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ABSTRACT 

 

While basic principles of microtubule organization are 

well understood, much remains to be learned about the 

extent and significance of variation in that organization 

among cell types and conditions. Large numbers of images 

of microtubule distributions for many cell types can be 

readily obtained by high throughput fluorescence 

microscopy but direct estimation of the parameters 

underlying the organization is problematic because it is 

difficult to resolve individual microtubules present at the 

microtubule-organizing center or at regions of high 

crossover. Previously, we developed an indirect, generative 

model-based approach that can estimate such spatial 

distribution parameters as the number and mean length of 

microtubules. In order to validate this approach, we have 

applied it to 3D images of NIH 3T3 cells expressing 

fluorescently-tagged tubulin in the presence and absence of 

the microtubule depolymerizing drug nocodazole. We 

describe here the first application of our inverse modeling 

approach to live cell images and demonstrate that it yields 

estimates consistent with expectations. 

 

Index Terms— Microtubules, parameter estimation, 

nocodazole, NIH 3T3 cells, generative models 

 

1. INTRODUCTION 

 

Microtubules play a critical role in many cellular processes 

and are a target of drugs used to treat cancer. The spatial 

distributions of microtubules are such that the density is 

very high close the centrosomal region and often very low at 

the lamellipodial region of the cell. High throughput image 

acquisition methods such as fluorescence microscopy can 

acquire images of an intact microtubule network, but their 

current resolution is not high enough to trace all individual 

microtubules in intact cells. 

 

Currently, methods and validation sets have been 

generated on portions of microtubules that are clearly 

distinguishable, accounting for only a small fraction of the 

total microtubules in an intact cell [1, 2]. While these likely 

suffice for studying dynamics of microtubules that reach the 

lamellipodium, they do not allow construction of whole cell 

models. 

 

We have previously described a generative model of 

microtubules and developed an indirect method of 

estimating its parameters [3].  Since whole cell images with 

known parameters were not available, we tested the ability 

of the method to accurately estimate model parameters using 

synthetic images generated using the model.  These tests 

revealed a low error in estimation but estimates for real 

images could only be described as generally consistent with 

current knowledge.  Here we describe estimation of 

microtubule model parameters from 3D fluorescence 

microscopy images of live cells under conditions in which 

changes in those parameters are expected.  This was done by 

acquiring images of living NIH 3T3 cells expressing 

fluorescently-tagged tubulin in the presence and absence of 

nocodazole, a drug that is known to depolymerize 

microtubules [4]. 

 

2. DATA ACQUISITION 

 

2.1. 3d NIH 3T3 dataset  

 

NIH 3T3 cells expressing EGFP-tagged alpha tubulin 

generated using CD-tagging [5] were cultured in 

DMEM supplemented with 10% Fetal Calf Serum and 100 

U/ml penicillin and 100 ug/ml streptomycin. The cells were 

grown to 80% confluency. On the day of imaging, the media 

was changed to Opti-MEM and a final concentration of 0.5 

ug/ml of Hoechst was added to label nuclei. The dish was 

incubated for at least 3 h in a CO2 incubator and then placed 

in a heated chamber that was maintained at 37° 

C throughout image acquisition. 3D images were acquired 

using a Zeiss LSM 510 confocal fluorescence 

microscope. The spacing between voxels was 0.09 microns 

in the focal plane and 0.48 microns along the axial 

dimension. 3D images of five different cells were acquired 

at 0, 10, 20, 30, 40 min after addition of nocodozale or 

buffer.  Due to photobleaching, full 3D images could not be 

acquired for the same cell at each time point, and therefore 
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different cells were imaged at each time point (only 

interphase cells were selected). 

2.2. Fluorescent bead acquisition 

As our modeling approach requires a model of the point 

spread function of the microscope used for acquisition, we 

generated an empirical estimate of the function using 20 nm 

fluorescent beads (488 nm absorption). 0.1 ml of a 

suspension of beads in optiMEM was placed on a clean 

glass slide and quickly covered by a coverslip. 3D images 

were acquired as above. 

 

3. METHODS 

3.1. Generative model of microtubules 

The generative model of polymerized tubulin distribution 

previously described for HeLa cells [3] was applied to NIH 

3T3 with only minor modifications.  While the plasma 

membrane position for HeLa images was estimated using a 

fluorescence channel showing total cell protein, this channel 

was not available in the 3T3 images.  The tubulin image 

itself was therefore used for this purpose since the presence 

of free tubulin allowed for a reliable estimate of cell 

boundaries. 

3.2. Point spread function 

3D images of beads were segmented into individual bead 

regions using Ridler-Calvard thresholding and registered 

using the 3D centroid of the bead. The beads were then 

averaged to estimate the point spread function. 

3.3. Free tubulin distribution estimation and generation 

Our previous generative model only took into account 

polymerized tubulin because the images were acquired by 

immunofluorescence staining of fixed cells lacking 

appreciable free tubulin.  This is because permeabilization 

of cells with detergents like Triton-X to allow antibody 

penetration causes most of the free tubulin to diffuse away. 

However, live cell imaging of fluorescently-tagged tubulin 

detects both free tubulin monomers and polymerized 

microtubules.   We therefore extend the previous model to 

account for free tubulin by estimating histograms of free 

tubulin intensities h(reg,nz)  for each nuclear or 

cytoplasmic region and for each 2D slice number nz. Free 

tubulin regions in each of the 2D slices was estimated by 

first detecting and removing the polymerized tubulin 

regions, as follows.  The input image was blurred using a 

Gaussian filter with standard deviation of 3, and the 

resulting image was subtracted from the input image. The 

subtracted image was binarized to separate zero and non-

zero pixels. Since the binary image has small clusters of 

disconnected objects seemingly forming microtubule fibers, 

the binary image is blurred again to connect objects that are 

close to each other. This operation was performed using a 

Gaussian filter with standard deviation of 2. The resulting 

image was again binarized. This ad hoc approach resulted in 

a reasonable definition of microtubules (as shown in Fig. 1). 

In order to generate free tubulin images for simulations, the 

histograms h(reg,nz)  were sampled to generate the 

corresponding distribution of free tubulin in all regions of 

the cell, f (x) .  

 

3.4. Tubulin Image Formation 

 

Here we describe the tubulin fluorescence image formation 

used for generating simulated images. Let I(x) be the tubulin 

 
Fig. 1. (A) 2D slice from a 3D image stack of a cell 

untreated with nocodazole. (B) Removal of 

polymerized tubulin (C) Regeneration of free tubulin 

distribution by sampling from free tubulin intensity 

histograms estimated from (B). 

 

 
Fig. 2. A 2D slice in the 3D stack of a simulated 

image. The image was generated with the number of 

microtubules set to 100, the mean of the length 

distribution to 60 microns, the standard deviation of 

length to 6 microns and the collinearity to 0.9961. 

 
Fig. 3. Single microtubule intensity detection on 

microtubules in a slice just below the nucleus.  The 

tubulin image is shown in blue and the points 

identified as showing a single microtubule are marked 

in red. 
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fluorescence image. Let p(x) and f(x) be the polymerized 

tubulin and free tubulin images respectively. Let  denote 

a 3D convolution. Then, I x( ) = psf p(x) + f (x)[ ], 

where psf is the point spread function of the imaging system 

(estimated as above). This can be written as:  

I x( ) = psf p(x)[ ] + psf f (x)[ ]       (1) 

psf p(x) = psf p'(x)[ ] = psf p'(x)[ ]  

where p’(x) is the model generated in pixel coordinates by 

the generative model for a given set of parameters and  is 

the scaling factor that matches the single polymerized 

tubulin intensities in the simulated images to the real images 

(see below).  Let f2(x) = psf f (x). Equation (1) then 

becomes: 

I x( ) = . psf p'(x)[ ] + f2(x) .

 

Hence, for a given set of parameters , I(x| ) can be 

generated. For a given set of parameters, the amount of free 

tubulin was adjusted by scaling f2(x)  according to the total 

amounts (total intensity) available (see Figure 2 for an 

example). 

3.5 Single microtubule intensity estimation 

The intensity of a single microtubule was estimated from the 

2D slice and region just below the nucleus of the cell. The 

reason for this is that the microtubules (if present) in this 

region have a very minimal overlap and are generally 

traceable.  was defined as:  

=
pR x( )[ ]
pS x( )[ ]

 

where [.] is the single microtubule intensity in the real (R) 

and simulated (S) images. [pR(x)] was estimated by 

averaging tubular pixel values and subtracting out the 

average free tubulin pixel values. The tubular pixel regions 

were detected using the method described by Frangi et al. 

[6] (see Figure 3 for an example). The remaining regions 

were assumed to be free tubulin. [pS(x)] was estimated 

directly from generated polymerized tubulin images p(x).  

was estimated from many images across the dataset and a 

single average value  was used. 

 

3.6 Library generation 

 

As described in [3], a library of simulated images was 

generated for  all combinations of discrete values of the four 

parameters: 

Number of microtubules = 0, 5, 20, 40, 60, 80, 100, 120, 

140, 160, 180, 200, 220 

Mean of length distribution (μ) = 5, 20, 40, 60, 80, 100, 120, 

140, 160, 180, 200, 220 microns 

Coefficient of variation of length = 0, 0.1, 0.2, 0.3 

Collinearity (cos ) = 0.97, 0.984, 0.992, 0.996, 1 

 

3.7 Feature selection and matching 

 

As described previously [3], parameters are indirectly 

estimated by choosing the synthetic image from the library 

that is most similar to a given real image.  This choice is 

made using numerical features calculated to describe the 

fluorescence distributions, and a critical component of this 

approach is the choice of features and distance function.  

We describe here a feature selection method to include in 

the distance function using training data. Cells 

corresponding to the 40-min time point do not appear to 

have polymerized tubulin. Therefore features were selected 

so as to minimize the normalized Euclidean distance in 

feature space between 4 images of the 40-min time point of 

nocodazole treated cells and simulated images for 0 

microtubules (only free tubulin). 

 

4. RESULTS 

 

3D confocal microscopy images were acquired at five 

different time points in the presence and absence of 

nocodazole, keeping all imaging parameters fixed. Figure 4 

shows an example set of such images for various times of 

treatment with nocodazole.  

 

 
Fig. 4. Example images of NIH 3T3 cells expressing EGFP-tagged alpha-tubulin at various time points after 

addition of 20 uM nocodazole (from left to right, 0, 10, 20, 30, and 40 min). 
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Cells treated with nocodazole for 40 min appear to have 

all of their microtubules depolymerized. All but one of the 

five images at this time point were therefore used to train 

the feature selection approach, and the features selected 

were used to estimate model parameters from all the images 

except the ones that were used for training. This procedure 

was repeated by holding out each image in turn (five-fold 

cross-validation). Figure 5 shows the parameter estimates 

averaged over the five folds and the five replicates per time 

point. Hence all points are averaged over 25 (5 folds x 5 

replicates) except that the last time point is averaged over 

five folds only. The number and mean of length distribution 

for nocodazole-treated cells decrease as a function of time, 

but in the control case, these parameters do not show a 

decreasing trend. The standard deviation error bars are very 

large in some of the points. This is because the parameters 

are averaged over different cells that are likely to have 

varying numbers and lengths of microtubules because of 

their varying sizes. However, there is a clear decrease in the 

number and mean of the length from the first and last time 

points in the nocodazole treated case as opposed to the 

untreated case. 

5. CONCLUSIONS AND DISCUSSION 

 

We have validated a microtubule distribution estimation 

system by estimating parameters from an image set of live 

cells. The estimated parameters follow the expected trend: 

cells treated with nocodazole tend to have less polymerized 

tubulin. Future work will include improving many of the 

image processing routines to achieve higher efficiency and 

robustness, as well as exploring the dependence of the 

estimates on the accuracy of the point spread function. 

 

In future, we plan to estimate parameters from different 

cell types. We also plan to build generative models of 

organelles (such as lysosomes or mitochondria) whose 

distribution may be conditioned on the microtubule model.  

Ultimately, we seek to build models in a hierarchical, 

conditional manner so that models of all cell components 

can be constructed by automated learning from cell images. 
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Fig. 5. Parameter estimates of the number (A) and mean 

length (B) averaged over different folds and repetitions. 
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