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Abstract

Many methods have been described to predict the subcellular location of proteins from sequence

information. However, most of these methods either rely on global sequence properties or use a set of

known protein targeting motifs to predict protein localization. Here we develop and test a novel method

that identifies potential targeting motifs using a discriminative approach based on hidden Markov models

(discriminative HMMs). These models search for motifs that are present in a compartment but absent

in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting

mechanism. We show that both discriminative motif finding and the hierarchical structure improves

localization prediction on a benchmark dataset of yeast proteins. The motifs identified can be mapped

to known targeting motifs and they are more conserved than the average protein sequence. Using our

motif-based predictions we can identify potential annotation errors in public databases for the location

of some of the proteins. A software implementation and the dataset described in this paper are available

from http://murphylab.web.cmu.edu/software/2009 TCBB motif/

Index Terms

hidden Markov models, maximal mutual information estimate, discriminative motif finding, protein

localization.

I. INTRODUCTION

An important challenge in systems biology is to build detailed models of cell organization

that provide accurate predictions of cell behaviors. Since many (if not all) of the proteins

expressed by a given cell are likely to require proper subcellular localization in order to make

their contributions to those behaviors, systems for assigning locations to proteins are critically

needed. The problem is further complicated by the fact that protein locations may vary between

cell types or within the same cell type under different conditions. For example, changes in

protein subcellular location are associated with oncogenesis and differentiation [1], [2]. This

implies that assignment of proteins to a fixed location or set of locations will not be sufficient.

Given that many proteins are found in only a specific region of an organelle and that these

refined localizations are conserved across species, it is also not likely that assignments at the

level of whole organelles will be sufficient either.

Extensive work has been done on proteome-scale determination of location at various levels of

resolution both by fractionation [3] and by microscopy [4]–[7]. Since collection of information for
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tens of thousands of proteins for perhaps hundreds of cell or tissue types under many conditions

may be infeasible, computational prediction of location is an important alternative. Furthermore,

knowledge of the sequence elements within proteins that determine location will be useful for

modeling how changes in location are regulated.

A number of methods have been proposed for using sequence information to predict local-

ization. These include WoLF PSort [8], TargetP [9], LOCtree [10], PSLT2 [11], TBpred [12],

and iPSORT [13]. While useful, some of these methods (e.g. LOCtree and WoLF PSort) are

based on general sequence characteristics (GC content etc.) and thus it is hard to interpret the

sequence features that lead to accurate classification in terms of localization mechanism. Some

(e.g. TargetP and WoLF PSort) are based on known motifs, making it hard to correctly classify

proteins that lack the known motifs. PSLT2 considers all motifs in the InterPro database [14],

but does not try to search for novel targeting motifs. Beside known motifs TargetP also uses

the motif finder MEME [15] to characterize manually curated special cases of the mitochondrial

targeting signal [9]. This procedure is necessary because no well defined sequence motif has been

previously found for the mitochondrial targeting signal, but it cannot discover novel targeting

motifs. TBpred uses MEME to identify one motif overrepresented in each of the four subcellular

locations of mycobacterial proteins [12], which is arguably not enough to explain all targeting

pathways. Such a motif could also appear in other locations and therefore may not be associated

with localization. TBpred made no attempt to examine or interpret the biological meaning of the

identified motif. iPSORT can discover two type of features, amino acid properties and pattern

matching. However amino acid properties (e.g. hydrophobic or hydrophilic) may be a result of

the biochemical characteristics of the compartments, and do not provide as much information

on the protein sorting mechanism as motifs do. iPSORT can discover patterns, but the patterns

are not as expressive as common motif representation like regular expression.

To address these problems we developed a new method for searching among proteins that

are known to localize to a certain compartment for motifs that may govern their localization

patterns. We represent protein sequence motifs by profile hidden Markov models (HMMs), which

models local alignments using match, insert, and delete states [16]. Profile HMMs have been

successfully utilized to model protein families and domains, and they are used to represent

domains in the Pfam database [17]. Unlike position weight matrices (PWMs) (for example,

those used by MEME [15]), profile HMMs allow for variable length insertions and deletions
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that are common in protein motifs, for example the nucleoplasmin nuclear location sequence [18]

and the sequence targeting proteases to the food vacuole in P. falciparum [19]. Unlike regular

expressions, which have also been used to represent such motifs, profile HMMs can assign

different frequencies to each amino acid and are thus more expressive.

Traditional motif finding algorithms start by assembling a subset of sequences (for example,

all proteins in the same compartment) and then searching for motifs in those sequences. These

methods typically utilize generative models that attempt to model the process by which the motifs

were generated based on simplifying assumptions. Generative motif finding methods and models

for proteins include MEME [15] and NestedMICA [20] using PWMs, and HMMER [16] using

profile HMMs, among others. While useful, these methods do not use important information

about the negative set (sequences that are assigned to other compartments) when constructing

the models. Such information may be useful for building refined models of the differences

between similar compartments.

Relatively little work has focused on a different approach: discriminative learning of prob-

abilistic motif models (e.g. profile HMMs). Discriminative methods search for motifs that are

present in one class (positive set) but absent in other classes (negative set). Such methods have

been applied to search for DNA binding motifs represented by PWM, including gradient ascent

optimizing conditional likelihood [21], heuristic hill-climbing [22], and enumerative search on a

discrete space of PWM [23]. Recently PWM is applied to protein motifs as well as DNA motifs

in the DEME algorithm using a combination of substring search and conjugate gradient [24].

However PWM does not allow insertion and deletion, making it less than optimal for protein

sequence analysis. Here we develop and apply a discriminative motif finding algorithm which

utilizes HMMs that are constructed to optimize a discriminative criteria, the conditional likelihood

of the sequences given the motifs. We used maximal mutual information estimate (MMIE), a

technique that was initially applied to speech recognition, to train these HMMs discriminatively.

Our models select motifs that are unique to the different compartments. In addition to their use

for classification they may also provide information about the function of the proteins in each

compartment or the mechanisms involved in targeting these proteins to their cellular locations.

Since subcellular localization is determined by a hierarchical protein sorting process, several

methods have been developed that utilize a hierarchical structure to improve prediction of

protein localization [10], [25], [26]. We apply such structures to motif discovery, rather than
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Fig. 1. Hierarchical structure of compartments based on cellular sorting.

only prediction, by searching for discriminative motifs at every split (internal nodes) on the

hierarchical compartment structure in Figure 1. This allows us to take full advantage of biological

knowledge regarding the organization of compartments within a cell.

For subcellular compartment classification, our discriminative HMM method that does not

utilize any prior motif information improves upon methods that use a list of known motifs.

We also show that incorporating the protein sorting hierarchy results in better prediction on

average. Our method was able to recover known motifs and to suggest new motifs for various

compartments. These new motifs are more conserved than average amino acids in agreement

with their predicted role in protein localization. Using our predicted motifs we were also able

to reassign a number of proteins to new compartments, correcting what we believe are errors in

current annotation databases.

II. DISCRIMINATIVE MOTIF FINDING

Traditional motif finding algorithms are generative, only utilizing the positive set but not the

negative set. For example, profile HMMs are widely used to model protein domains or motifs.

The match, insert, and delete states of a profile HMM correspond to local alignment of a protein

region to the motif profile. The match states represent conserved sites of a motif; the insert states

represent insertions between two conserved sites in a protein; the delete states represent removal

of a motif site in a protein. Another generative motif finding method, PWM, only models the

conserved sites and does not model gaps in the local alignment.
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These motif models are trained to optimize the maximum likelihood estimation (MLE) cri-

terion. For this task, HMMs can be trained generatively with the Baum-Welch algorithm [16],

and similarly PWMs are trained with the expectation-maximization (EM) algorithm, for example

using MEME [15]. Note that for our purpose of finding motifs in proteins located in the same

compartment, the models must be learned from unaligned sequences. These proteins do not

belong to the same protein family and are too divergent for current multiple sequence alignment

programs.

A. Discriminative training of HMM

Motif finding methods using generative training search for short sequences that are over-

represented in a given set compared to a background distribution. In contrast, discriminative

motif finding methods use two or more sets and in each set they search for motifs that are

overrepresented compared to the other sets. This allows for better motif models, especially

for similar compartments or subcompartments. For simplicity we only use single-compartment

proteins for discriminative motif finding.

Here we present a novel discriminative motif finder based on hidden Markov models. To

train this model we use a discriminative criteria, maximum conditional likelihood (that is, the

conditional likelihood of the correct class given the sequence). The conditional likelihood is

an established criteria in discriminative training methods, e.g. logistic regression. It has been

shown in the speech recognition literature that the maximal mutual information estimate (MMIE)

technique can train a set of HMMs to optimize this criteria. We use a MMIE algorithm termed

extended Baum-Welch which iterates between aligning the motif sites and updating parameters

based on the aligned sites. The update not only favors occurrence in the positive examples as

in regular Baum-Welch, but also avoids occurrences in the negative examples. For simplicity

we use the terms generative HMM and discriminative HMM for these two types of approaches

below.

We use the following notations. Let the training sequences be {O1, O2, · · ·ON}, where N is the

number of training examples. The sequences belong to M classes (for example, different branches

in the tree of Figure 1) and the class labels of the sequences are given as cn ∈ {1, 2, · · ·M}, 1 ≤

n ≤ N . The HMM for the m-th class is denoted as λ(m). The MMIE objective function can be

written as
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FMMIE =
∑

n

log p(cn|On) =
∑

n

log
p(On|λ

(cn))p(λ(cn))∑
m′ p(On|λ(m′))p(λ(m′))

The MMIE algorithm is an extended version of the Baum-Welch algorithm [27]. Note that we

do not know where the motif instances (with substitution, insertion and deletion) are without the

motif parameters, but the motif parameters cannot be estimated without knowledge of where the

motif instances are. As in the E-step of the Baum-Welch algorithm, we first infer the expected

state of each position on each sequence based on current motif parameters (i.e. probabilities

of each position being background, match, insert or delete state). This is equivalent to having

a probabilistic alignment of the motif sites. Then in the M-step, we update the parameters

to maximize the discriminative objective function based on the expected states above, or the

probabilistic alignment. The E-step and M-step are repeated until the improvement upon objective

function is too small.

The E-step in discriminative training is similar to that in Baum-Welch, using the forward

and backward algorithm. The difference between generative and discriminative training is in the

M-step, because the objective function to maximize is different. The update in M-step needs

to increase occurrences of the motif in the positive examples and decrease occurrences in the

negative examples. This is achieved by the following sequence weighting scheme based on

the agreement between predictions and labels. Positive examples are weighted as the posterior

probability of incorrect classification, 1−p(λ(m)|On), and negative examples are weighted as the

negative of the probability of incorrect classification, −p(λ(m)|On). That is, a positive example

is given a lower weight if its probability is high which is already correct, or given a higher

weight otherwise. A negative example is given a smaller negative weight if its probability is low

which is already correct, or a higher weight if it is incorrectly believed to be one of this class.

In contrast, generative training weights positive examples as 1 and negative examples as 0 thus

only focusing on occurrences in positive examples. Note that this interpretation is different from

standard MMIE in speech recognition; see the appendix for more details.

We compare the results of our discriminative HMM model to generative training of HMMs

and PWMs. To make the comparison fair, we make similar assumptions and use the same

options for discriminative HMM, generative HMM, and PWM learned by MEME (see below).

Implementation of the generative and discriminative HMM are based on the HMMER 2.3.2
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source code [16], and compared to motif finding using MEME 3.2.1 [15]. Additional details

may be found in the supplement.

B. Motif occurrences per sequence

For learning discriminative HMM, generative HMM, and MEME, we assume there is one

occurrence of the motif in all sequences in the same compartment. Such a distribution is

called one occurrence per sequence (OOPS) in MEME. Although a targeting motif may not

appear on every sequence in a compartment, our analysis shows that distributions other than

OOPS do not generate relevant motifs. We tried a method assuming zero or one occurrence per

sequence (ZOOPS) but the results of these runs looked much poorer than the OOPS model when

using MEME. For these runs ZOOPS usually found long subsequences shared among very few

homologs (for example 3 proteins) which did not generalize well to the test data. Generative

models do not have a constraint on the absence of motifs in the negative set, so without the

requirement of OOPS (or, covering as many sequences as possible) there will be no mechanism to

associate motifs extracted with localization. Another way to explain the improvement seen when

using OOPS is that our method involves both the motif discovery and the use of SVM to classify

proteins using the discovered motifs. Motifs that are too weak to provide any discriminative power

will be of little use for the classifier and would thus not be used in the final outcome. However,

the advantage of using weak motifs (which are usually found using OOPS) with SVM is that,

while each one on their own may not be very informative a combination of weak motifs may

still be very powerful. If such a combination exists the SVM method would identify it and use

it to correctly classify proteins. In contrast, if these motifs were discarded at an earlier stage (in

the motif discovery procedure) that would not have been available for the classifier to use.

C. Motif finding on flat and hierarchical structure of compartments

An advantage of our discriminative training is that it can fully utilize the hierarchical structure

that is used to sort proteins in the cell (see Figure 1). We now describe how this structure can be

used for training and classification. For discriminative motif finding at a specific split, we find

motifs for each branch discriminating only against proteins in the other branches of this split.

Only proteins in compartments under the split are included as training examples. For example,

starting from the root, we find 10 motifs for the secretory pathway and 10 motifs for all other
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(intra-cellular) compartments, discriminating between the two sets. Then for the splits under

inter-cellular compartments, we find 10 motifs for nucleus and 10 motifs for the cytoplasm

internal node, a union of proteins in cytosol, peroxisome and mitochondria. To compare these

results to generative motif finding methods (MEME and generative HMM), we implemented a

similar procedure for these methods as well. Training examples for the leaf node in the tree (the

9 compartments) are the same as in the flat structure. Training sets for the internal nodes are

the union of descendant nodes, e.g. we search for 10 motifs for cytoplasm which is the union

of proteins in cytosol, peroxisome, and mitochondria.

For the flat structure, all methods generate a total of 90 features (9 compartments each having

10 motifs, see Methods). For the hierarchical structure, all methods generate a total of 130

features (9 compartments, root and 3 internal nodes each having 10 motifs).

D. Retrieving top motif instances

After a PWM or HMM is learned, we would like to scan the sequences and only select the

strongest matches as motif instances. That is, some sequences will have no instance of a motif

while other sequences may have more than one instance. Hence for each candidate motif, we

need to rank each possible position on all sequences.

For MEME, positions are ranked by the likelihood of the subsequence given the PWM. For

HMM, the posterior probability given by posterior decoding is used. We consider two silent

states of profile HMM, the begin state and the end state of the motif, instead of the first match

state which may be skipped. For each position, we use the product of the posterior probabilities

of its begin state and the nearest end state for ranking. All positions in all sequences are ranked

by this product. According to the ranking we can retrieve the top positions when the number of

instances is given (e.g. to retrieve the top 30 positions).

III. PREDICTING PROTEIN LOCALIZATION USING IDENTIFIED MOTIFS

For evaluation of these three motif finders, we trained a support vector machine classifier

(SVM). The feature set for the SVM are the motif scores. For MEME, the likelihood of the

motif instance given the model is used as a feature. For generative and discriminative HMM,

the log likelihood ratio of the entire sequence over the background model is used as a feature.

The background model is the default one in HMMER. We carried out a 10-fold cross-validation
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procedure, so these three methods are trained on part of the dataset and tested on proteins not

used to learn the motifs.

We use the SVM classifier in two different ways. The first is with a flat structure (one vs.

all) and the second is with the hierarchical structure. For the hierarchical structure we train

a separate SVM for each node in the tree and follow the classification results until we reach

a leaf which denotes the final prediction for a compartment. For example, we first use our

SVM to determine whether a protein is localized to the secretory pathway or to intra-cellular

compartments. Based on that prediction, we use another SVM at each descending split (e.g.

distinguishing between nucleus and cytoplasm). Some of the internal nodes have more than two

descending splits (e.g. three compartments under cytoplasm), so each split is treated as an one

vs. all classification. As in motif finding, only proteins in compartments under an internal node

are included in SVM training. Accuracy calculation in hierarchical structure is the same as in

flat structure. A prediction is considered correct only if it chooses the correct leaf node out of

the 9 compartments; internal nodes are not counted toward accuracy.

A. Ranking motifs found by different methods

To further evaluate the contribution for predicting locations, the motifs found by MEME,

generative and discriminative HMM are ranked. We rank the motifs by 1-step backward selection.

For our SVM, the accuracy after removing each feature (corresponding to a motif) is recorded.

The feature or motif that leads to the largest decrease in accuracy is selected as the top motif

and the process is repeated until the desired number of motifs are selected.

IV. RESULTS

A. Discriminative motif finding and hierarchical classification improves prediction accuracy

We applied our discriminative motif finding method to a yeast protein localization dataset [11].

This dataset consists of 1,521 S. cerevisae proteins with curated localization annotation in Swis-

sProt [28]. Proteins were annotated with nine labels: nucleus, cytosol, peroxisome, mitochondria,

endoplasmic reticulum (ER), Golgi apparatus, vacuole, plasma membrane, and secreted. We

tested two different ways to search for motifs in discriminative training. The first uses a one vs.

all approach by searching for motifs in each compartment while discriminating against motifs in

all other compartments. The second uses a tree structure (Figure 1) to search for these motifs.
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Fig. 2. Accuracy of predictions based on motifs discovered by the different methods or a set of database motifs for PSLT2.

Results for the PSLT2 methods are taken from [11]

The hierarchy of compartments utilizes the prior knowledge of cellular sorting by identifying

refined sets of motifs that can discriminate compartments along the same targeting pathway. It has

been shown previously that prediction accuracy can be improved by incorporating a hierarchical

structure on subcellular compartments according to the protein sorting mechanism [10].

In addition to the two sets of motifs we find for discriminative HMMs, we find 10 motifs for

each compartment using MEME and generative HMMs. For all methods the number of amino

acid positions is set to four, although since HMMs allow for insertions and deletions the instances

of motifs represented could be longer or shorter.

Because our goal is to identify novel targeting motifs and current understanding of targeting

signals is still limited, we evaluate motif finding results by using them to predict localization

as we describe above. We also compare the prediction accuracy of our method with that of

a Bayesian network classifier that used curated motifs in InterPro [14]. The results for this

prediction comparison are presented in Figure 2. As expected, the hierarchical structure, which

provides another layer of biological information that is not available for the flat classification task,

generally leads to improvement in classification results for all methods. When focusing only on

generative training methods that do not utilize negative examples, profile HMMs outperformed
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Output of classifier

Cyt ER Gol Vac Mit Nuc Per Mem Sec

(13.5) (9.7) (0.6) (2.5) (30.2) (32.2) (0.0) (11.3) (0.0)

Cytosol (15.7) 25.4 2.0 0.0 0.7 26.8 43.8 0.0 1.1 0.2

ER (7.0) 14.2 30.7 1.3 0.6 22.5 26.3 0.0 4.4 0.0

Golgi (2.1) 8.3 16.5 3.2 2.4 23.7 38.9 0.0 6.8 0.0

Vacuole (2.5) 12.7 16.1 0.0 15.3 11.4 33.9 0.0 10.6 0.0

Mitochondria (25.8) 9.3 2.3 0.0 0.6 71.7 14.7 0.0 1.5 0.0

Nuclear (37.6) 12.9 0.6 0.0 0.6 19.5 64.6 0.0 1.5 0.2

Peroxisome (1.4) 5.0 0.0 0.0 0.0 70.0 25.0 0.0 0.0 0.0

Membrane (7.1) 8.5 7.0 0.8 2.3 7.0 29.0 0.0 45.5 0.0

Secreted (0.8) 25.0 12.0 0.0 0.0 19.0 13.3 0.0 30.7 0.0

TABLE I

CONFUSION MATRIX OF DISCRIMINATIVE HMM USING THE TREE COMPARTMENT STRUCTURE. PARENTHESIS AFTER THE

COLUMNS ARE PERCENTAGE OF PREDICTIONS (OUTPUT) WHILE PARENTHESIS AFTER THE ROWS ARE PERCENTAGE OF

LABELS (ONLY SINGLE-COMPARTMENT PROTEINS COUNTED AS THESE ARE THE TRAINING DATA).

MEME. This can be explained by the greater expressive power of the former model which allows

for insertion and deletion events that cannot be modeled in MEME. Discriminative training that

utilizes both this expressive set of options and positive and negative examples outperforms both

other methods and its performance in the flat training setting is close to prediction based on

known motifs. When using the hierarchical setting we can further improve the discriminative

HMM results since internal nodes lead to more similar sets of motifs and discriminative training is

most beneficial when the two groups are more similar to each other. For this setting discriminative

HMMs achieve the most accurate classification results compared to all other methods we tested.

Specifically, even though it does not use previous knowledge of motifs, discriminative HMMs

improve upon results that were obtained using a list that included experimentally validated

motifs. The confusion matrix of the discriminative HMM is shown in Table I. The coverage of

compartments with fewer training sequences is low, e.g. proteins predicted as peroxisome and

secreted are too few. This is most likely due to choosing the overall accuracy as the objective

function to optimize. We have also compared these results to classifiers based on amino acid (AA)

composition and determined that the discriminative HMM motif finding method outperforms
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Fig. 3. The number of known targeting motifs found by different methods and their significance. The p-values are calculated

by generating random motifs.

these AA composition methods. This dataset contains only a few homologous proteins, about

6% of the sequences have >40% sequence identity by BLASTALL. Both MEME and HMM

performed similarly after homology reduction and the improvement of HMM over PWM is still

significant (see supplement).

We have applied the best classifier, discriminative HMM utilizing a hierarchical structure, to

predict localization of all 6,782 proteins from SwissProt. The curated annotation of 1,521 proteins

in the above dataset is used as training data. Calculation of the confidence of each protein-

compartment pair based on SVM margins is described in the supplement. The predictions and the

confidence are on the support website (http://murphylab.web.cmu.edu/software/2009 TCBB motif/).

B. Recovering known targeting motifs

After establishing the usefulness of our motif discovery algorithm for localization prediction

we looked at the set of motifs discovered to determine how many of them were previously

known.

1) Defining known targeting motifs: There are a number of challenges we face when trying

to compare the list of motifs identified by our methods with known motifs. Foremost is that

evaluation of large sets of potential targeting motifs is hard when only a few targeting motifs

are currently known. In addition, many of the motifs identified by our method are not directly

involved in targeting proteins even if they are useful for subcellular classification. For example,
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DNA binding domains suggest that a protein would be localized to the nucleus though they are

probably not the ones targeting it to that compartment. Thus restricting our comparison to classic

motifs like ER retention signals may be misleading.

To overcome these issues we collected a list of known targeting motifs from two databases,

Minimotif Miner [29] and InterPro [14]. Minimotif Miner includes motifs that were experi-

mentally validated to be involved in protein targeting. These motifs are represented as regular

expressions. We also selected InterPro motifs that are associated with localization. To determine

such association we perform a simple filtering step using the software InterProScan [30]. Any

InterPro motif that occurs more than 4 times in one compartment and occurs in at most 3

compartments is considered associated with localization. Together we have a list of 56 known

targeting motifs, 23 of them from MiniMotif Miner and 33 from InterPro.

2) Recovery made by different methods: We ran MEME, generative and discriminative HMM

on all sequences in our dataset to find 10 candidate motifs for each of the 9 compartments. The

parameters of these methods are determined by cross-validation as described in the previous

section. The candidate motif instances are matched against the known list derived from the

Minimotif and InterPro scans. A known motif is considered to be recovered if one-third of its

instances are correctly identified (overlapping at least half the motif length) when the number of

predictions is 4 times the number of instances. For example, if a known motif has 12 instances,

we retrieve the top 48 positions of each motif as described above and check if there are more

than 4 overlaps.

Although directly comparing candidate motif models with known motifs has its advantages

(e.g. not relying on a set of annotated sequence), it is difficult because each method outputs

a different motif model. For example, MEME outputs a PWM while a HMM also allows for

variable length insertions and deletions that cannot be accounted for in PWMs. We have thus

decided to compare the different outputs by mapping their predictions back onto the proteins

and comparing the proteins segments predicted to contain the motif with known motifs. This

type of comparison has been used in the past [31], [32]. Once the predictions are mapped to the

proteins, determining whether the identified segment is a “hit” for a known motif also requires

the determination of several parameters which we selected as above. We believe that these strike

a good balance between specificity (overlap for at least half the motif) and sensitivity (a third

of instances recovered). Note that the same criteria was applied to all methods so even if the
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criteria is not optimal the comparison is still valid and can be used to discuss the ability of each

of the method to retrieve known instances.

The numbers of known motifs found are presented in Figure 3. Generative HMM was able

to identify the most motifs followed by MEME. Although discriminative HMM works best for

the classification task, it recovers less known motifs when compared to generative HMM and

MEME. We provide possible explanations in the Discussion.

3) Significance of known motifs recovered: To estimate statistical significance of recovering

known motifs by MEME and HMMs, we generate 1000 sets each containing 90 random motifs

as follows. Each motif is a randomly generated profile HMM. First a random 4-mer is generated

assuming uniform distribution among the 20 amino acids. Then we construct a HMM and

estimate the emission probabilities of the match states assuming this 4-mer is observed 10 times

with a pseudocount of 1. Other emission and transition probabilities are set to default values of

HMMER. After 90 such random HMMs are created, the same criteria for MEME and HMM

motifs is used to count how many known motifs are recovered by these random HMMs. The p-

value of recovering x known motifs is estimated as the number of motif sets that recovered x or

more known motifs divided by 1000. For example generative HMM recovered 4 known motifs,

and 9 motif sets out of 1000 recovered 4 or more known motifs, so the p-value is estimated as

0.009.

4) Logos for identified motifs: The 3 most discriminative motifs and the known motifs found

by discriminative HMM using flat and hierarchical compartment structure are shown in Figure 4.

The most discriminative motifs are defined by backward feature selection as described in previous

section. Motifs are visualized using HMM logos [33]. In supplementary results we present the

HMM logos for the top 20 motifs of both methods. The nuclear localization signal motif is

discovered by both methods. Discriminative HMM using flat structure finds the microbodies

targeting signal, a motif known to be involved in peroxisome import [34]. Discriminative HMM

using hierarchical structure finds the stress-induced protein motif (SRP1/TIP1), also known to be

associated with the membrane in yeast [35]. Known motifs are sometimes ranked very highly,

as SRP1/TIP1 above, but not always. This observation suggests that there may be previously

uncharacterized motifs that are highly associated with localization.

It is important to note that not all found motifs are necessarily involved in localization. Many

may be involved in other functions that proteins in a given compartment need to carry out,
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A. Top motif candidates found by disc HMM B. Top motif candidates found by disc HMM tree 

Rank Compartment Known motif HMM logo Rank Compartment Known motif HMM logo 

1 Golgi  1 Secreted  

2 Cytosol  2 Membrane

Stress-induced 

protein 

(IPR000992; 

PWY[ST]{2}RL)

3 Vacuole  3 Cytosol  

 Peroxisome

Microbodies 

targeting signal 

( [STAGCN] 

[KRH] 

[LIVMAFY]$ ) 

 Nuclear 

Nuclear 

localization 

signal (NLS; 

[KR]{4} ) 

Fig. 4. Top motif candidates that are most predictive of localization, discovered by discriminative HMM using flat (A) and

hierarchical compartment structure (B). Known motifs recovered by our methods are also shown with InterPro ID and regular

expressions, which partially matches the HMM logo [33]. NLS is also found when using the flat structure but not shown above.

Pink columns are insert states of profile HMM; widths of dark and light pink columns correspond to the hitting probability and

the expected length respectively (shortened when necessary to make the letters clear).

or may reflect differences in amino acid composition between proteins localizing to different

compartments. For example, the tryptophan motif for secreted proteins shown in Figure 4

presumably reflects a statistically higher frequency of that amino acid in secreted proteins than in

other proteins but does not imply (or rule out) that that amino acid is important for the sorting

process leading to secretion. Similarly, the “cytosolic retention signal” motif might not have

any retention role but could simply be a motif associated with binding of cytosolic proteins to

structures such as the cytoskeleton.

The motif found that matches to known NLS is presumably that of a single basic cluster

corresponding to one half of a bipartite NLS. As such, non-basic amino acids in the conserved

basic positions is perhaps surprising. However, it is possible that NLS still functions with the

presence of non-basic amino acids either to the left or right of two or more basic amino acids.

Since the HMM logos cannot capture correlation between positions (and the HMM only capture
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Fig. 5. Percentage of conserved motif instances of the top 20 candidate motifs found by different methods. Conservation is

based on SGD fungal alignment. A motif instance is considered conserved if all sites are strongly conserved. The p-values are

denoted for each method (see Methods for the statistical test).

first order dependence), these motifs might match with some sequences that are unlikely to

function as an NLS. It should however match well with many valid NLS. In other words, we

might expect the motif in the form shown in Figure 4 to have some false positives but high

recall of valid NLS.

C. Identified motifs are highly conserved

Since at least some of the discovered motifs may play an as yet unidentified role in localization,

we sought other ways of validating them as potential sorting signals. One approach was based on

analysis of motif conservation: we expect motifs targeting proteins to their subcellular location

to be more conserved among evolutionarily close species [36].

1) Protein homolog alignment: To evaluate the conservation of the motifs identified by each

of the methods we used Saccharomyces Genome Database (SGD) fungal alignments for 7 yeast

species [37]. The default alignment result is used. Sequence and homology information were

derived from integration of two previous comparative genomics studies [38], [39]. For these

species amino acid sequence alignment was performed by ClustalW, and four conservation states

were defined for each amino acid: no conservation versus weak, strong and identical conservation

(across 7 species).

2) Measure of conservation: The analysis below is based on the 20 most discriminative motif

candidates, defined by backward feature selection as described previously. For each of the 20
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motifs, we retrieve the top 30 positions based on likelihood or posterior probability. Then for

each motif instance, it is considered conserved if all sites are labeled as having strong or identical

conservation by ClustalW.

3) Significance of motif conservation: The statistical significance of motif conservation is

calculated as follows. We scan through all proteins in our dataset using a sliding window of

4 amino acids (the motif length we used) to obtain the number of conserved 4-mer and total

possible 4-mers. For each motif finding method, we have the number of conserved motif instances

and the total number of top motif instances. With these counts we use a hypergeometric test to

calculate a p-value for each method.

4) Conservation of motifs found by different methods: The percentage of conserved motif

instances for MEME, generative and discriminative HMM (flat or hierarchical structure) as well

as the significance for each of these methods are presented in Figure 5. The conservation analysis

clearly indicates that motif instances discovered by all methods are significantly conserved

when compared to random protein regions. Using a sliding window of the same length as

the motifs, we find that only 41% of 4-mers are conserved. In contrast, for motifs identified

by discriminative HMM using flat or hierarchical structure, 49% and 51% of motif instances

are conserved respectively. For generative HMM 48% of motif instances are conserved and for

MEME 45% instances are conserved. The conservation achieved by discriminative HMM using

hierarchical structure is the highest among the methods we looked at.

D. Reannotating proteins

The motifs discovered by our method successfully predict the subcellular localization of close

to 60% of all proteins. Still, we were interested in looking more closely at the other 40% for

which we do not obtain the expected result. Several other factors can effect localization and our

method clearly does not discover all targeting motifs. Still, we hypothesized that at least some

of these mistakes can be explained by incorrect annotation in the SwissProt database.

To test this we have used the entire dataset as training set for both motif finding and the

SVM classifier. Next, we examined more closely those proteins for which none of the motif-

based methods (PSLT2, MEME, generative and discriminative HMM using hierarchical structure)

agrees with the annotation in the SwissProt database. There are 42 such proteins out of 1,521

entries in the dataset we worked with.
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Fig. 6. Fluorescence microscope images for some of the proteins whose subcellular location predicted from sequence differs

from annotations in SwissProt. Each image shows the DNA-binding dye DAPI (red) and the GFP-tagged proteins (green). The

proteins are Frq1/YDR373W (left) and Ppt1/YGR123C (right). Images were obtained from the UCSF GFP-localization database

(http://yeastgfp.ucsf.edu/)

We have found at least 8 proteins for which there is strong reason to believe that the anno-

tations in SwissProt are incomplete. Four are discussed below and 4 more are discussed in the

supplement.

Ski3/YPR189W: The protein superkiller 3 (Ski3), which is involved in mRNA degradation,

was annotated as nuclear in the previous version of SwissProt used to create our annotated

protein set. However, all motif-based classifiers (including MEME and HMM) predicted cytosol.

The latest version of SwissProt, as well as SGD, lists it as localizing to both the nucleus and the

Ski complex (in the cytoplasm). This illustrates that the motif-based classifiers can potentially

complement protein databases and image-based annotations.

Frq1/YDR373W: The N-myristoylated calcium-binding protein, Frq1, is annotated as bud

neck in SwissProt but manually curated as Golgi membrane on SGD, in agreement with the

MEME prediction. The GFP image in the UCSF database is consistent with Golgi localization

(Figure 6A).

Ppt1/YGR123C: Ppt1, or protein phosphatase T, is curated as present in both the cytoplasm

and the nucleus on SGD. Cytoplasm is predicted by PSLT2 and MEME even though SwissProt

only lists nucleus. The GFP tagged protein shows cytoplasmic localization (Figure 6B).

Vac8/YEL013W: Vac8 is labeled as vacuole by human experts, but is also involved in

nucleus-vacuole (NV) junctions [40]. This could be the reason that an image-based automated

classifier [41] and all motif finders agree on Vac8 being localized to the nucleus.
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V. DISCUSSION

We have developed and used a new method that relies on discriminative HMMs to search

for protein targeting motifs. We used our method to identify new motifs that control subcellular

localization of proteins. Our method led to improvement over other methods when predicting

localization using these motifs. While many of the motifs identified by our method were not

known before, they are more conserved than average amino acids in protein coding regions

indicating their importance for proper functioning of the proteins. We have also used our method

to identify proteins that we believe are missannotated in public datasets. Some of the predicted

annotations are supported by imaging data as well.

Our discriminative HMM can be considered as an extension over the maximum discrimination

training of HMM suggested by Eddy et al [42]. The criterion used by both methods, conditional

likelihood of the class given the data, is the same. However the maximum discrimination method

proposed by Eddy et al only uses positive examples discriminating against background data. Thus,

it cannot utilize negative examples as our method does.

When compared to known motifs, the set of motifs identified by discriminative HMM contains

less known motifs than generative HMM and MEME, even though they lead to the highest

prediction accuracy. One way to explain this result is the relatively small number of known

targeting motifs. Thus, it could be that there are still many strong targeting motifs that are

unknown and discriminative HMM was able to identify some of these. In addition, most known

motifs are represented as consecutive peptides without insertion or deletion, hence they follow

more closely the MEME model. It is worth noting that our current method (like most motif

finders) does not incorporate information on position relative to sequence landmarks like the N-

or C-terminus or cleavage sites. Thus it does not find elements, such as the signal peptide, that

can be found using such alignments [43].

For future work, we would like to apply our method to more than 9 compartments, especially

detailed subcompartments which were not well studied previously. We also aim to study higher

eukaryotes, e.g. mouse and human, and ideally consider tissue-specific protein targeting. Since

the discriminative criteria we use assumes all sequences have the motif, it may be more sensitive

to incorrect annotations in training sequences [42]. Hence we also wish to make our sequence

weighting more robust. This is particularly important in order to utilize high-throughput data on
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subcellular localization [4], [41], [44]. High-throughput experiments cover more proteins than

curated datasets, but also contain more false positives and false negatives. Motif finding in these

datasets would require better handling of incorrect annotations and using different confidence

levels for different assignment depending on how well they are supported.

APPENDIX

THE EXTENDED BAUM-WELCH ALGORITHM FOR DISCRIMINATIVE TRAINING OF HMM

The objective function for discriminative training of HMM is the conditional likelihood of the

correct class given the observed values,

FMMIE =
∑

n

log p(cn|On) =
∑

n

log
p(On|λ

(cn))p(λ(cn))∑
m′ p(On|λ(m′))p(λ(m′))

where {O1, O2, · · ·ON} are the training sequences, cn ∈ {1, 2, · · ·M}, 1 ≤ n ≤ N are the

class labels of the sequences, and λ(m) is the HMM for the m-th class. The parameters for each

HMM are denoted by λ(m) = (a
(m)
ij , b

(m)
jk ), where a

(m)
ij and b

(m)
jk are the transition and emission

probabilities, respectively.

The maximal mutual information estimate (MMIE) algorithm is an extended version of the

Baum-Welch algorithm [27]. The E-step in extended Baum-Welch is the same as the one in the

original Baum-Welch. The expected count of state j at position t of sequence n according to

model λ(m) is denoted as γ
(m)
nt (j). The expected count of transition from state i to state j at

position t of sequence n according to model λ(m) is denoted as ξ
(m)
nt (i, j). These expected counts

are calculated by the forward-backward algorithm. For simplicity we denote the expected count

of transition and emission of the entire sequence n as ξ
(m)
n (i, j) and φ

(m)
n (j, k), defined as

ξ(m)
n (i, j) =

∑

t

ξ
(m)
nt (i, j)

φ(m)
n (j, k) =

∑

t

γ
(m)
nt (j)1ynt=k

The difference between generative and discriminative training is in the M-step. We will show

that MMIE weights positive examples as the posterior probability of incorrect classification,

1 − p(λ(m)|On), and weights negative examples as the negative of the probability of incorrect

September 11, 2009 DRAFT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 25,2010 at 19:31:49 EST from IEEE Xplore.  Restrictions apply. 



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 22

classification, −p(λ(m)|On). After sequence weighting the probabilities are estimated similar to

Baum-Welch, but a smoothing constant needs to be added to the probabilities of the same state

before normalizing [27], [45]. The smoothing constants also prevent negative probabilities due

to negative sequence weights. The reestimation formulas in the M-step of MMIE are,

â
(m)
ij ←

ξ(m)(i, j) − ξ(−m)(i, j) + DT a
(m)
ij∑

j′ ξ
(m)(i, j′) − ξ(−m)(i, j′) + DT a

(m)
ij′

(1)

b̂
(m)
jk ←

φ(m)(j, k) − φ(−m)(j, k) + DEb
(m)
jk∑

k′ φ(m)(j, k′) − φ(−m)(j, k′) + DEb
(m)
jk′

(2)

where ξ(m)(i, j), ξ(−m)(i, j), φ(m)(j, k), φ(−m)(j, k) are defined as follows for simplicity.

ξ(m)(i, j) =
∑

n|cn=m

[1 − p(λ(m)|On)]ξ(m)
n (i, j), ξ(−m)(i, j) =

∑

n|cn �=m

p(λ(m)|On)ξ(m)
n (i, j)

φ(m)(j, k) =
∑

n|cn=m

[1 − p(λ(m)|On)]ϕ(m)
n (j, k), φ(−m)(j, k) =

∑

n|cn �=m

p(λ(m)|On)ϕ(m)
n (j, k)

Following [46] we set the smoothing constants to twice the smallest value that ensures

nonnegative transition and emission probabilities. This was found to lead to fast convergence

empirically [46].

The MMIE literature does not use the sequence weighting perspective for the update formula,

due to the large number of classes. Here we will show that the update formula originally

developed for MMIE can be expressed as our sequence weighting forms. We will only derive

the equation for transition probability since the derivations for emission probability is the same.

The original update formula for MMIE is [27],

âij ←
a

(m)
ij

∂

∂a
(m)
ij

F(Λ) + DT a
(m)
ij

∑
j′ a

(m)
ij′

∂

∂a
(m)
ij

F(Λ) + DT a
(m)
ij′

(3)

The partial derivative of the objective function with respect to the transition probability aij

can be calculated as follows.
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∂

∂a
(m)
ij

F(Λ)

=
∂

∂a
(m)
ij

∑

n

log
p(On|λ

(cn))p(λ(cn))∑
m′ p(On|λ(m′))p(λ(m′))

=
∂

∂a
(m)
ij

∑

n|cn=m

log p(On|λ
(m))p(λ(m)) −

∂

∂a
(m)
ij

∑

n

log
∑

m′

p(On|λ
(m′))p(λ(m′))

=
∑

n|cn=m

∂ log p(On|λ
(m))

∂a
(m)
ij

−
∑

n

1∑
m′ p(On|λ(m′))p(λ(m′))

∂p(On|λ
(m))p(λ(m))

∂a
(m)
ij

=
∑

n|cn=m

ξ
(m)
n (i, j)

a
(m)
ij

−
∑

n

p(On|λ
(m))p(λ(m))∑

m′ p(On|λ(m′))p(λ(m′))

ξ
(m)
n (i, j)

a
(m)
ij

=
1

a
(m)
ij

∑

n|cn=m

[1 − p(λ(m)|On)]ξ(m)
n (i, j) −

1

a
(m)
ij

∑

n|cn �=m

p(λ(m)|On)ξ(m)
n (i, j)

Plugging in the above partial derivative to Equation 3 results in the sequence weighting update

formula, Equation 1. Equation 2 can be derived in a similar way.
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