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ABSTRACT

Proper subcellular localization is critical for proteins to perform their roles in cellular
functions. Proteins are transported by different cellular sorting pathways, some of which
take a protein through several intermediate locations until reaching its final destination. The
pathway a protein is transported through is determined by carrier proteins that bind to
specific sequence motifs. In this article, we present a new method that integrates protein
interaction and sequence motif data to model how proteins are sorted through these sorting
pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways.
The model is able to determine intermediate sorting states and to assign carrier proteins and
motifs to the sorting pathways. In simulation studies, we show that the method can accu-
rately recover an underlying sorting model. Using data for yeast, we show that our model
leads to accurate prediction of subcellular localization. We also show that the pathways
learned by our model recover many known sorting pathways and correctly assign proteins
to the path they utilize. The learned model identified new pathways and their putative
carriers and motifs and these may represent novel protein sorting mechanisms. Supple-
mentary results and software implementation are available from http://murphylab
.web.cmu.edu/software/2010_RECOMB_pathways/.

Key words: gene expression, HMM, machine learning, pathways, protein motifs, subcellular

localization, protein sorting.

1. INTRODUCTION

To perform their function(s), proteins usually need to be localized to the specific compart-

ment(s) in which they operate. Subcellular localization of proteins is typically achieved by sorting

pathways involving carrier proteins. Disruption of these pathways leading to inaccurate localization plays an

important role in several diseases, including cancer (Cohen et al., 2008; Kau et al., 2004; Gladden and Diehl,

2005), Alzheimer’s disease (De Strooper et al., 1997), hyperoxaluria (Purdue et al., 1990), and cystic fibrosis

(Skach, 2000). Thus, an important problem in systems biology is to determine how proteins are localized to

their target compartments, the carriers and motifs that govern this localization, and the pathways that are

being used.
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Recent advances in fluorescent microscopy coupled with automated image-based analysis methods

provide rich information about the compartments to which proteins are localized in yeast (Huh et al., 2003;

Chen et al., 2007) and human (Osuna et al., 2007; Barbe et al., 2008; Newberg et al., 2009). Several

computational methods have been developed to predict subcellular localization by integrating sequence

data with other types of high-throughput data (Chou and Shen, 2008; Horton et al., 2007; Emanuelsson

et al., 2007, 2000; Nair and Rost, 2005; Scott et al., 2005; Rashid et al., 2007; Bannai et al., 2002). These

methods either treat the problem as a one versus all classification problem (Chou and Shen, 2008; Ema-

nuelsson et al., 2007, 2000; Horton et al., 2007) or utilize a tree that corresponds to the current knowledge

regarding intermediate compartments, for example, LOCtree (Nair and Rost, 2005), BaCelLo (Pierleoni

et al., 2006), and discriminative HMMs (Lin et al., 2011). The tree-based methods were shown to be

superior to the one versus all methods; however, these methods do not attempt to learn the sorting

pathways, relying instead on current (partial) knowledge of protein sorting mechanism.

A number of methods have learned decision trees for predicting subcellular localization. These include

PSLT2 (Scott et al., 2005), which refines the location into sub-compartments using a decision tree learned

from data, and YimLOC (Shen and Burger, 2007), which learns a decision tree for the mitochondrion

compartment only using features that include predictions from SherLoc (Shatkay et al., 2007), an abstract-

based localization classifier. While the decision trees generated by these methods are often quite accurate,

they are not intended to reflect sorting pathways, and they utilize features that, while useful for classifi-

cation, are not related to the biochemical process of protein sorting.

In contrast to the global localization prediction methods, several experimental researchers have focused

on trying to assign a specific sorting pathway to a small number of proteins. For example, proteins

containing a signal peptide are exported through the secretory pathway (Lodish et al., 2003), while some

proteins without a classical N-terminal signal peptide are found to be exported via the non-classical

secretory pathway (Rubartelli and Sitia, 1997). A number of computational methods were developed to

use this information to predict, for a given pathway, whether a protein goes through that pathway or not

based on its sequence—for example, SignalP (Bendtsen et al., 2004b) and SecretomeP (Bendtsen et al.,

2004a). However, these methods rely on the pathway as an input and cannot be used to infer new

pathways.

There are many methods developed for reconstruction of pathways of other types, for example, for

signaling pathways (Ruths et al., 2008; Bebek and Yang, 2007; Scott et al., 2006) and metabolic pathways

(Dale et al., 2010; Fischer and Sauer, 2005; Covert et al., 2004). These pathways are used to describe

information flow: one protein senses the environments and by activating a signaling or regulatory pathway

passes that information along so that the cells can mount a response. We focused on a completely different

meaning of pathway: physical movement of a specific protein. When referring to sorting pathways, we

mean that a single protein is being carried from one location to another. Unlike information flow pathways,

which involve different molecules along the way, physical sorting pathways always involve the same

proteins interacting with a set of different proteins. This makes it much more complicated to infer the order

in which this is performed (since it is always the same protein). In addition, the outcome of an information

flow pathway is often a change in genes expression which can be readily measured using microarrays. In

contrast, the outcome of a sorting pathway is the localization of a single (or a few) proteins to a com-

partment. Again, this requires different methods for inference. We are not aware of any prior article

discussing computational methods for large scale inference of pathways describing physical movement of a

protein.

While the above experimental methods provide some information on sorting pathways, no method exists

to try and infer global sorting pathways from current localization information. In this article, we show that,

by integrating sequence, motif, and protein interaction data, we can develop global models for the process

in which proteins are localized to subcellular compartments. We use a hidden Markov model (HMM) to

represent sorting pathways. Carrier proteins and motifs are used to define internal states in this model and

the compartments serve as the final (goal) state. Using this model, we identified several sorting pathways,

the carrier proteins that govern them, and the proteins that are being sorted according to these pathways.

Simulation data indicates that the models learned are accurate (leading to 81% prediction accuracy with a

noise level of 5%; see Fig. 3 below). Using data from yeast, we show that our model leads to accurate

classification of protein compartments while at the same time enabling us to recover many known pathways

and the proteins that govern these pathways. Several new predictions are provided by the model re-

presenting new putative sorting pathways.
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2. METHODS

2.1. Input data

Our input data is composed of the localization of all proteins, their interactions, and their sequences.

Each protein is labeled with one or more locations. Generative HMM search for motifs present in one

compartment and discriminative HMM search for motifs present in one compartment but absent in other

compartments. We also collected all interacting partners of the protein and the occurrences of a set of

known motifs from public databases (denoted as deterministic motifs to distinguish from novel motifs

extracted from sequence described below), specifically InterPro (Mulder et al., 2003) domains and three

signal sequence feature from UniProt (Bairoch et al., 2005): signal peptides, transmembrane region, and

GPI anchor (for more detail, see Section 3.2). We perform feature selection by a hypergeometric test to

identify features with a significant association with a location before learning our model.

We extract novel motifs associated with a location using the generative and discriminative HMM motif

finder we have previously described (Lin et al., 2011). We will compare two approaches to convert each

sequence to motif features: sequence likelihood and binary occurrence. The first approach uses the se-

quence likelihood given the motif as feature, Pr(Srkk) where kk is the profile HMM of the motif. It

represents how strong the instance matches the motif. Note that what really matters is the likelihood ratio of

motif versus background, as described below. The second approach uses a binary value to represent

whether a motif occurs in a sequence instead of a real value. Binary motif occurrence are determined by

posterior decoding as described in our previous article (Lin et al., 2011).

2.2. Modeling sorting pathway by hidden Markov models

We used a HMM to model the process of sorting proteins to their compartments, determined by the

interactions and sequence motifs. HMM is a generative model and thus provides the set of events that lead

to the observed localization of the proteins (Fig. 1). An allowed pathway through the HMM state space

structure represents a possible protein sorting pathway. All proteins start at the same start state, representing

their translation in the cytoplasm. (While those few proteins that are translated in mitochondria would not

begin in the cytoplasm, there were no mitochondrially-encoded proteins in our datasets and we can ignore

this possibility.) The assigned (final) compartment of a protein is represented by a state in the model that

A B C

FIG. 1. (A) The graphical model representation of a sample HMM for sorting pathways. Variables X1 � � �X4 are

unobserved intermediate sorting states at each level or each step. Z1 � � � Z3 are the emission responsible for protein sorting

at each step. S is the sequence and F corresponds to the binary feature observations. (B) The simplified HMM that

maintains conditional independence between steps. (C) A sample state space: The top block is the root and its outgoing

arrows correspond to initial probabilities. Bottom nodes are compartment states. The blocks are states and the arrows are

transitions, with transition probabilities labeled. The items listed inside a blocks are top features emitted by the states, and

emission probabilities are given on the left. Diamond-shaped blocks are silent states that emit the background feature only.
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does not have any outgoing transitions. Intermediate states correspond to intermediate compartments or to

sorting events (e.g., interaction with a carrier protein). These internal states emit observed features that are

related to the sorting events, namely motifs (implying that the targeted protein uses that motif to direct it to

that state) and carrier proteins that target proteins to the state. The emitted features of a protein are observed

and determine its path in the state space. Emission is probabilistic, and so certain proteins can pass through

states even if they do not contain any of the motifs and do not interact with any of the carriers for that state.

Note that while the compartment information is available during training, we do not know how many

intermediate states should be included in the model (some sorting pathways may be short and others long,

and several compartments can share parts of the pathways). Thus, unlike traditional HMM learning tasks

that focus on learning the transition and emission probabilities, for our model we also need to learn the set

of states that are used in the sorting HMM.

2.3. A HMM for the sorting pathways problem

We will discuss the likelihood of our HMM in detail here (Fig. 1). The following description applies to

using likelihood for motif features, but can be easily adapted to the case of binary motif features by

removing the sequence variable S and include motif occurrences in the binary feature variables F. As

discussed above, in our HMM model all proteins move from a single start state to their final compartment.

For reasons that will become clear when talking about learning the parameters of the model, we associate

each state in our model with a specific level. The root state is level 0, all compartment states are associated

with the final level (T) and each intermediate state is associated with a specific level t (0 < t < T). The

number of levels T is inferred from the data during structure initialization as described in section 2.6. We

require that a state at level t can be reached from the root after exactly t transitions; connections that are

more than one level apart move through several ‘‘silent’’ states so that transitions are only between adjacent

levels (diamond-shaped states in Figure 1). Silent states only emit a ‘‘background’’ feature. Let Xt denote a

hidden state at level t, t¼ 1‚ 2‚ � � � ‚ T in a T-level model. The value of Xt can be one of J possible states,

Xt 2 f1‚ 2‚ � � � ‚ Jg.
In addition to transition probabilities states are associated with emission probabilities. State Xt emits a

feature index Zt. Zt can either be one of M motifs (represented as a likelihood score for each protein), or

one of K binary features which include interactions with selected carriers, selected deterministic motif

occurrences based on UniProt, or the background feature emitted by silent states. Hence Zt 2 f1‚ 2‚ � � �
MþK þ 1g, where the motifs are indexed from 1 to M and the features are indexed from M + 1 to

M + K.

Let S denote the sequence observed for each protein, F be the binary features from interaction databases

and UniProt, and Y be the compartment assignments for a protein. The data likelihood of our HMM model

(Fig. 1), is defined as:

Pr (S‚ F‚ Y jY)¼ +
X1

� � �+
XT

+
Z1

� � � +
ZT � 1

Pr (S‚ F‚ Y‚ X1‚ � � �XT ‚ Z1‚ � � � ZT � 1jY)

These joint probabilities can be decomposed based on the HMM independence assumptions as follows:

Pr (S‚ F‚ Y‚ X1‚ � � �XT ‚ Z1‚ � � � ZT � 1jY)

¼ Pr (X1)
YT � 1

t¼ 1

Pr (Xtþ 1jXt) Pr (ZtjXt) Pr (SjZ1‚ � � � ZT � 1)

Pr (FjZ1‚ � � � ZT � 1) Pr (Y jZT ): (1)

The parameters of our HMM are the initial, transition and emission probabilities, Y = (p, A, B), defined

as

pi¼ Pr (X1¼ i)‚ Aij¼ Pr (Xtþ 1¼ jjXt¼ i)‚ Bik ¼ Pr (Zt¼ kjXt¼ i):

where pi is the initial probability of transition from the root to state i, Aij is the transition probability

between state i and state j, and Bik is the emission probabilities from state i to emission k. Since each

state only transits to a small number of states and emits a small number of features, these matrices are

sparse.
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2.4. Defining the emission and transition probabilities for our model

As indicated above the feature observation includes the sequences and interactions selected carriers in-

ferred by feature selection described above. Note that these observations are static and so may depend on all

levels in the HMM. The emission probability for the sequence S is thus Pr (SjZ1‚ � � � ZT � 1). Since probability

depends on several motif models (one per level), which may be dependent (for example for overlapping

motifs) and is thus computationally intractable given many combinations of motifs. As is commonly done

(Sinha, 2006), we approximate this term by the product of the conditional probabilities of the sequence given

an individual emission at each level:
QT � 1

t¼ 1 Pr(SjZt). Similarly we calculate the conditional probability of the

binary features Pr (FjZ1‚ � � � ZT � 1) using the product of the conditional probabilities of individual emissions

(unlike for the sequence data this computation is exact since they are provided as independent events):QT � 1
t¼ 1 Pr(FjZt). This leads to the more typical HMM model shown in Figure 1B.

To translate the sequence information to a probability we use the likelihood of the sequence given the

motif, Pr(Srkk), where kk is the motif mode. We use a profile HMM model in this article, but any other

probabilistic models would also work, for example, a position weight matrix (PWM) which specifies a

weight for each amino acid at each motif position, assuming independence between positions. This like-

lihood is termed the motif score and indicates how well the sequence agrees with the motif model. For

states emitting one of the binary features or the background feature, the likelihood of the sequence is

Pr(Srk0), where k0 is the background model for which we use a 0th-order Markov model, which assumes

that each position in the sequence are generated independently according to amino acid frequencies.

Combined, the sequence likelihood is given by

Pr (SjZt¼ k)¼ Pr (Sjkk) if 1pkpM

Pr (Sjk0) if Mþ 1pkpMþK þ 1

�
(2)

The binary features observations, F¼ (F1‚ F2‚ � � � ‚ FK)‚ Fk 2 f0‚ 1g correspond to observed protein

interactions and deterministic motifs as discussed above. As mentioned above, we assume independence in

noisy observation of these features, which is a necessary simplification. This leads to

Pr (FjZt ¼ k)¼
YK
j¼ 1

Pr (FjjZt¼ k)

The conditional probability of observing a feature Fj given an emission Zt is

Pr (Fj¼ 1jZt¼ k)¼
�j if k 6¼ Mþ j

‚ 1pjpK

�0 if k¼Mþ j

8<
: (3)

where mj is the probability of observing this interaction across all proteins in our dataset (background

distribution), and 1 - m0 is the probability of false negatives (i.e., proteins that should go through this state

but do not have this interaction/motif). Note that we need to use mj since an interaction or a motif may be

observed even if the corresponding feature is not emitted by one of the states since many interactions are

not related to protein sorting but rather to another pathway in which this protein is a member.

The conditional probability of the compartment given the final state is denoted by: Pr(YrXT ). If a single

compartment is given for a protein, the bottom state XT is known for that protein and so this probability is 1

for that compartment and 0 for others. If the training data contains multiple compartments for a protein, it is

reflected by the given compartment likelihood Pr(Y = yrXT = c), which is assumed to be uniform for all

compartments listed for that protein. In other words, we consider multiple localization as uncertainty. For

example, a protein might be considered to be 50% certain as one compartment and 50% certain as another

compartment.

2.5. Approximation and feature levels

Unlike a typical HMM learning problem, the emission data we observe (sequence and interaction data) is

static and so cannot be directly associated with any sequence of events. In addition, since our features are

static, they can be emitted multiple times along the same path. However, if this happens the independence

assumptions of HMMs are violated. Specifically, if a feature is emitted by a state in level t and then again by a
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state in level t + 1 then it is not true anymore that the probability of emitting the feature given the state is

independent of any emission events in previous states (since if it was emitted before, the protein can still emit

it again). We thus constrain all features in our model so that each is only associated with a specific level and

can only be emitted by states on that level. The level is determined in the initial structure estimation step

discussed in the next section. Since no transitions are allowed between states on the same level no feature can

thus be emitted more than once along the path and so the independence assumption holds. This requirement

guarantees that the likelihood function obtained from the model presented in Figure 1B is a constant factor

approximation of the likelihood function of our original model (Fig. 1A). See detailed proof at http://

murphylab.web.cmu.edu/software/2010_RECOMB_pathway/.

2.6. Structure learning

In addition to learning the parameters (emission and transition probabilities) we also need to learn the set

of states that should be included in our model. The learning algorithm is formally presented in Figure 2. We

start by associating potential features (protein interactions and known motifs) with compartments. For a

potential feature, we use the hypergeometric distribution to determine the significance of this association

(by looking at the overlap between proteins assigned to each compartment and proteins that are associated

with each of the features). We next identify a set of significantly associated compartments (p-value < 0.01

with Bonferroni correction) for each potential feature. Features that are significantly associated with at least

one compartment are selected and the remaining features are removed.

After feature selection, we estimate an initial structure by using the association between features and

compartments. All features that correspond to the same set of associated compartments are grouped and

assigned to a single state, such that this state emits these features with uniform probability. These features are

fixed to the level corresponding to the number of compartments they are significantly associated with and can

only be emitted by states on that level (we tried optimizing these feature levels as part of the iterative learning

process but this did not improve performance while drastically increasing run time). Initial transition between

states is determined from the inclusion relationship of the set of compartments (states for which features are

associated with more compartments are assigned to higher levels). We initially only allow transitions

between two states where the second state contains features that are associated with a subset of the com-

partments of the first state. That is, the initial structure resembles a partially ordered set when the states are

ordered by inclusion. The transition probability out of a state is also set to the uniform distribution. The

number of levels of this structure, T, will be fixed throughout the structure search process.

Starting with this initial model, we use a greedy search algorithm which attempts to optimize the

Bayesian information criterion (BIC), which is the negative data log likelihood plus a penalty term for

model selection.

FIG. 2. Algorithm for structure

search.
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BIC¼ � 2 log Pr (S‚ F‚ YjY)þ jYj log N

where S, F, Y are the collection of sequences, feature observations, and compartments of the proteins in the

training data. Y = p, A, B) denote the parameters of the HMM. rYr is the number of parameters according to

the structure, which is a function of the number of states and the number of transitions and emissions of each

state. Complicated structures will have large rYr while simple structures will have small ones. N is the number

of proteins in our training data. BIC is asymptotically consistent while Akaike information criterion (AIC) is

not, and BIC is chosen particularly because we prefer sparser structures (Hastie et al., 2003). Since use of BIC

can sometimes lead to overfitting, we compared the use of BIC to fourfold internal cross-validation for model

selection. BIC is faster than internal cross validation and performed better on simulated data (see Section 3.1).

To improve the initial structure described above we perform two types of local moves at each search

iteration: adding a new state and splitting the largest state. For each level, we try adding a state which is

fully connected to all states in levels above and below it and emits all features on that level. We run

standard EM algorithm (Dempster et al., 1977) to optimize the parameters of the model for all states

(transition and emission probabilities). Transitions and emissions with probabilities lower than a specific

threshold are pruned. Features not emitted by any states are also pruned, so the feature set becomes smaller

and smaller. Then we run EM algorithm again because the parameters are changed. A candidate model and

structure is created by this process for each level. We also try splitting the largest state, defined as the state

with the largest number of out-transitions. A randomly chosen half of the out-transitions will be moved to a

newly created state which shares the same in-transitions and emissions. As above we run EM algorithm,

prune transitions and emission, and run EM algorithm again to obtain a candidate structure. We try this for

a fixed number of times, usually the number of levels so that half of the local moves are adding and half are

splitting. Among all candidate structures obtained by adding and splitting, the one with the highest BIC

score is chosen. This procedure is repeated until the BIC score no longer improves.

3. RESULTS

3.1. Simulated data

We first tested our method using simulated data in order to determine how well it can recover a known

underlying structure given only information on destinations, carriers and motifs. We manually created

structures with 7, 14, 23, 25, and 31 states with multiple emitted features per state (for the structure of these

models, see http://murphylab.web.cmu.edu/software/2010_RECOMB_pathway/). For each structure we

simulate the probabilistic generative procedure and record the emitted features. 1,200 proteins are gen-

erated from the model, with varying levels of noise (leading to false positive and false negative features for

proteins). We also tested various sizes of input sets with a fixed noise level.
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FIG. 3. (A) Testing error of simulated dataset generated from a structure with 25 states with varying levels of noise

(false positive and false negative in features). The training sample size was fixed at 1400. (B) Testing error versus

different training sample sizes. The noise level was fixed at 2%. (C) The ratio of overlapping nodes and edges between

the learned model and the true model with varying levels of noise. The training sample size was fixed at 1400. (D) The

ratio of overlapping nodes and edges with varying training sample sizes. The noise level was fixed at 2%.
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3.1.1. Predicting protein locations. While it is not its primary goal, our method can provide pre-

dictions regarding the final localization of each protein. For each training dataset, we therefore generated a

test dataset with 4,000 proteins from the same model and evaluated the accuracy of predicting protein

localization for the test data using the structure and model learned by our method. Our method is compared

to predictions made by the true model (note that due to noise, the true model can make mistakes as well) and

by a linear support vector machine (SVM) learned from the training data using the features associated with

each protein. Prediction accuracy on the 25-states dataset is shown in Figure 3, and the accuracy of other

simulated datasets are available at http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. As

can be seen, when noise levels are low, our model performs well and its accuracy is similar to that obtained

by the true model for both simple and more complicated models. Both the learned model and the true model

outperform SVM which does not try to model the generative process in which proteins are sorted in cells

relying instead on a one versus all classification strategy. We compare model selection based on BIC versus

fourfold internal cross validation. BIC achieved similar accuracy with less computation and matched the true

structure better.

3.1.2. Recovering the true structure. To quantitatively evaluate how well a learned structure re-

sembles the true structure, we use the graph edit distance to measure their topological similarity (Gao et al.,

2010). First we need to match the nodes in a learned structure to a node in the true structure. We run the

Viterbi algorithm on proteins in the testing data, and count the state co-occurrence matrix W whose

elements Wij is the co-occurrence of state i in the learned model and state j in the true model (i.e.,

the number of proteins in which the two states i and j occur in the Viterbi path inferred by the two models).

The optimal one-to-one matching M, denoted as a set containing pairs of matched state indexes, can be

found by running the Hungarian algorithm on the co-occurrence matrix W optimizing the objective function

+(i‚ j)2M
Wij.

With the optimal matching, we use the maximum common subgraph (MCS) and minimum common

supergraph in the graph edit distance methodology to quantify similarity between two structures. Given two

graphs G1 and G2, let Ĝ and �G be the MCS and minimum common supergraph of G1 and G2. Denote rGr as

the size, or the number of edges and nodes of a graph, we define the overlap rate as jĜj=j �Gj (i.e., the

percentage of overlapping edges and nodes). The overlap rate comparing to the true model on the 25-states

dataset is shown in Figure 3C. Structural comparison on other datasets is available on the supporting

website. As can be seen, our algorithm successfully recovers the correct structure in all cases with 0%

noise. As the noise increases the accuracy decreases. However, even for very high levels of noise the two

models share a substantial overlap (around 40% of states and transitions could be matched).

3.2. Yeast data

We next evaluated our method using subcellular locations of yeast proteins derived from fluorescence

microscopy (the UCSF yeast GFP dataset [Huh et al., 2003]). This dataset contains 3,914 proteins that were

manually annotated, based on imaging data, to 22 compartments. We collected the features from the

following sources. Protein-protein interaction (PPI) data was downloaded from BioGRID (BiG) (Stark

et al., 2006). For deterministic motifs we use the annotated occurrences of InterPro (Mulder et al., 2003)

domains and the following three signal sequences listed on UniProt (Bairoch et al., 2005):

1. Signal peptides: UniProt defines this sequence feature based on the literature or consensus vote of

four programs, SignalP, TargetP, Phobius and Predotar.

2. Transmembrane region: UniProt annotates a sequence with this feature either based on literature or

consensus vote of four programs, TMHMM, Memsat, Phobius and Eisenberg.

3. GPI anchor: UniProt annotation for this feature either relies on literature or prediction by the program

big-PI.

The above features are filtered by a hypergeometric test to identify features with a significant association

with a final destination (p-value < 0.01 with Bonferroni correction) before learning the model.

To extract novel motifs associated with localization, we downloaded protein sequences from UniProt

(Bairoch et al., 2005) and ran generative and discriminative HMM motif finder (Lin et al., 2011). We

extract 20 motifs for each compartment, and compared setting all to length 4 versus setting the length to

range from 3 to 7. The performance in all following evaluations are similar and we show results based on
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motif length as 4. We will compare using likelihood and binary occurrence for motif features. For binary

motif occurrence, a motif is considered present if posterior probabilities of the begin state and the end state

of the motif are both greater than 0.9 (detail in Lin et al., 2011).

3.2.1. Predicting protein locations. As with the simulated data, we first evaluated the accuracy of

predicting the final subcellular location for each protein. This provides a useful benchmark for comparison

to all other computational methods for which this is the end result. The performance is evaluated by 10-fold

cross-validation. In each fold both feature selection and motif finding are restricted to the training data

without accessing the testing data. We use three conventional measure in information retrieval: the accuracy,

micro-averaging F1 and macro-averaging F1 (Yang and Liu, 1999). For the accuracy, a prediction is con-

sidered correct if it matches any of the true locations. The F1 score is the harmonic mean of precision and

recall (Van Rijsbergen, 1979). Micro-averaging takes the average of the F1 score over all proteins, giving

each protein an equal weight; in other words, the classes are weighted by their sizes. Macro-averaging takes

the average of the score over classes, giving each class an equal weight. Including macro-averaging F1

ensures smaller classes are not ignored since other measures are dominated by large classes. The result is

shown in Figure 4. We compared our method with the k-Nearest Neighbors (kNN) from Lee et al. (2008)

which was shown by the authors to outperform other methods. As can be seen in Figure 4, PPI information

(BiG) provides the major contribution for accurate predictions while InterPro motifs do not contribute as

much. This agrees with previous studies (Scott et al., 2005; Lee et al., 2008). When adding more features, the

performance improves and the best result is achieved using all features. Note that the accuracy of our method

is very close to that of the kNN method. However, it is important to note that our method performs the much

harder task of simultaneously learning the sorting pathways as well as predicting locations. Unlike these prior

methods, our method correctly determines pathways and not just end points. This is an important contribution

of the method that is achieved while not compromising prediction accuracy.

FIG. 4. The accuracy of predict-

ing the final subcellular location. For

kNN, we use the reported accuracy

based on PPI information from BiG,

deterministic InterPro motif anno-

tation from UniProt, and amino acid

composition of different length,

gaps, and chemical properties using

leave one out cross validation (Lee

et al., 2008). For HMM, we also

show micro-averaging and macro-

averaging F1 score in 10-fold cross validation. The features for HMM include InterPro and BiG, and three signal sequences

from UniProt. The novel motifs are learned using generative or discriminative HMM of length 4, represented by likelihood

and binary features (GenHMM/DiscHMM b).

FIG. 5. Protein sorting pathways

collected from the literature. Each

pathway is a path from cytosol to a

compartment at the bottom, con-

sisting of one or more steps (the

links) that transport proteins be-

tween intermediate locations. Each

step has a list of carriers and motifs

responsible for the transportation

by which we can verify whether the

pathway is recovered. Shaded links

denote steps whose carriers are

underrepresented on BiG (covering

less than 5% of proteins transported

to the corresponding compartment in the GFP dataset). Dashed lines denote steps taken by default without specific

carriers. The percentage under pathway name is the protein sorting precision when the pathway is recovered, as

described in Table 2.
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3.2.2. Evaluation of the learned structure. To evaluate the accuracy of the learned structure, we

collected information about known sorting pathways from the literature. We were able to find information

regarding 13 classical and non-classical sorting pathways (pathways followed by a minor fraction of

proteins or that differ from the first discovered pathway are often referred to as non-classical pathways). For

each of these pathways, we identified a set of carriers or motifs that govern the pathway and, when

available, the set of proteins that are predicted to use this pathway. Figure 5 presents the pathways we

collected from the literature. For example, the classical HDEL pathway into ER has two steps. In the first,

proteins with signal peptide (SP) are introduced into this pathway by the SRP complex. In the second,

proteins with the HDEL motif are retained in ER by interaction with proteins Erd1 and Erd2. The full list

of carriers and motifs for these pathways is available at http://murphylab.web.cmu.edu/software/

2010_RECOMB-pathways/.

We first wanted to check if the databases we used for obtaining features contain the carrier information

for the literature pathway. We filtered pathways for which carrier information in the BIG database did not

contain the genes associated with the pathway (and thus no method can identify this pathway based in this

input data) leaving 10 pathways that could, in principal, be recovered by computational models. Sorting

steps that were filtered out in this way are represented as shaded links in Figure 5.

To determine whether we accurately recovered a pathway in our model, we looked at the carriers and

motifs that are associated with that pathway in the literature. A step in a literature pathway can be matched

to a state if the state emits any carrier or motif in that step. A known pathway is considered recovered in a

learned structure if its steps can be matched to the states along a path from the root to the compartment to

which it leads. A pathway is partially recovered if only some of its steps can be matched. For example, the

MVB pathway (Fig. 5) is only partially recovered (66.7%) because the third step does not have a well-

represented carrier in the data sources. The numbers of recovered pathways for different sets of features are

listed in Table 1. The ranges correspond to the different folds in our cross validation analysis. Fractions

represent partial matches as discussed above. When using the full set of input features our algorithm is able

Table 1. Pathway Recovery Results of Structure Learned from Different Feature Sets

Features Pathway recovery Inferred protein path

HMM BiG 5.9 (4.7–8.0) 7% (4–10%)

HMM BiG + Ipr + Signals 7.2 (5.7–8.7) 8% (6–11%)

HMM BiG + Ipr + Signals + GenHMM b 6.2 (4.3–7.7) 8.4% (6–11%)

HMM BiG + Ipr + Signals + DiscHMM b 6.2 (5.3–7.3) 8.4% (6–11%)

HMM BiG + Ipr + Signals + GenHMM 7.7 (6.7–8.7) 17.9% (13–23%)

HMM BiG + Ipr + Signals + DiscHMM 7.7 (6.7–8.7) 19% (15%–23%)

The precision of inferred protein path is also listed here. Mean, minimum, and maximum among the 10 folds are

shown.

Table 2. Recovery and Protein Sorting Results of Each Pathway

Using the Features BiG + InterPro + Signals + DiscHMM 4

Compartment Pathway (#proteins) Recovery (folds) Steps Sorting

Nucleus NLS(15) 10/10 all 39%

Peroxisome Pex5 1/10 all

Pex7 10/10 all

PMP 9/10 all

ER HDEL(11) 10/10 SP + HDEL 33%

SP 25%

Cell periphery Sec(28) 10/10 SP 2%

Vacuole Vac 10/10 SP

MVB(9) 10/10 SP + MVB 23%

SP 9%

Vps41 10/10 SP

CVT 10/10 all
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to recover roughly 80% of known pathways. Most of these pathways are recovered in all 10 folds (Table 1).

Note that because some carriers do not appear in our database not all steps in all pathways can be matched

and the best possible recovery is 8.7. Thus, the 7.7 recovery obtained is very close to optimal.

For example, because of lack of evidence (the motif and carrier detection steps did not find the Vam3,

Vam7, or the Vps41 features), the classical vacuole import pathway (Vac in Fig. 5) and the alternative

Vps41 pathway can only be 50% recovered (each missing a step). For both, the step of signal peptide (SP)

is accurately found, but alternative motifs/carriers are selected to route proteins to the vacuole or cell

periphery.

We further collected lists of proteins indicated as following specific pathways in the literature for

four of the pathways, NLS, HDEL, Sec, and MVB, and tested whether the recovered pathways indeed

sort proteins on the correct path to the correct destination (allowing close compartments as above). For

each protein, we use the Viterbi algorithm to infer the highest probability path of states the protein is

expected to follow according to our learned model, and compare the Viterbi path to the known

pathways. Again counting partial match of a multi-step pathway as above, on average using all features

results in correctly assigning 21% of 63 proteins. Focusing on a representative feature set, detailed

protein path results for each pathway are also given in Table 2. The recovered NLS pathway sorted 39%

of proteins correctly, and the recovered HDEL pathway sorted 33% correctly but sorted the other 25%

via SP. Similarly the recovered MVB pathway sorted 23% to go through two of the three steps (SP and

MVB) and other 9% to one of the three steps. The recovered Sec pathway only sorted 2% of the

proteins to go through SP and end at cell periphery. However, this was due to the fact that while 17 of

the 28 proteins collected from literature as being secreted were included in the GFP dataset, the

majority are labeled as ER and vacule, and none are labeled as cell periphery. Overall the GFP dataset

include 40 out of the 63 proteins whose pathway is known, of which only 28% are labeled in agreement

with our lierature survey.

It is important to note that our analysis of the learned structure may underestimate its accuracy, since it

may have recovered correct pathways that could not be verified due to insufficient detection of relevant

motifs or carriers in the input data.

Figure 6 shows one of the learned structures obtained using all features. Besides carriers and motifs

included in our literature pathway collection (marked as boldface), many other features were found that are

also known to participate in protein trafficking as curated in SGD (Cherry et al., 1998) (marked with an

asterisk). For those compartments not covered by our collection of known pathways, the general topology

of this structure agrees with our basic understanding of cell biology. For example, microtubule share a step

with spindle pole, which in turn share a step with nuclear periphery, and cell periphery share steps with bud

neck, which in turn share steps with bud and actin.

4. DISCUSSION

The goal of this research is to propose hypotheses about protein sorting mechanisms, not just to make

predictions. We propose, for what we believe is the first time, a method to learn sorting pathways from

protein localization annotation, based on co-occurrence of interacting partner and sequence motif. Our

method is able to recover a significant part of known pathways collected from the literature, and to infer the

correct path of proteins known to follow these pathways.

Using a HMM, naturally simulates the transportation path of a protein among unobserved intermediate

states. Although the path is unobserved, the most likely one can be inferred by the Viterbi algorithm of the

HMM based on observed features. The model is probabilistic and returns a distribution of possible com-

partments, instead of a single predicted compartment. Proteins that are targeted to more than one com-

partment in the training data can be handled by treating multiple localization as uncertainty. While the

method has been successful, an HMM-based approach also suffers from a number of limitations. The input

data used by our method is static while HMM expects sequential data. This requires us to rely on a number

of assumptions including limiting each of the features to a unique level, and assuming independence

between the features. The structure search algorithm requires substantial computation, since the EM

algorithm must be run every time a candidate structure is being tried. Improving the search strategy is a

direction for future work. Another issue we would like to address is the inference of the actual location

of the intermediate states. For example, we might associate an internal state with the ER or Golgi.
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To determine such locations, we would need to tie the model to literature and try to identify overlaps which

can be generalized.

Given that the sorting routes taken by many proteins are currently unknown, the most important part of our

work is the potential to identify novel pathways. In this regard, we note that, just like hand-constructed

pathways, any novel putative pathways contained in our learned model can be readily tested experimentally by

perturbing motifs and/or carriers. An additional advantage of building comprehensive sorting models is that

potential inconsistencies in canonical models can be identified and experiments performed to resolve them.
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