given cell type 
under a given condition. Hence the more data, the better. In a 
task where the desire is to assign a label to a protein location 

FIG. 1. Steps in typical image analysis pipelines for high-content analysis (HCA).
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pattern (see supervised learning), images for 1 to 10 cells can 
be sufficient to place a protein into a known location class. 
However, it may require images for as many as 50 to 100 cells 
to adequately learn a new category.7

Although current HCA applications typically involve acquir-
ing images of a fixed size for a fixed number of fields at a fixed 
number of time points, it is also possible to vary these param-
eters during the acquisition process based on analysis of the 
images acquired previously. The interested reader is pointed to 
intelligent acquisition algorithms that vary when and where to 
acquire images.8,9

PREPROCESSING

Images often exhibit variations due to uneven illumination 
across the image because of imperfections in the optical system 
or differences between different runs of the imaging pipeline. 
These effects are uninteresting but can lead to processing prob-
lems. For example, if the top of the image is more brightly lit, 
this could lead a naive algorithm to wrongly assign cells that 
happen to lie on that region of the image a higher marker 
expression value.

Pixel-level preprocessing can ameliorate some of these arti-
facts. For estimating the uneven illumination, one typically 
computes the mean (or median) pixel value at each location 
across a large number of fields followed by smoothing (either 
Gaussian smoothing or fitting a plane or a parabola to the data). 
Then each pixel is normalized by dividing it by the mean pixel 
value at that location.

Another typical preprocessing step is to perform contrast 
stretching so that every pixel value lies between a predeter-
mined interval. This is especially important if different dyes are 
being compared against each other as their relative brightness 
might be irrelevant.

CELL SEGMENTATION AND OBJECT DETECTION

Most HCA analyses use image segmentation to separate 
cells in a field. Some commonly used methods for segmenta-
tion are Voronoi segmentation, model-based methods, seeded 
watershed, active contour-based approaches, graphical model 
segmentation, and active masks.10-15 If tissues with both normal 
and cancerous phenotypes need to be separated, then graph 
partitions, clustering, or histogram-based segmentation meth-
ods are useful.

Most segmentation approaches are 2-step methods. Voronoi 
segmentation and seeded watershed require seed regions. In 
some traditional settings, a human operator would define the 
seeds manually, but this is not a solution for the large numbers 
of images generated by a screening study. Thus, automated 
methods are used. Nuclear-level segmentation, on a separately 
acquired nuclear channel, is often used to provide seeds for 
cell-level segmentation. Figure 2 shows an example of a 2-step 
segmentation approach where nuclei are used as seeds for 
seeded watershed cell segmentation. Similarly, active contour 
methods require a window around the cell to be segmented, and 
again, a coarse boundary of the nuclei can be used. The coarse 
boundary is deformed iteratively to output the boundary of the 
cell. Graph-partitioning methods perform well when the regions 
to be segmented are coarsely labeled.

The best segmentation results are obtained by complex 
methods that take multiple aspects into account (active con-
tours and graphical models fall into this category). However, 
these methods are also often very expensive computationally 
(taking from seconds to hours per image). Therefore, the full 
algorithm is sometimes only approximated, or on other occa-
sions, it is even preferable to use a faster method such Voronoi 
or watershed (which takes less than 1 s per image). Some judi-
cious filtering, such as removing objects that are too small or 

FIG. 2. Two-step methods in cell segmentation. Nuclei boundaries are first detected using a model-based approach15 and then smoothed to use 
as inputs to seeded watershed segmentation for separating cells.
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too large to be a cell, can improve the quality of the results at 
the cost of losing some areas of the image. For many high-
throughput screens, this might be the right trade-off.

Object detection can be used to get the shapes of objects 
such as cell, nucleus, vesicle, and other organelle boundaries. 
Segmentation approaches described here or Ridler-Calvard 
thresholding can be used to get the boundaries from their 
respective channels. For example, nuclear boundaries and 
nuclear spots can be acquired from the nucleus channel, coarse 
filamentous objects from the actin or microtubule channel, and 
small objects from vesicle channels such as lyososomes and 
endosomes.

TRACING

In some experiments, it may be useful to quantify the num-
bers, lengths, and relative sizes of branching structures in 
images at multiple scales. In HCA applications, these may 
include vasculature, neurites, and microtubules.

Three major methods are used for tracing. The first method 
is called skeletonization.16,17 In this approach, an image is first 
segmented or coarsely thresholded. The remaining pixels (or 
voxels in 3 dimensions) are then removed systematically by 
considering the surrounding neighborhood. This process leaves 
a skeleton structure of the image. This skeletal structure can 
then be analyzed for the features of interest. The second 
method is often referred to as vectorizing.18 This method is an 
exploratory method in that only a relatively small section of the 
image is analyzed in a step. A starting point is discovered in the 
image either manually or automatically. Once this starting 
point is identified, the algorithm recursively explores the 
region of interest. This method is significantly faster than the 
previous method because it considers only the regions of inter-
est and not the entire image. The third method uses superel-
lipsoids,19 which are generally cylindroidal (cylinders with an 
elliptical cross section) as a model for the structures of interest. 
By modeling the structure in this manner, the structures can be 
represented compactly, and important features of the objects 
can be easily calculated. These methods have been shown to be 
effective with significant levels of noise in the images.

The general strategy for picking the method of choice is to 
compare the results from each of these methods with ground 
truth acquired by manual tracing of the filaments by an expert.

TRACKING

To study the dynamics of movement inside cells, objects 
may be tracked from one image frame to the next. Even when 
intracellular movement itself is not the object of study, it may be 
necessary to track cells from one frame to the next to study their 
behavior. Sigal et al.20 studied the cell cycle in an unsynchro-
nized population by computationally aligning the trajectories. 

State-of-the-art methods for tracking in fluorescence imaging 
have been reviewed recently.21

The traditional approach for tracking is to separate object 
detection and tracking steps. In the first step, a list of objects is 
generated. The simplest method is to threshold the image and 
then characterize all contiguous above-threshold regions as 
objects. The tracking (or linking) step consists of assigning 
objects in one frame to objects in the adjacent frame.

Objects are characterized by a set of measurements {xi}, 
that include the position (x,y) and any other measurements 
considered valuable (such as the object size, brightness, and 
shape features). Linking is done by defining a distance between 
2 objects d(xi,xj), typically using the normalized Euclidean dis-
tance. Minimizing the total distance involved in linking objects 
in 2 adjacent frames leads to the Hungarian algorithm, which is 
simple, deterministic, and very fast.

For harder problems, one needs to take into account multiple 
frames to model inertia in movement. State-of-the-art 
approaches are based on scoring a whole set of tracks at once22 
or particle filtering, a model-based probabilistic approach.23

REGISTRATION

Image registration is the application of a geometric transfor-
mation to align an object in one image to a template object in 
another image. Registration methods include point-based,  
surface-based, or intensity-based methods.24 Point-based meth-
ods align corresponding pairs of feature points that can be 
found a priori. Surface-based methods compute and align the 
3D boundary surfaces of the 2 objects in the images. Intensity-
based methods are increasingly becoming the most popular 
among the registration approaches. They transform the pixel or 
voxel values in an iterative fashion by optimizing a similarity 
score between the 2 images. There are many similarity scores 
published in the literature: some common examples are based 
on least squares, cross-correlation, and mutual information.24 
Intensity-based approaches are generally a good method to use 
as a starting point for many of the high-content applications.

This step in automated analysis is necessary if the features 
computed are not rotation invariant (see Image Features sec-
tion). An important application of this tool is for alignment of 
successive slices in a 3D image.25 This step is especially impor-
tant if acquisition time of a single 3D image is long for live-cell 
imaging, where artifacts such as cell movement are possible. 
Another application would be in the alignment of immunohis-
tochemistry tissue samples that have a high slice-to-slice vari-
ation because of tissue damage during slice preparation.26

IMAGE FEATURES

Image features, numerical descriptors that can be computed 
directly from an image to represent its important aspects, form 
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the heart of HCS and HCA systems. These features can be 
computed from 2D or 3D images or 2D or 3D time series. They 
can be derived from a single fluorescence channel or from 2 or 
more channels collected for the same field. Some features 
require presegmentation of the image into the single-cell 
region, whereas field-level features do not. Field-level features 
can be computed when the patterns in different cells within the 
field are fairly homogeneous. For analysis of cell patterns, fea-
tures computed should preferably have properties such as 
invariance to image rotation or translation. If not, the images 
must be registered (see Registration section) before features 
can be computed. Example features include Haralick texture 
features, Zernike moment features, morphological features, 
object-based features, wavelet and frequency transform coef-
ficients, threshold adjacency statistics, features from multireso-
lution subspaces, and others.27-30 For any given HCA application, 
morphological and Haralick texture features generally serve as 
a good starting set of features because they often yield good 
classification accuracies. However, not all features are impor-
tant for every application, and feature selection can be used to 
identify them (see below). Despite the vast set of features men-
tioned above, problem-specific features need to be designed for 
cell biology problems to improve classification accuracies (see 
Automated Learning Paradigms sections)—for example, the 
extent of overlap between a protein and a nuclear marker or 
edge features for microtubules.31 Some features can also be 
parameters of a generative model that comprehensively 
describes the pattern in an image. For example, the parameters 
of object-based subcellular pattern models have been demon-
strated to be capable of distinguishing major subcellular pat-
terns nearly as well as descriptive features.32

Feature subset selection and recombination

Not all features that can be computed may be useful for a 
desired task. For some machine learning algorithms, the pres-
ence of large numbers of uninformative or redundant features 
may inhibit performance. In such cases, feature selection meth-
ods can be used to select a subset of the features that are most 
informative in discriminating the various classes. Stepwise 
discriminant analysis (SDA) is one such method where the 
criteria for selection are based on statistical tests at every step 
as the number of features selected is increased.33 A number of 
other methods have been described, and a comparison of their 
performance for subcellular pattern classification has been pre-
sented.34 Since that study, additional methods such as minimum 
redundancy maximum relevance have been described.35

An alternative to feature selection is to create new sets of 
features by recombining the original features. The basic idea is 
to project the feature data to a lower dimensional space whose 
bases are computed by solving an optimization problem. Linear 
supervised approaches are called linear discriminant analysis, 
and a popular method is Fisher linear discriminant, where the 

features are weighted to output a lower dimensional feature 
vector. If the manifold of feature space is nonlinear, higher 
order features can also be created by using kernel methods with 
the goal to improve accuracy of classification between the 
various classes of images. In addition to supervised approaches, 
unsupervised approaches such as principal components analy-
sis (PCA) or independent components analysis (ICA) can be 
used when labeled data are not available. Depending on the 
data, many variations of feature recombination algorithms can 
be designed by modifying the objective function to be opti-
mized. Examples include maximum variance unfolding, non-
linear PCA, and Isomap.

AUTOMATED LEARNING PARADIGMS

Over the past 30 years, there has been tremendous growth in 
the computational methods for automated learning and discov-
ery. The discipline of machine learning emerged from the field 
of artificial intelligence that had previously been dominated by 
rule-based, knowledge capture approaches. The essential char-
acteristic of machine learning systems is their ability to improve 
their performance with experience. There are 3 basic para-
digms: supervised, unsupervised, and semi-supervised learn-
ing. Once features have been extracted and computed, 
supervised classification methods can be used to recognize dif-
ferent classes of samples, such as drugs that do and do not 
cause a desired change or normal and diseased phenotypes in 
pathology studies. Unsupervised clustering, on the other hand, 
can identify novel phenotypes. Semi-supervised learning 
employs both supervised and unsupervised methods.

Supervised

Supervised learning is a paradigm of machine learning con-
cerned with performing classification and regression on labeled 
data to build a concise model of the distribution of class 
labels.36 Example labels or classes for a cytotoxicity assay 
include (1) normal, (2) necrotic, and (3) apoptotic. Given a set 
of classes a priori and example members of such classes, super-
vised learning techniques can learn a classifier (a function) that 
can assign new data points to one of the classes.

This sort of approach is appropriate, for example, in classi-
fying shape. The properties of shape, such as width, circumfer-
ence, or convexity, can be quantified, and these morphological 
features can be used to create a classifier. For example, in 
nuclear shape analysis, intensity and nuclear spot features were 
computed and used to classify and profile nuclear phenotypes.37 
Another example involves determining protein subcellular 
location patterns: given a set of subcellular protein location 
patterns observed through microscopy, supervised classifica-
tion algorithms such as neural networks or support vector 
machines can assign a location within the cell to the protein 
pattern.7 Classification can also be used to reject out-of-focus 
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images, by labeling such images as a separate class in a  
classifier.

Unsupervised

Whereas supervised learning deals only with labeled data 
and seeks to either classify or regress against the data, unsuper-
vised learning makes no initial assumptions about how the data 
are related and instead seeks to discover and characterize the 
hidden distribution of data. In unsupervised learning, or clus-
tering, the data are unlabeled, and algorithms such as self-
organizing maps, k-means, or hierarchical clustering are used 
to observe how the data group together and measure the dis-
tances between data points in the feature space. While cluster-
ing, 2 important considerations must be taken into account: (1) 
the distance metric used in feature space and (2) the number of 
clusters, where the Akaike information criterion (AIC) is often 
used in combination with the model likelihood to estimate the 
optimal number of clusters. A helpful discussion of using AIC 
to pick the number of clusters has been presented recently.38

These methods can be extremely useful to distinguish 
images in which the general phenotypes, or the effects of added 
drugs, are unknown. Early examples of the application of unsu-
pervised methods in HCA include building subcellular location 
trees for large numbers of randomly tagged proteins39 and 
learning how centrosome duplication is affected by a number 
of different drugs.40 In these cases, the unsupervised approach 
is given a set of images and clusters them according to the 
fundamental patterns they contain. Figure 3 shows an example 
in which a tree of subcellular protein locations is created by 

hierarchical clustering of subcellular patterns, based on their 
z-scored Euclidean distance.

Semi-Supervised

Unlike supervised learning methods, where all data are 
labeled, and unsupervised learning methods, where all data are 
unlabeled, the semi-supervised learning paradigm addresses 
the presence of both labeled and unlabeled data. In some cases, 
semi-supervised learning methods can be used to augment 
supervised learning algorithms where data are scarce and can 
also improve unsupervised learning by incorporating a small 
amount of known data.41 Although there may be many known 
patterns in the data being analyzed, the possibility remains that 
some have yet to be observed. Using a small amount of labeled 
data, the large quantities of unlabeled images available in HCA 
can be used as training and testing instances along with the 
labeled data, identifying and classifying known patterns and 
possibly exposing previously unobserved and novel patterns.

Most current HCA applications use supervised methods, but 
semi-supervised methods are now being applied. For example, 
a method relying on semi-supervised learning but also on trans-
ductive learning, to distinguish subcellular organelle patterns, 
has been described.42

APPLICATIONS

Automated image analyses have been reported for many 
HCS applications that are based on gene expression, RNAi, and 
small-molecule screens, and many more unpublished studies 

FIG. 3. Hierarchical clustering of subcellular localization patterns in CD-tagged 3T3 cells. Four representative images from different clusters 
in the tree are shown. Adapted from Murphy.56
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have been carried out within the pharmaceutical and biotech-
nology industries.

In small-molecule screens, the goal is to identify a set of 
small molecules that cause a phenotypic change.43 However, 
an additional challenge would be to identify the biochemical 
target of that small molecule. An example of a small-molecule 
screen using automated image analysis is done by Tanaka  
et al.44 Furthermore, image analysis methods can also be used 
to profile the drug dosage phenotypic response of various 
drugs.45

The goal of RNAi screens is identifying a set of genes that 
express mutant phenotypes when inhibited by siRNA interfer-
ence.5 Depending on the pathway that is of interest, cells with 
appropriate biomarkers are imaged under a fluorescence 
microscope (e.g., tagged tubulin would be an appropriate 
marker for studying cytoskeleton reorganization) after treat-
ment with one of a library of siRNAs. The images are seg-
mented, registered, and features extracted from every cell and 
summarized for every siRNA as well parameters. Example 
well parameters based on number of nuclear spots include 
fraction of cells with varying numbers of nuclear spots. Using 
these parameters, genes (or siRNA) are scored and statistical 
tests are performed to identify unique genes that could be 
involved in the pathway.46 Researchers have reported using 
this technology for identifying genes involved in mitotic spin-
dle assembly,47,48 cell morphology,49 viral infection,50 and oth-
ers. Recently, regression modeling was proposed for scoring 
images to predict the biological relevance of genes in RNAi 
screens.51

DISCUSSION

This review presents an overview of automated image 
analysis methods used in HCA. HCA is a relatively new 
approach to life sciences that adds a spatial dimension to vast 
amounts of cell biology data for drug discovery that have been 
made possible because of advancements in the throughput of 
transmitted light and fluorescence microscopy. Because of this 
explosion in the amounts of image data, image analysis has 
become the bottleneck in the HCA process. Recent advances in 
microscopy image analysis tools that are based on the frame-
work of machine learning have provided approaches that yield 
high accuracy.28

However, one important analysis step to be performed after 
every automated image analysis section is validation. Each of 
the sections discussed here can be analyzed using many 
approaches mentioned in this review, but the best one is picked 
on the basis of validation where most strategies are based on 
quantifying accuracy by comparing predictions with the ground 
truth.

As more high content data are available, online strategies for 
analysis must be made available as well as database methods to 

query new data or retrieve existing data. Operations that image 
database systems must provide include choosing a set of 
images based on image metadata, picking a representative 
image from a set of images, finding the most similar image to 
a given query image, comparing distributions of images under 
different conditions, and clustering images by their pattern. 
Many database systems for HCA have been described such as 
the Protein Subcellular Location Image Database,52 Open 
Microscopy Environment,53 or the Cell Centered Database.54 In 
addition, the Human Protein Atlas provides a major source of 
cell and tissue images showing the patterns of thousands of 
proteins.55

The image analysis tools briefly reviewed here can be 
expected to be used increasingly in new HCA applications to 
minimize human effort, improve accuracy, and, most impor-
tant, provide the structured information necessary for the suc-
cess of systems biology and personalized medicine.
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