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An active role for machine 
learning in drug development
Robert F Murphy

Because of the complexity of biological systems, cutting-edge machine-learning methods will be critical 
for future drug development. In particular, machine-vision methods to extract detailed information from 
imaging assays and active-learning methods to guide experimentation will be required to overcome the 
dimensionality problem in drug development.

High-throughput and high-content 
screening have been widely adopted 
by pharmaceutical and biotechnology 

companies as well as by many academic 
labs over the past 20 years, with the goal 
of rapidly identifying potential drugs that 
a!ect speci"c molecular targets1–3. #ese 
technologies dramatically enhance the 
rate and amount of information that can 
be collected about the e!ects of chemical 
compounds, and publicly funded e!orts 
such as the Molecular Libraries Screening 
Centers of the US National Institutes of 
Health have permitted the creation of 
extensive databases such as PubChem. #ese 
databases typically contain the results of 
many screens in the form of scores for many 
compounds on a given assay, and they also 
contain information on the structures of 
compounds and the targets of particular 
assays. However, the premise that e!ective 
drugs can be found by screening primarily 
in single-target assays has run aground 
on the complex network of interactions 
that occur within cells and tissues; drugs 
o$en have unfavorable side e!ects that 
are not discovered until late in the drug-
development process4. Discovering these 
e!ects earlier in the process by screening 
simultaneously for a speci"c desired e!ect 
and against many (potentially thousands of) 
undesired ones is infeasible. 

One proposed approach is to create 
panels of assays to capture many aspects 
of cell or tissue behavior5. #is may reduce 
the dimensionality of the problem but 
would rely on knowing in advance which 
aspects to assay. In any case, the size and 
complexity of the problem make reliance on 
human evaluation of results problematic. 
#is type of challenge is being encountered 
throughout ‘big science’ projects and is one 
that machine learning, in which statistical 
and computational techniques are applied 
to learn complex relationships and build 

models, is well suited to address. #us, 
machine learning will have an increasingly 
important role in the drug discovery 
and development process in the future. 
Here I focus on two areas where machine 
learning can have a profound impact: the 
use of machine-vision methods to improve 
information extraction from high-content 
assays and the use of active machine 
learning to drive experimentation.

Seeing more in an assay
High-throughput microscopy and high-
content screening are widely used to 
determine the e!ects of small-molecule 
compounds, inhibitory RNAs or other 
treatments (collectively referred to as 
perturbagens) on both speci"c molecular 
targets and cell behaviors. Analysis for 
high-content screens is typically done by 
calculating features that describe aspects of 
the images and training a classi"er (Fig. 1a, 
i) to recognize the expected patterns (for 
example, of positive and negative controls)6,7. 
An alternative is to use clustering methods 
(which do not need to know the patterns 
ahead of time) to identify compounds that 
have similar biological e!ects8. 

Although these approaches can provide 
important information, they have two 
major limitations. #e "rst is that they do 
not work well when changes occur along 
a continuum, in which the assumption of 
discrete populations made by classi"cation 
and clustering methods does not hold. An 
example of a continuum is the relocation 
of a protein from one organelle to another. 
Classi"ers may reveal whether or not the 
relocation occurs in an end-point assay, but 
they do not accurately represent the kinetics 
of the process or whether two compounds 
di!er in the extent of induced relocation. 
#e second limitation is that image features 
are usually sensitive to di!erences in cell 
size and shape, such that the same classi"er 

cannot be used for more than one cell type. 
#is not only requires retraining for each 
cell type but, more importantly, also does 
not readily allow comparison of patterns 
between cell types.

Machine-vision methods have the 
potential to extract more detailed 
information from high-content assays than 
methods currently in use. Pattern-unmixing 
methods seek to address the continuous 
nature of relocation events by estimating 
the fraction of a target that is in each of 
the subcellular locations. #is can be done 
by both supervised methods (Fig. 1a, ii), 
in which the locations are speci"ed, and 
unsupervised methods (Fig. 1a, iii), in 
which the patterns are discovered at the 
same time that the fractions are estimated. 
Once discovered, the patterns can be 
represented by learning-generative models 
(Fig. 1a, iv), as discussed below.

In addition to their role in drug 
development, perturbagen studies also 
improve our understanding of cellular 
mechanisms, which in turn accelerates 
future drug development. Constructing 
models of cellular organization and how 
it changes through the cell cycle, through 
development and in response to disease or 
drugs is critical for understanding these 
mechanisms. However, current classi"cation 
methods for comparing di!erent cell types 
and conditions do not capture changes in 
su%cient detail (Fig. 1b). #e alternative 
is to build generative models directly from 
images to capture not just average behavior 
but how that behavior varies from cell to 
cell (Fig. 1b). We can view this problem 
as trying to infer a generative model of 
cell behavior from example images under 
speci"ed conditions.

Unlike descriptive, feature-based 
approaches, generative models are able to 
synthesize new images that in a statistical 
sense are drawn from the same population 
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as the images they were trained on. In this 
way, they are analogous to hidden Markov 
models for sequence motifs, which describe 
the input training motifs but can also 
generate new sequences. A critical question 
in designing approaches for learning-
generative models is how to decompose 
di!erent aspects of cell organization. 
One approach is to "rst build a model of 
nuclear size and shape and then use it as 
a basis for a model of cell size and shape. 
#e distribution of other components can 
then be learned relative to the nuclear and 
plasma membrane. Such models have a 
conditional structure; that is, the model of a 
given organelle (for example, an endosome) 
depends upon the models for the plasma 
membrane and nucleus, and the model 
for the plasma membrane depends on the 

model for the nucleus. #is approach has 
been used to learn models of HeLa cells, "rst 
in two dimensions9 and more recently in 
three dimensions10,11. Many aspects of these 
models were simplistic, so additional work 
will be needed to improve them, including 
more realistic models of organelle shape 
and the distribution of proteins within 
organelles. In addition, it will be crucial to 
capture which distributions are conditional 
upon which (for example, whether the 
distribution of mitochondria is determined 
by the distribution of microtubules and to 
what extent).

A major advantage of learning-
generative  models is that the parameters 
of those models provide a method for 
comparing distributions between cell types 
or conditions. For example, we can ask 

whether the distribution of mitochondria 
within one cell type follows the same model 
as another cell type once di!erences in cell 
size and shape are factored out. Similarly, we 
can ask whether a perturbagen that appears 
to change both cell shape and microtubule 
distribution performs each function 
independently or whether the change in the 
latter can be accounted for by the change in 
the former.

Improving how we use machine learning 
to extract and represent information from cell 
images is an area of ongoing research, and 
much work remains to be done. Of particular 
importance will be methods for learning and 
modeling cell organization not just in space 
but in time. Since continuous imaging of the 
same cell at subsecond resolution for many 
days is not currently feasible, adding temporal 
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Figure 1 | Machine-vision methods for identifying and resolving drug and disease e#ects on protein distributions. (a, i) Given a collection of images for a cell type 
with unknown patterns (such as tagged proteins with unknown subcellular distributions) and images for proteins with known (fundamental) location patterns 
in that cell type, a classifier can be trained to recognize those subcellular patterns and used to assign a label to each unknown image. If the unknown images 
contain a mixture of patterns, results will be unpredictable. (a, ii) As an alternative, the fundamental location images can be used to train a supervised pattern-
unmixing system so that the fraction of each unknown protein present in each fundamental pattern can be determined. This provides a better representation 
for the protein’s distribution. (a, iii) If images of the fundamental patterns are not available (or if all patterns are not known), unsupervised pattern unmixing 
can be used to simultaneously estimate the fundamental patterns and the fraction in each. (a, iv) Lastly, the fundamental patterns can each be represented 
by learning-generative models, so that each unknown protein can be compactly represented as a set of pattern models plus the fraction of protein in each. (b) 
Methods for comparing location patterns between cell types and conditions. Current methods use features to train classifiers to recognize patterns in each cell 
type, and then apply them to determine if the pattern has been changed by a compound. This typically detects only major changes. Alternatively, the parameters 
of generative models provide a more interpretable and consistent means of comparing patterns between cell types, and a more sensitive approach for analysis 
of compound e#ects. In this hypothetical example, the first cell type (X) undergoes a change in the morphology of the Golgi that was missed by classification 
but was reflected in the generative model. In a third cell type (Z), a protein is relocalized in response to a drug from Golgi to a population of endosomes that are 
statistically larger than in untreated cells.
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information involves not only determining 
the timescales on which changes occur but 
also combining information from di!erent 
time series. #e ultimate goal is a machine 
model of the spatiotemporal behavior of each 
cell type. #is brings us to the question of 
how those behaviors change in response to 
disease or drugs.

Active learning to the rescue
At a fundamental level, the central problem 
of screening for potential drugs is the 
dimensionality of the experimental space 
within which screening takes place. As 
highlighted in Figure 2, the number of 
experiments required to directly screen 
for compounds that a!ect one target while 
not a!ecting others can quickly become 
intractable. #e only practical solution 
is to carry out a subset of the possible 
experiments. Current approaches in drug 
development require scientists to choose a 
path through experimental space guided by 
existing knowledge (for example, signaling 
pathways), investigator insight and intuition. 
#is process is o$en hindered by incomplete 
or incorrect pathway information and 
the di%culty of making predictions 
about complex pathway interactions. An 
alternative described here involves the use 
of active machine-learning methods to 
build statistical models of the entire space 
and iteratively choose experiments that 
are expected to best improve the model. 
#e major strength of this approach is that 
experiment choice is guided on a purely 
empirical basis and in full consideration 
of the potential complexity of the system. 
Active learning is well established in some 
domains, and it has been applied in a few 
cases to biological problems (Box 1).

#e two main components of an 
active-learning system are a method for 
constructing a predictive model from 
currently available data and a method 
for using the model to determine future 
data collection. Passive machine-learning 
applications consist of just the "rst 
component. #e system is ‘active’ because 
the learner is able to iteratively choose one 
or more data points to be collected and 
added to the existing data. #e construction 
of models and their application to guide 
experimentation are already central to the 
"eld of systems biology. #e key di!erence 
between active learning and systems 
biology is that the latter typically seeks to 
test or validate a model. Systems biology 
therefore describes only one round of model 
construction and testing and chooses a high 
(o$en the highest) con"dence prediction 
to test. However, except in cases where the 
model construction was seriously &awed, 
the prediction is typically correct and 

therefore provides little or no information 
for improving the model. By contrast, the 
essence of active-learning methods is to 
choose experiments for which predictions 
are likely to be wrong, (as discussed below) 
as these experiments are expected to most 
directly lead to model improvement.

Constructing predictive models
#e choice of a model-construction 
method should be speci"c to the problem 
being studied. In the case considered 
here, we wish to determine the e!ects of 
perturbagens upon many targets (typically 
proteins) in many cell types. As shown 
in Figure 2, we can view the problem as 
a three-dimensional matrix in which the 
contents of each element contain a label 
specifying the phenotype that was, or is 
predicted to be, observed for that particular 
combination of variables. Given the size of 
this matrix and the explicit goal of "lling it 
without doing exhaustive experimentation, 
the modeling challenge is straightforward: 
learn a set of rules much smaller in number 
than the size of the matrix that allows the 
value of all elements to be imputed. We 
must assume that such a set exists, since the 
alternative is that nothing but exhaustive 
(or nearly exhaustive) experimentation 
will do. Fortunately, the accuracy of 
model predictions for future experiments 
provides a measure of the correctness of this 
assumption.

For a screen, information is available not 
only on the results of assays (which we refer 
to below as ‘internal’ data) but also on the 
properties of the targets and perturbagens 
(‘external’ data). We can therefore consider 

two variations on the modeling problem: 
one in which we ignore external information 
and one in which we take it into account. 
Ignoring external data may provide a less 
biased exploration of the assay results. #is 
is possible because not only can external 
data be wrong (for example, a protein-
protein interaction listed in a database 
may not occur under the conditions of the 
experiment) but also they might not be 
distributed randomly over the sets of targets 
and perturbagens (much more information 
is available on certain classes of targets than 
others, sets of motifs are biased toward 
systems that have been more heavily studied 
and chemical descriptors may be missing 
essential moieties not previously observed to 
be important).

Once a model is constructed, the 
challenge is choosing which data to collect 
next. A number of active-learning methods 
have been described to perform this task 
that typically balance between choosing 
points for which the current model is 
uncertain and points in regions that have 
not been explored. #e goal is not to test 
the current model (given that all models are 
wrong to some extent) but rather to improve 
it as much and as quickly as possible. My 
group is currently developing systems for 
both the ‘internal only’ and ‘internal plus 
external’ cases.

Conclusion
As the complexity of cellular systems is 
expected to continue to challenge both 
cell biologists and drug developers for 
many years, machine-learning methods 
hold tremendous promise for determining 
the critical relationships governing cell 
behaviors. #is promise will be realized 
through better extraction of information 
from high-content screens and more 
e!ective experimentation driven by 
active learning. #e result will be that 
drug discovery and development will 
be dramatically improved by the ability 
to assess e!ects of potential drugs more 
comprehensively. Clearly much work 
remains to be done, not least of which is to 
convince practitioners of the value of ceding 
some important decisions to machines. 

Cell type
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throughput/
high-content
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Figure 2 | The perturbagen e#ect hyper-rectangle. 
Each element of the three-dimensional matrix 
contains the phenotype observed or predicted for 
a given combination of perturbagen, target and 
cell type. For 1 × 104 protein targets, 1 × 102 cell 
types and 1 × 106 compounds, filling the matrix 
would require 1 × 1012 assays. With triplicate 
wells for each assay and 384 wells per plate, this 
corresponds to approximately 10 billion plates. At 
a rate of 1 plate per minute, this would take 15,000 
years. Varying the concentration of compounds 
or testing combinations of compounds makes the 
problem exponentially worse.

Virtual drug discovery12,13

Reconstructing gene networks14

Cancer classi"cation15

Finding cancer rescue mutations16,17

Predicting macromolecular structure18

Learning protein–protein interactions19

Box 1 | Examples of active-learning  
applications in biology
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